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Non-Markovian nonequilibrium information dynamics
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We probe into the dynamics of interacting non-Markovian information systems. The stochastic dynamics of
information has two aspects: the self-evolution and interaction. We show that self-evolution of a non-Markovian
information system can be described by a Markov-type master equation with memory dependence. We also
reveal that the interaction between systems can be fully embodied into the information dynamics of the
composite information system. To characterize time irreversibility of the self-evolution and the interaction,
we apply the landscape-flux theory to both stochastic and thermal information dynamics. The driving force of
the nonequilibrium information dynamics can be decomposed into time-reversible (detailed balance preserving
landscape part) and -irreversible (detailed balance breaking nonequilibrium flux part) parts. The time-irreversible
part of the driving force fully depicts the time-irreversibility behavior in the stochastic dynamics. The time
irreversibility of the interactions between systems reflected in nonequilibrium thermodynamics can be seen in
the decomposition of the mutual information rate which corresponds to decomposition of the driving force. In
particular, the time-irreversible part of mutual information rate reveals the underlying relationship among the
entropy production rates of the information systems. We propose the finite memory approximation method and
demonstrate that the above mentioned features can be found in a wide class of non-Markovian nonequilibrium
information systems. Finally, we derive the lower and upper bounds for informational entities under concern
with clear meanings.
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I. INTRODUCTION

Studies on the nonequilibrium behaviors of two interacting
systems with finite states have shown their importance in
mesoscopic and microscopic information dynamics [1–6].
Usually, the dynamics of interacting systems in random
environments with time-invariant parameters (temperatures,
chemical potentials, etc.) and infinite degrees of freedom is
always considered to be non-Markovian with finite memories
[7]. Although the usual analytical and numerical methods
for Markov processes can be also applied for getting the
pictures of both stochastic dynamics and thermodynamics of
a composite Markov system, it has been proven to be difficult
that we can depict the behaviors of the subsystems with the
same ingredient. This is because the two subsystems may
also be random environments with time-variant parameters
for each other due to the comparable sizes and state-switching
rates of the subsystems. This indicates that none of the subsys-
tems need to be Markovian. Because of the existence of the
interactions, every subsystem has to adjust itself to adapt to
the time-variant environment (the other subsystem) and then
the corresponding process shows a remarkable path depen-
dence by summing away the degree of freedom of the other
subsystem, which means it has a memory. The information
of the past states in a memory are always embedded into
the parameters of the dynamics of the system to determine
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the present state, where the parameters are therefore time
variant. This memory is also always finite because historical
information of the systems is dissipated into the random envi-
ronments. This always leads to complicated noncommutative
matrices multiplications in mathematical treatments [8]. Due
to the difficulties on dealing with noncommutative matrices
multiplications [9], there is no analytical method to reveal
the underlying physical mechanisms which give rise to some
peculiar time-irreversible or nonequilibrium behaviors of such
interacting systems.

A recent progress in study of bivariate Markov chains by
Zeng and Wang [10] has shown that if both the subsystems
behave as Markov chains, the stochastic forces behind the
two subsystems can be divided into two parts. One part can
be regarded as a gradientlike force that attracts a subsystem
down to each state and due to potential landscape according
to the steady state distribution of the states. The other part
is a curling force that drives the subsystem to rotate among
states with steady probability fluxes. By restricting the sub-
systems to be Markov systems, this decomposition of the
forces which is the so-called “landscape-flux” decomposition
[11–13] is embodied in decomposing the transition matrices
of the subsystems into their time-reversible and -irreversible
parts. Although this model is restrictive, the landscape-flux
decomposition sets up a formal theory to deal with more
general cases where the subsystems and the composite system
could be non-Markovian.

In this paper, we probe into stochastic dynamics and
thermodynamics of non-Markovian interacting information
systems where for no loss of generality we assume that the
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two information systems and the composite system have a
unified memory length of m. In stochastic dynamics, we
slice sequences of a system into time-successive memories of
length m. By regarding all possible memories as generalized
states, we construct the Markov-type master equation which
characterizes the evolution of distribution of memories. The
force behind the information dynamics is considered to be
the transition probability that a memory “jumps” to another
time-successive memory. Based on this, we define the proba-
bility flux of a non-Markovian information system which fully
characterizes the time irreversibility in stochastic dynamics.
Geometrically, this probability flux can be interpreted as an
tensor of order m + 1 in a linear tensor space. It carries
informational observables corresponding to the memories and
flows from the system to the nonequilibrium environments.
On the other hand, the negative logarithmic distribution
of the memories in steady state is the so-called potential
landscape which preserves some informational observables
against the nonequilibrium behaviors, i.e., the probability
flux. Correspondingly, we divide the driving force (transition
probability) into the time-reversible and -irreversible parts to
uncover the underlying landscape-flux decomposition of the
non-Markovian dynamics. The interactions between the two
systems are fully embodied into the dynamics of the compos-
ite system which may also be non-Markovian with memory.
The probability fluxes of the subsystems can be regarded as
the coarse-grained version of that of the composite system.
This builds up the bridge between the time irreversibility of
the subsystems and the composite system.

To characterize the interactions of the information systems,
we focus on the mutual information rate (MIR) [14,15] which
depicts the information of interaction between subsystems.
The explicit form of MIR can be obtained from the master
equations of systems. It is the average over the detailed
interactions with respect to successive memory transitions.
Characterization of time irreversibility in thermodynamics
follows the spirit of landscape-flux decomposition in stochas-
tic dynamics. The MIR can be divided into time-reversible and
-irreversible parts explicitly corresponding to the decomposi-
tion of stochastic forces. It can be seen from the stochastic
thermodynamics [16] that the time-irreversible part of the
MIR which is driven by the probability flux is the increasing
or decreasing rate of the interactions between subsystems in
nonequilibrium environments. On the other hand, the time-
irreversible part of the MIR can be viewed as the preserved
correlations between subsystems.

In thermodynamics, the time irreversibility or nonequilib-
riumness of a system is measured by the entropy produc-
tion rate (EPR) which can be used to quantify the rate of
information dissipation from a system into the nonequilib-
rium environments. Influences on the EPR of one subsystem
through the environments and the other subsystem can be
seen from the time-irreversible part of MIR. Then, it can be
concluded that the time-irreversible part of MIR quantifies the
rate of interacting information dissipation of systems under
nonequilibrium condition.

The explicit forms of the physical entities in both stochastic
dynamics and thermodynamics presented in this paper allow
us to evaluate these entities easily in numerical analysis.
With these explicit expressions for non-Markovian cases, we

can even analyze the dynamical behavior of the interacting
information systems with unknown memory lengths, provided
the dynamics of the composite system. This is the so-called
“finite memory approximation” (FMA) which is based on
the martingale convergence theorem [17] for stationary and
ergodic processes. Theoretically, FMA can approximate these
physical entities of a non-Markov system in thermodynamics
with arbitrary precisions.

In some situations, we may not obtain adequate informa-
tion of the systems. It then becomes unworthy (or even impos-
sible) to evaluate the exact values of the system observables
under concern. Then, it would be meaningful to check whether
the designed systems have the desired properties of entities
within certain bounds rather than to evaluate the exact values
for practical applications. For this reason, we derive the upper
and lower bounds of the EPRs and the time-irreversible MIR
by using the log-sum inequality.

To demonstrate the power of the analysis (explicit expres-
sions and FMA) for non-Markovian cases in this paper, we
construct an example of two interacting non-Markovian infor-
mation systems, which involves the information dissipation
and (feedback) control. Since this model can be solved ana-
lytically, we clarify the meanings of the above non-Markovian
and nonequilibrium entities by detailed discussions on the dy-
namical observables of the systems: the optimal code lengths
of the system states.

II. STOCHASTIC DYNAMICS OF INTERACTING
NON-MARKOVIAN SYSTEMS

A. Formulation of self-evolution, time-irreversibility
characterization, and landscape-flux decomposition

Consider an open system X coupled to random environ-
ments and generates a finite-state, discrete-time, and irre-
ducible chain with state space X = {1, 2, . . . , l}: we say that
it has memories with length m because the conditional prob-
ability qx (xt |x1, x2, . . . , xt−1) = qx (xt |xt−m, xt−m+1, . . . ,

xt−1) for arbitrary state x ∈ X and t > m. This means the state
xt only depends on the sequence [xt−m, xt−m+1, . . . , xt−1]
with length up to m. This sequence is the so-called memory
of X. Here, subscripts of states x represent occurrence orders
of x in time. Since historical information of an open system is
dissipated into environments with infinite degrees of freedom,
we mainly focus on the dynamics of X to be non-Markovian
with finite m (m > 1).

We note that the Markov chains can be be regarded
as a special case in this paper while the memory length
m equals to 1. Then, the corresponding conditional prob-
ability qx (xt |xt−m, xt−m+1, . . . , xt−1) reduces to qx (xt |xt−1)
which is the so-called transition probability of the Markov
chain. The transition probability qx (xt |xt−1) quantifies the
probability of the transition between state xt−1 and state
xt representing the underlying stochastic dynamics of
a Markov chain. When the system is non-Markovian,
i.e., the memory length m > 1, the conditional proba-
bility qx (xt |xt−m, xt−m+1, . . . , xt−1) quantifies the probabil-
ity of the transition between a state sequence with the
memory length m χt−1 = [xt−m, xt−m+1, . . . , xt−1] and an-
other time-successive state sequence with the memory length
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FIG. 1. Locations of two time-successive memories in a sequence of non-Markovian system X. (a) Locations of (χt−1, χt ) along the
forward time arrow. (b) Locations of the time reversals (χ̃t , χ̃t−1) along the backward time arrow.

m χt = [xt−m+1, xt−m+2, . . . , xt ] representing the underly-
ing stochastic non-Markovian dynamics. Here, “time suc-
cessive” means that the two sequences χt−1 and χt in-
tersect with each other in time such that χt ∩ χt−1 =
[xt−m+1, xt−m+2, . . . , xt−1] (see Fig. 1). Then, it is reasonable
to rewrite qx as qx (χt |χt−1) ≡ qx (xt |xt−m, xt−m+1, . . . , xt−1).
This qx can be regarded as the transition probability between
time-successive sequences of length m of a non-Markovian
system, which is similar to the Markovian case where we
can find that χt−1 = xt−1 and χt = xt . Due to the description
of the transition probability qx , the characterization of the
dynamics of a non-Markovian system should be based on
the transitions between state sequences with memory length
(they are considered as the memories of the future) rather than
transitions between states. A Markov-type master equation for
the underlying non-Markovian evolution of distribution with
memories χ can come out based on this reasoning. It can be
expressed as

Pr(χt ) = ∑
χt−1

qx (χt |χt−1)Pr(χt−1), (1)

where the operator [qx (χt |χt−1)] is the stochastic propagator
of the X process. The solution of this equation can be given
by Pr(χt ) = ∑

χ1,...,χt−1

∏t
i=m+1 qx (χi |χi−1)Pr(χm), provided

the initial distribution Pr(χm). Due to the complexity of
eigenspace of the propagator [qx (χt |χt−1)] [18], we simply
assume that there exists a unique stationary distribution πx

such that π (χt ) = ∑
χt−1

qx (χt |χt−1)π (χt−1). When given ar-
bitrary initial distribution, evolution of memories finally goes
to πx exponentially fast. Our conclusions are mainly drawn
based on this stationary distribution, the steady state.

To characterize time irreversibility of X in steady state, we
define the steady state probability flux as the difference of the
joint probabilities forward and backward in time,

Jx (χt |χt−1) = πx (χt−1)qx (χt |χt−1) − πx (χ̃t )qx (χ̃t−1|χ̃t ),

(2)

where χ̃ denotes the time reversal of χ , for example, χ̃t =
[xt , xt−1, . . . , xt−m+1] (see Fig. 1). Here, “time-reverse mem-
ories” have to be emphasized because the time reversibility or
time irreversibility of the system has memory dependence and
the memories have to be flipped reversely when the process
turns back in time. We can prove that X is time irreversible if
and only if Jx = 0 for all possible time-successive memories
χt−1 and χt (see Appendix A). The geometrical interpretation
for Jx that it is a tensor of order (m + 1) can be found in
Appendix B.

It is noteworthy that for a Markovian system where the
memory length m = 1, since χt = χ̃t = xt and χt−1 = χ̃t−1 =
xt−1, Jx reduces to the well-known form Jx (xt |xt−1) =
πx (xt−1)qx (xt |xt−1) − πx (xt )qx (xt−1|xt ). The detailed bal-
ance equation Jx = 0 means that the Markovian system
is in equilibrium steady state where all the system se-
quences can be flipped reversely along the time arrow with
no costs. When Jx = 0 in a non-Markovian system, i.e.,
πx (χt−1)qx (χt |χt−1) = πx (χ̃t )qx (χ̃t−1|χ̃t ), the system is time
symmetrical between χt−1 and the time-reverse memory χ̃t ,
for the description of the time reversibility is equivalent to
the equilibrium condition of a non-Markovian system, analo-
gous to a Markov system. Consequentially, πx becomes the
equilibrium stationary distribution of the memories in this
equilibrium case.

In the framework of landscape-flux theory [11–13], the
transition probability works as the driving force of a Markov
system and the stationary distribution π quantifies the land-
scape of the potential field in the probabilistic dynamics.
The driving force (transition probability) q can be decom-
posed into the landscape gradient and local flux velocity
which correspond to the time-reversible and -irreversible
parts of the dynamics, respectively. This quantitative pic-
ture fully depicts the underlying mechanics behind time-
irreversible or nonequilibrium behavior of a Markov system.
Here, we show that this quantitative characteristic also works
when a non-Markovian system has (finite length) memory
dependence.
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We decompose the transition probabilities qx into two parts
correspondingly as

qx (χt |χt−1) = Dx (χt |χt−1) + Bx (χt |χt−1), (3)

with

Dx (χt |χt−1) = 1

2πx (χt−1)
[πx (χt−1)qx (χt |χt−1)

+πx (χ̃t )qx (χ̃t−1|χ̃t )],

Bx (χt |χt−1) = 1

2πx (χt−1)
Jx (χt |χt−1).

Here, Dx satisfies Dx (χt |χt−1) � 0 and
∑

χt
Dx (χt |χt−1) =

1, i.e., Dx (χt |χt−1) can be regarded as a series of transition
probabilities (or driving force) from memory χt−1 to memory
χt . We can see that

∑
χt−1

πx (χt−1)Dx (χt |χt−1) = πx (χt ),
which means πx is the steady distribution corresponding
to the transition probabilities Dx . Also, it can be verified
that the detailed balance equation πx (χt−1)Dx (χt |χt−1) =
πx (χ̃t )Dx (χ̃t−1|χ̃t ) holds for Dx and πx . This means that
the X process behaves in a time-reversible way under
the driving force Dx . Thus, Dx can be expressed as
Dx (χt |χt−1) = Dx (χ̃t−1|χ̃t ) exp{log πx (χ̃t ) − log πx (χt−1)},
where exp{log πx (χ̃t )} can be viewed as the exponential
of the difference between the potential − log πx (χt−1) and
− log πx (χ̃t ). Then, Dx can be identified as a gradientlike
force corresponding to the landscape πx and the detailed
balance (time-reversible) part of the stochastic information
dynamics.

Bx is the time-irreversible part (local flux velocity) of
the stochastic information dynamics. This is because Bx

is not preserved time-reversal transformation. On the other
hand, Bx can be obtained directly from the probability flux
Jx . A nonzero Bx can be viewed as the force that drives
the system to rotate among states with steady probabil-
ity fluxes and to depart from detailed balance (or equilib-
rium state). The detailed balance breaking is indicated by
πx (χt−1)Bx (χt |χt−1) = −πx (χ̃t )Bx (χ̃t−1|χ̃t ).

B. Interaction between two non-Markovian systems

When X is interacting with another system S, we
assume that S generates a a finite-state, discrete-time,
and irreducible chain with state space S = {1, 2, . . . , n}.
We also assume that S has m-dimensional memories
ςt = [st−m+1, st−m+2, . . . , st ] and transition probabilities
qs (ςt |ςt−1) = qs (st |st−m, st−m+1, . . . , st−1) for two succes-
sive memories ςt−1 and ςt . The evolution of distribution of its
memories can be expressed by a Markov-type master equation

Pr(ςt ) =
∑
ςt−1

qs (ςt |ςt−1)Pr(ςt−1), (4)

with unique solution of stationary distribution πs which satis-
fies πs (ςt ) = ∑

ςt−1
qs (ςt |ςt−1)πs (ςt−1).

As we will show in Sec. V, the memories (and dynamics)
of X and S are actually determined by the interactions
which are fully embodied in the dynamics of the composite
system (X, S). Dynamics of (X, S) can be obtained from the
observations of the composite process. For the simplicity of
discussion, we let X, S, and the composite system (X, S) have

the same memory length. And this is also helpful to build
up a unified framework for interacting non-Markovian
systems with an explicit and computable structure.
Here, we let the m-dimensional memories and transition
probabilities of (X, S) be (χt , ςt ) = [(xt−m+1, st−m+1), . . . ,
(xt , st )] and q(χt , ςt |χt−1, ςt−1) = q(xt , st |(xt−m, st−m), . . . ,
(st−1, st−1)), respectively. Also, a Markov-type master
equation for the composite system (X, S) can be given by

Pr(χt , ςt ) =
∑

(χt−1,ςt−1 )

q(χt , ςt |χt−1, ςt−1)Pr(χt−1, ςt−1),

(5)

with unique solution of stationary distribution π .
For no loss of generality, we let (X, S) be in its steady state

with stationary distribution π with both X and S achieving
their own steady states with stationary distributions πx and
πs , respectively (jointly stationary assumption). This means
the stationary distributions πx and πs corresponding to master
equations (1) and (4) are the marginal distributions of π

corresponding to Eq. (5), i.e., both πs (ςt ) = ∑
χt

π (χt , ςt )
and πx (χt ) = ∑

ςt
π (χt , ςt ) hold in the steady state of the

composite system. Similar to Jx in Eq. (2), we define probabil-
ity fluxes Js and J for systems S and (X, S), respectively, for
characterizing time irreversibility of corresponding processes.
The landscape-flux decomposition can be also applied for
transition probabilities of S and (X, S), respectively, in the
form of Eq. (3): qs = Ds + Bs and q = D + B.

Due to jointly stationary assumption, relations be-
tween Jx , Js , and J can be shown as Jx (χt |χt−1) =∑

ςt−1

∑
ςt

J (χt , ςt |χt−1, ςt−1) and Js (ςt |ςt−1) = ∑
χt−1

∑
χt

J (χt , ςt |χt−1, ςt−1). These relations indicate that Jx and Js

can be regarded as two coarse-grained versions of J with
respect to subsystems X and S, respectively. Also from these
relations, we see that if (X, S) is time reversible (J = 0),
then both X and S are time reversible (Jx = 0 and Js = 0).
Conversely, if X or S is time irreversible (Jx �= 0 or Js �= 0),
then (X, S) must be time irreversible (J �= 0).

III. NONEQUILIBRIUM THERMODYNAMICS
OF INTERACTING NON-MARKOVIAN SYSTEMS

A. Decomposition of mutual information rate into
time-reversible and -irreversible parts and interactions between

non-Markovian systems

As a fundamental concept in information theory, mutual
information rate (MIR) [19] depicts the amount of informa-
tion that two systems share. Here, we use MIR to quantify
interaction between the non-Markovian systems X and S. The
MIR is defined by

I (X, S) = lim
T →∞

1

T

∑
�x (T ),�s (T )

Pr(�x (T ),�s (T ))

× log
Pr(�x (T ),�s (T ))

Pr(�x (T ))Pr(�s (T ))
,

where time sequences �x (T ) = [x1, x2, . . . , xT ], �s (T ) =
[s1, s2, . . . , sT ], and (�x (T ),�s (T )) are generated by X, S,
and (X, S), respectively. The MIR is always non-negative and
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it vanishes if and only if X and S do not interact with each
other efficiently.

Due to the Markov-type master equations (1), (4),
and (5), and given the initial distributions of memories
to be stationary distributions, probabilities of �x (T ), �s (T ),
and (�x (T ),�s (T )) can be given by Pr(�x (T )) = πx (χm)∏T −1

i=m qx (χi+1|χi ), Pr(�s (T )) = πs (ςm)
∏T −1

i=m qs (ςi+1|ςi ),
and Pr(�x (T ),�s (T ))=π (χm, ςm)

∏T −1
i=m q(χi+1, ςi+1|χi, ςi ),

respectively.
We then have the explicit form of I (X, S) which reads as

(see the Appendix C)

I (X, S) =
∑

(χt ,ςt )

∑
(χt−1,ςt−1 )

π (χt−1, ςt−1)q(χt , ςt |χt−1, ςt−1)

× i(χt , ςt |χt−1, ςt−1), (6)

where

i(χt , ςt |χt−1, ςt−1) = log
q(χt , ςt |χt−1, ςt−1)

qx (χt |χt−1)qs (ςt |ςt−1)
.

Here, i can be considered as the detailed interactions between
X and S when a transition (χt−1, ςt−1) → (χt , ςt ) occurs.
And I (X, S) is the average of i all over the transitions of
memories.

Corresponding to the landscape-flux decomposition of the
driving forces, I (X, S) can be decomposed into two parts:

I (X, S) = ID (X, S) + IB (X, S), (7)

where

ID (X, S) =
∑

(χt ,ςt )

∑
(χt−1,ςt−1 )

π (χt−1, ςt−1)D(χt , ςt |χt−1, ςt−1)

× i(χt , ςt |χt−1, ςt−1),

IB (X, S) =
∑

(χt ,ςt )

∑
(χt−1,ςt−1 )

π (χt−1, ςt−1)B(χt , ςt |χt−1, ςt−1)

× i(χt , ςt |χt−1, ςt−1)

= 1

2

∑
(χt ,ςt )

∑
(χt−1,ςt−1 )

J (χt , ςt |χt−1, ςt−1)

× i(χt , ςt |χt−1, ςt−1)

are the time-reversible (detailed balance preserving) and
-irreversible (detailed balance breaking) parts of the MIR,
respectively. We give the physical interpretations to ID (X, S)
and IB (X, S). We define the stochastic interactions between
two possible time sequences of X and S in time T as

k(�x (T ),�s (T )) = log
Pr(�x (T ),�s (T ))

Pr(�x (T ))P (�s (T ))

=
∑

(χt ,ςt )

∑
(χt−1,ςt−1 )

N (χt , ςt |χt−1, ςt−1)

× i(χt , ςt |χt−1, ςt−1),

where N (χt , ςt |χt−1, ςt−1) counts the number of transi-
tions of (χt−1, ςt−1) → (χt , ςt ) along the sequence (�x (T ),
�s (T )), and limT →∞ 1

T
〈N (χt , ςt |χt−1, ςt−1)〉(�x (T ),�s (T )) =

π (χt−1, ςt−1)q(χt , ςt |χt−1, ςt−1). Clearly, the averaged inter-
actions in sequence space of X and S and in long time limit is
the MIR:

limT →∞ 1
T
〈k(�x (T ),�s (T ))〉(�x (T ),�s (T )) = I (X, S). We

also define the stochastic interactions between two time
reversals of the sequences of X and S as

k
(
�̃x (T ), �̃s (T )

) = log
Pr(�̃x (T ), �̃s (T ))

Pr(�̃x (T ))Pr(�̃s (T ))

=
∑

(χ̃t ,ς̃t )

∑
(χ̃t−1,ς̃t−1 )

N (χ̃t−1, ς̃t−1|χ̃t , ς̃t )

× i(χ̃t−1, ς̃t−1|χ̃t , ς̃t ),

where N (χ̃t−1, ς̃t−1|χ̃t , ς̃t ) counts the number of time-
reversal transitions of (χ̃t , ς̃t ) → (χ̃t−1, ς̃t−1) along (�̃x (T ),
�̃s (T )), and limT →∞ 1

T
〈N (χ̃t−1, ς̃t−1|χ̃t , ς̃t )〉(�x (T ),�s (T )) =

limT →∞ 1
T
〈N (χt , ςt |χt−1, ςt−1)〉(�x (T ),�s (T )). The change of

stochastic interaction between the two subsystems when
the time sequences turn back in time is quantified by
the time-irreversible part of the stochastic interactions
k(�̃x (T ), �̃s (T )):

kB (�x (T ),�s (T ))= 1
2 (k(�x (T ),�s (T )) − k(�̃x (T ), �̃s (T ))).

Clearly, kB measures the increasing (kB < 0) or decreasing
(kB > 0) interactions between X and S along the time re-
versal (�̃x (T ), �̃s (T )) compared to that of (�x (T ),�s (T )).
The time-reversible part of the k(�̃x (T ), �̃s (T )) shows the
remaining amount of interactions in both (�x (T ),�s (T )) and
(�̃x (T ), �̃s (T )):

kD (�x (T ),�s (T ))= 1
2 (k(�x (T ),�s (T ))+k(�̃x (T ), �̃s (T ))).

Thus, we have

I (X, S) = lim
T →∞

1

T
〈k(�x (T ),�s (T ))〉�z (T )

= lim
T →∞

1

T
〈kD (�x (T ),�s (T ))〉�z (T )

+ lim
T →∞

1

T
〈kB (�x (T ),�s (T ))〉�z (T )

= ID (X, S) + IB (X, S),

where ID (X, S) = limT →∞ 1
T
〈kD (�x (T ),�s (T ))〉�z (T ), and

IB (X, S) = limT →∞ 1
T
〈kB (�x (T ),�s (T ))〉�z (T ) with explicit

forms being shown in Eq. (7).
Intuitively, if the two subsystems do not interact with

each other efficiently [I (X, S) = 0], then we must have
both IB (X, S) = 0 and ID (X, S) = 0. However, IB (X, S) = 0
does not imply that I (X, S) = 0 because it related to not
only the interactions, but also to time irreversibility of the
composite systems and subsystems.

B. Nonequilibrium thermodynamics of interacting
non-Markovian systems: Relations between entropy production

rates and mutual information rate

It is interesting to study the nonequilibrium thermody-
namics of two interacting non-Markovian systems. To do so,
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we explore the relation between the the mutual information
rate and the entropy production rates of interacting systems.
Entropy production rate (EPR) [20] of an information sys-
tem characterizes the degree of the time-irreversible thermal
information flows from the system to the nonequilibrium
environments or, say, the rate of thermal information dissi-
pation of the system under nonequilibrium conditions. It is
defined by

R = lim
T →∞

1

T

∑
�(T )

Pr(�(T )) log
Pr(�(T ))

Pr(�̃(T ))
� 0,

for a stochastic system in steady state. The system is time
reversible if and only if R = 0 or the system process is time
irreversible, or we always have R > 0. Needless to say, the
non-negativity of the EPR is not only a mathematical result,
but also a key element of the second law of thermodynamics
for open information systems: information (carried by energy
and matter) is always dissipated irreversibly from the system
with small degree of freedom to the environments with large
degrees of freedom.

By noting master equations (1), (4), and (5), we realize
that systems X, S, and (X, S) should have Markov-type
EPRs [21] with explicit form taking into account of the
memory dependence although they may be non-Markovian
systems. The corresponding EPRs can be given by (see
Appendix C)

R(X) = 1

2

∑
χt

∑
χt−1

Jx (χt |χt−1) log
qx (χt |χt−1)

qx (χ̃t−1|χ̃t )
,

R(S) = 1

2

∑
ςt

∑
ςt−1

Js (ςt |ςt−1) log
qs (ςt |ςt−1)

qs (ς̃t−1|ς̃t )
,

R(X, S) = 1

2

∑
(χt ,ςt )

∑
(χt−1,ςt−1 )

J (χt , ςt |χt−1, ςt−1)

× log
q(χt , ςt |χt−1, ςt−1)

q(χ̃t−1, ς̃t−1|χ̃t , ς̃t )
. (8)

Due to interactions between X and S, the relation between
R(X), R(S), and R(X, S) can be revealed naturally by the
time-irreversible part of MIR, IB (X, S), which gives

IB (X, S)

= 1

2

∑
(χt ,ςt )

∑
(χt−1,ςt−1 )

J (χt , ςt |χt−1, ςt−1)i(χt , ςt |χt−1, ςt−1)

= 1

4

∑
(χt ,ςt )

∑
(χt−1,ςt−1 )

J (χt , ςt |χt−1, ςt−1){i(χt , ςt |χt−1, ςt−1)

− i(χ̃t−1, ς̃t−1|χ̃t , ς̃t )}
= 1

2
[R(X, S) − R(X) − R(S)]. (9)

This equality provides another interpretation of the time-
irreversible MIR. To see this, we focus on the differences

R(X|S) ≡ R(X, S) − R(S), R(S|X) ≡ R(X, S) − R(X).

(10)

These differences can be viewed as the EPR (information
dissipation) of one subsystem controlled by (or conditioning
on) the time-irreversible behavior of the other subsystem. This
is because, as shown in the definition of the EPR,

R(X|S) = R(X, S) − R(S)

= lim
T →∞

1

T

∑
�x (T ),�s (T )

Pr(�x (T ),�s (T ))

×
{

log
Pr(�x (T ),�s (T ))

Pr(�̃x (T ), �̃s (T ))
− log

Pr(�s (T ))

Pr(�̃s (T ))

}
= lim

T →∞
1

T

∑
�s (T )

Pr(�s (T ))
∑
�x (T )

Pr(�x (T )|�s (T ))

× log
Pr(�x (T )|�s (T ))

Pr(�̃x (T )|�̃s (T ))
,

where (�x,�s ) �x and �s denote the possible time sequences
of the composite system and subsystems, respectively; �̃

denotes the corresponding time-reverse time sequence.
Here, the conditional probabilities Pr(�x (T )|�s (T )) =
Pr(�x (T ),�s (T ))

Pr(�s (T )) and Pr(�̃x (T )|�̃s (T )) = Pr(�̃x (T ),�̃s (T ))
Pr(�̃s (T ))

reveal
the time-forward and -backward behaviors of X which are
controlled by the the time-forward and -backward behaviors
of S correspondingly. Similarly, we can derive the expression
of R(S|X) as follows:

R(S|X) = R(X, S) − R(X)

= lim
T →∞

1

T

∑
�x (T )

Pr(�x (T ))
∑
�s (T )

Pr(�s (T )|�x (T ))

× log
Pr(�s (T )|�x (T ))

Pr(�̃s (T )|�̃x (T ))
.

Then, the equality with respect to the time-irreversible MIR
IB (X, S) and the EPRs in Eq. (9) can be rearranged as follows:

R(X|S) = 2IB (X, S)+R(X), R(S|X) = 2IB (X, S)+R(S).

(11)

Thus, the information dissipation of one subsystem [R(X|S)
or R(S|X)] controlled by the time-irreversible behavior of
the other subsystem (or a time-variant environment) is consti-
tuted by the “self”-information dissipation of the subsystem
[R(X) or R(S)] and the information dissipation associating
with the interaction IB (X, S). Here, “information dissipa-
tion associating with the interaction” does not mean that
IB (X, S) has to be non-negative. In fact, if R(X|S) > R(X)
or R(S|X) > R(S), then we obtain a positive IB (X, S) which
means the information of interaction is dissipated from the
systems into the environments time irreversibly. Otherwise,
a negative IB (X, S) [R(X|S) < R(X) or R(S|X) < R(S)]
means that the information of interaction is dissipated from
the the environments into the systems to maintain the self-
information dissipation of the systems. This fully provides an
understanding of the intrinsic property of the time-irreversible
MIR. A related discussion about time-reversed control can be
found in [22].
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IV. NON-MARKOV SYSTEMS WITH UNKNOWN
MEMORY LENGTHS

A. Finite memory approximation

Quite often, we do not always know the memory lengths
of most non-Markovian systems even though they are elab-
orately constructed. Besides, there are two disadvantages on
analyzing systems with unknown memory lengths: (1) the two
interacting systems may have different memory lengths; (2)
any one of the subsystems may have a really large memory
length. However, by using the method of finite memory ap-
proximation (FMA), we may easily include more general class
of non-Markovian cases into the framework of landscape-flux
theory for information dynamics.

A non-Markovian system often emerges when it is inter-
acting with another system with comparable size and state-
switching rate. While the interaction is identified, memories
of both interacting systems are determined. This interaction
can be fully embodied in the dynamics of composite systems.
This means we can obtain complete dynamics of non-Markov
subsystems from composite system. Thus, we consider a com-
posite system Z = (X, S) with Markov-type master equation
shown in Eq. (5) and the memory lengths of the subsystems
being unknown. Here, we use mz to denote the exact memory
length of Z = (X, S) in Eq. (5). From FMA, by choosing a
unified memory length for the two subsystems we can ap-
proximate the processes of the subsystems in both stochastic
dynamics and thermodynamics with arbitrary precision. This
is the direct result of the martingale convergence theorem [17].

We assume that the subsystems X and S satisfy the jointly
stationary assumption. We then let X(m) and S(m) be the
approximating systems of X and S, respectively. Here, m �
mz is the unified memory length of both X and S. Then, the
transition probabilities of successive memories of X(m) and
S(m) can be evaluated by

qx

(
χ

(m)
t |χ (m)

t−1

) =
∑

ς
(m)
t

Pr
(
χ

(m)
t , ς

(m)
t

)∑
ς

(m+1)
t

Pr
(
χ

(m+1)
t , ς

(m+1)
t

) ,

qs

(
ς

(m)
t |ς (m)

t−1

) =
∑

χ
(m)
t

Pr
(
χ

(m)
t , ς

(m)
t

)∑
χ

(m+1)
t

Pr
(
χ

(m+1)
t , ς

(m+1)
t

) ,

where χ
(m)
t = [xt−m+1, . . . , xt ] is a sequence with superscript

(m) denoting its length and subscript denoting its end time.
Similar settings are given to the sequences (or memories) ap-
pearing in this section. The joint probabilities Pr(χ (m)

t , ς
(m)
t )

and Pr(χ (m+1)
t , ς

(m+1)
t ) are given by dynamics of Z in steady

state:

Pr
(
χ

(m)
t , ς

(m)
t

) = π
(
χ

(mz )
t−m+mz

, ς
(mz )
t−m+mz

) t∏
i=t−m+mz+1

× q
(
χ

(mz )
i , ς

(mz )
i

∣∣χ (mz )
i−1 , ς

(mz )
i−1

)
,

Pr
(
χ

(m+1)
t , ς

(m+1)
t

) = π
(
χ

(mz )
t−m+mz−1, ς

(mz )
t−m+mz−1

) t∏
i=t−m+mz

× q
(
χ

(mz )
i , ς

(mz )
i

∣∣χ (mz )
i−1 , ς

(mz )
i−1

)
.

Then, we can formulate Markov-type master equations for
X(m) and S(m), respectively, and have

Pr
(
χ

(m)
t

) =
∑
χ

(m)
t−1

qx

(
χ

(m)
t

∣∣χ (m)
t−1

)
Pr

(
χ

(m)
t−1

)
,

Pr
(
ς

(m)
t

) =
∑
ς

(m)
t−1

qs

(
ς

(m)
t

∣∣ς (m)
t−1

)
Pr

(
ς

(m)
t−1

)
.

Thus, X(m) and S(m) form stationary and ergodic
processes when initial distributions are πx (χ (m)

t ) =∑
ς

(m)
t

Pr(χ (m)
t , ς

(m)
t ) and πs (ς (m)

t ) = ∑
χ

(m)
t

Pr(χ (m)
t , ς

(m)
t ),

respectively. For calculations of FMA, we need to increase
the memory length of Z from mz to m, and construct a
pseudodynamics of Z in steady state:

Pr
(
χ

(m)
t , ς

(m)
t

) =
∑

(χ (m)
t−1,ς

(m)
t−1 )

q
(
χ

(m)
t , ς

(m)
t

∣∣χ (m)
t−1, ς

(m)
t−1

)
× Pr

(
χ

(m)
t−1, ς

(m)
t−1

)
,

where q(χ (m)
t , ς

(m)
t |χ (m)

t−1, ς
(m)
t−1 ) = q(χ (mz )

t , ς
(mz )
t |χ (mz )

t−1 , ς
(mz )
t−1 ).

Now, we have a complete construction of dynamics with
memory length m similar to Eqs. (1), (4), and (5). We
then evaluate the probability fluxes Jx , Js , and J for the
approximating systems according to Eq. (2). Landscape-flux
decomposition can be made for the driving forces of the ap-
proximating systems according to Eq. (3) with the steady state
distributions quantifying the information landscapes while
the steady state probability fluxes measuring the degree of
the nonequilibriumness. In thermodynamics, entities become
functions of m, they are denoted by I (X(m),S(m) ) (the MIR),
IB (X(m),S(m) ) (the time-irreversible part of MIR), R(X(m) )
(the EPR of X), and R(S(m) ) (the EPR of S), etc. These
entities can be evaluated by using Eqs. (6), (7), and (8),
respectively.

If X and S have different but finite memory lengths mx

and ms , respectively, we let the unified memory length m �
max{mx,ms,mz} and have

qx

(
χ

(m)
t

∣∣χ (m)
t−1

) = qx (xt |xt−m, . . . , xt−1) = qx (xt |xt−mx
, . . . , xt−1) = qx

(
χ

(mx )
t

∣∣χ (mx )
t−1

)
,

qs

(
ς

(m)
t

∣∣ς (m)
t−1

) = qs (st |st−m, . . . , st−1) = qs (st |st−ms
, . . . , st−1) = qs

(
ς

(ms )
t

∣∣ς (ms )
t−1

)
,

q
(
χ

(m)
t , ς

(m)
t

∣∣χ (m)
t−1, ς

(m)
t−1

) = q
(
χ

(mz )
t , ς

(mz )
t

∣∣χ (mz )
t−1 , ς

(mz )
t−1

)
,
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∑
xt−m,...,xt−mx−1

Jx

(
χ

(m)
t

∣∣χ (m)
t−1

) = Jx

(
χ

(mx )
t

∣∣χ (mx )
t−1

)
,

∑
st−m,...,st−ms−1

Js

(
ς

(m)
t

∣∣ς (m)
t−1

) = Js

(
ς

(ms )
t

∣∣ς (ms )
t−1

)
,

∑
(xt−m,st−m ),...,(xt−mx−1,st−ms−1 )

J
(
χ

(m)
t , ς

(m)
t

∣∣χ (m)
t−1, ς

(m)
t−1

) = J
(
χ

(mz )
t , ς

(mz )
t

∣∣χ (mz )
t−1 , ς

(mz )
t−1

)
.

Hence, for m � max{mx,ms,mz} we have

I (X(m),S(m) ) = I (X, S),

R(X(m) ) = R(X),

R(S(m) ) = R(S),

IB (X(m),S(m) ) = IB (X, S).

If X and S have unknown and large (and also different) mem-
ory lengths, according to the martingale convergence theorem
as the memory length m → ∞ the conditional entities

qx (xt |xt−m, . . . , xt−1) → qx (xt |x−∞, . . . , xt−1),

qs (st |st−m, . . . , st−1) → qs (st |s−∞, . . . , st−1),

I (X(m),S(m) ) → I (X, S),

R(X(m) ) → R(X),

R(S(m) ) → R(S),

IB (X(m),S(m) ) → IB (X, S),

almost surely. This means we can use the FMA method to
evaluate these entities with arbitrary precision.

For numerical calculations, for example, to evaluate R(X)
and IB (X, S), we can use the following sequences:

R(X(mz ) ), R(X(mz+1)), R(X(mz+2)), . . .

and

IB (X(mz ),S(mz ) ), IB (X(mz+1),S(mz+1)),

IB (X(mz+2),S(mz+2)) . . . .

The numerical calculations will continue until∣∣∣∣R(X(M1+1)) − R(X(M1 ) )

R(X(M1 ) )

∣∣∣∣ � δ1,

∣∣∣∣IB (X(M2+1),S(M2+1)) − IB (X(M2 ),S(M2 ) )

IB (X(M2 ),S(M2 ) )

∣∣∣∣ � δ2,

for given small enough thresholds of the relative errors δ1 and
δ2 at M1 and M2, respectively. Then, we take R(X(M1 ) ) and
IB (X(M2 ),S(M2 ) ) as the true values of R(X) and IB (X, S),
respectively. Here, M1 needs not to be equal to M2 because
M1 approximates to the true value of mx and M2 measures the
true value of m = max{mx,ms,mz}. Similar algorithm can be
designed for other entities.

V. BOUNDS OF NONEQUILIBRIUM ENTITIES

Although the FMA method provides the chance that we can
obtain observables of a non-Markovian system with arbitrary
precision, we should note that we may not obtain adequate
information of the stochastic dynamics of the composite sys-
tems or subsystems in finite time especially when only the
dynamics of the composite system could be observed. On
the other hand, when the state spaces or the memory lengths
are quite large, the complexity of calculations of the FMA
method increases intolerably. It then becomes unworthy (or
even impossible) to evaluate the exact values of the system
observables under concern. In these situations, it would be
meaningful to check whether the designed systems have the
desired properties of entities within certain bounds rather than
to evaluate the exact values for practical applications. Here,
the desired properties refer to the characterization of system
information dissipation (the EPRs) and characterization of in-
teraction information dissipation (the time-irreversible MIR).
These bounds involve the log-sum inequality which is useful
to derive the bounds of entities related to the Kulback-Leibler
divergence (see Appendix D).

A. Upper bounds of entropy production rates of subsystems
and lower bound of time-irreversible mutual information rate

For the EPRs of the subsystems, R(X) and R(S) in Eq. (8),
the log-sum inequality suggests that

R(X, S) � R(X), R(X, S) � R(S), (12)

where R(X, S) = R(X) holds for that G =
π (χt−1,ςt−1 )q(χt ,ςt |χt−1,ςt−1 )

π (χ̃t ,ς̃t )q(χ̃t−1,ς̃t−1|χ̃t ,̃σt ) is not a function of ςt and ςt−1,
and R(X, S) = R(S) holds for that G is not a function of χt

and χt−1. Here, χ and ς refer to the memories of X and S,
respectively. π and q refer to the stationary distribution and
transition probability of the composite system, respectively.
The equalities mean that the information dissipation of the
composite system only depends on the information dissipation
of one subsystem. For example, if X is independent of S and
R(S) = 0, then we have R(X, S) = R(X).

The inequalities of EPRs follow the intuition that the
information dissipation of any subsystems cannot exceed that
of the composite system. They also imply that the EPRs under
control, R(X|S) and R(S|X), are always non-negative:

R(X|S) = R(Z)−R(S) � 0, R(S|X) = R(Z)−R(X) � 0.

(13)
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By combining these inequalities with Eq. (9), we have a lower
bound of time-irreversible MIR IB (X, S), which reads as

IB (X, S) � 1
2 max{−R(X),−R(S)}. (14)

This provides a vital constraint on the information dissipation
of the interaction. This inequality makes sure that the infor-
mation dissipation of any subsystems cannot exceed the total
information dissipation R(X, S).

B. Lower bounds of entropy production rates and upper bound
of time-irreversible mutual information rate

The FMA allows us to obtain series of the lower bounds
of EPRs and upper bounds of the time-irreversible MIR
easily from the approximating systems. If, for example, we
use the FMA to approximate a non-Markovian system X in
steady state via two memory lengths m1 and m2 (m1 � m2)
and the corresponding approximating systems are denoted
by X(m1 ) and X(m2 ), then the log-sum inequality suggests an
inequality relation between the EPRs of the two approxima-
tions R(X(m1 ) ) � R(X(m2 ) ) (see Appendix D). Generally, this
relation can be extended to

R(X) � · · · � R(X(m1 ) ) � R(X(m2 ) ) � · · · � R(X(1) ) � 0,

(15)

where 1 � · · · � m2 � m1 � · · · � m with m being the exact
memory length of X. Here, R(X(1) ) refers to the Markovian
approximation of X. This inequality provides the series of
lower bounds of the EPR of a non-Markovian system. These
lower bounds indicate that decreasing memory length causes
decreasing rate of information dissipation. In other words, the
memories with certain length can be viewed as the “time”
environments of a non-Markovian information system. Larger
memory length implies an environment with larger degree of
freedom and larger information dissipation.

Although 0 is the natural lower bound of the EPR, we
should note that a nonzero lower bound R(X(M ) ) > 0 (M �
m) can be more informative than the trivial 0. To say the least,
if we are only interested in the time irreversibility of X, then
we can choose a smaller memory length, such as M = 1 < m,
and confirm that R(X(M ) ) > 0. Then, X is time irreversible.

By noting Eqs. (9) and (10), provided the exact memory
length of the composite system mz and the corresponding EPR
R(Z), we have the upper bounds of IB (X, S) as

IB (X, S) � · · · � 1
2 [R(Z) − R(X(m2 ) ) − R(S(m2 ) )]

� 1
2 [R(Z) − R(X(m1 ) ) − R(S(m1 ) )] � · · ·

� 1
2 [R(Z) − R(X(1) ) − R(S(1) )]

� 1
2R(Z). (16)

These inequalities imply that increasing memory lengths of
subsystems (with the EPR of the composite system being
fixed) decreases the time-irreversible MIR IB . Since self-
information dissipation of subsystems decreases with de-
creasing memory, the dissipation of the interactions (time-
irreversible MIR) increases. Moreover, smaller memory
length (for instance, the Markovian approximation) can be
quite effective to bound the time-irreversible MIR.

FIG. 2. Diagram of the two interacting information systems X

and S in the example.

We should note that inequalities in Eqs. (12), (13), and (14)
provide the general constraints on the EPRs of the subsystems
and time-irreversible MIR.

VI. AN EXAMPLE OF TWO INTERACTING
INFORMATION SYSTEMS

To clarify the meaning of the information-theoretical for-
mulations in the above, we construct a comprehensive exam-
ple of two interacting information systems, which involves
the information dissipation and (feedback) control. Related
examples can be found in [10,23,24,25].

A. Description of stochastic dynamics, analytical solutions of
transition probabilities by using finite memory length method

In this example, two finite-state information systems de-
noted by X and S, respectively, are interacting with each
other. Their states are labeled by X = {x = 1, 2, . . . , l} and
S = {s = 1, 2, . . . , n}, respectively. Both systems are driven
by several random information environments individually so
that their behaviors become randomized. The interaction be-
tween them is considered to be purely informational without
physical contact. Their stochastic dynamics can be described
as follows (see Fig. 2).

The state of any one of the systems at t is controlled
by the state of the other system at t − 1. Since the sys-
tems are driven by random environments, then the con-
trols become randomized which are characterized by the
conditional probabilities ε(xt |st−1) and d(st |xt−1). Here, ε

indicates the probability of state of X (xt ) controlled by
state of S (st−1). d represents the probability of state of S

(st ) controlled by X (xt−1). These conditional probabilities
satisfy {ε(x|s) : ε(x|s) � 0,

∑
x∈X ε(x|s) = 1} and {d(s|x) :

d(s|x) � 0,
∑

s∈S d(s|x) = 1}. The controls from the two
systems are considered to be independent of each other at
t . This means for the composite system Z = (X, S), the
transition probability from state at t − 1 to state at t satisfies
that q(xt , st |xt−1, st−1) = ε(xt |st−1)d(st |xt−1). Since the state
of Z at t only depends on the state at t − 1, then Z follows a
Markovian dynamics.

Due to the description of the stochastic dynamics of S and
X, the probabilistic master equation with respect to Z arises
from the transition probabilities which reads as

Pr(xt , st ) =
∑

xt−1,st−1

q(xt , st |xt−1, st−1)Pr(xt−1, st−1).
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We assume that there is a unique stationary distribution of
z denoted by π . We also assume that the X and S satisfy
the joint stationary assumption. It can be seen from the
description of the dynamics of X and S that the system states
xt and st are independent of each other. Thus, it is clear that
the stationary marginal probabilities πx (x) = ∑

s π (x, s) and
πs (s) = ∑

x π (x, s) satisfy π (x, s) = πx (x)πs (s) (a proof
of this can be found in Appendix E). This indicates that
the time-sliced interaction (mutual information) I (X,S) =
〈 log π (x,s)

πx (x)πs (s) 〉 = 0. However, this does not mean the systems
are independent of each other since xt and st are controlled by
st−1 and xt−1, respectively.

In spite of specific conditional probabilities ε and d for
Markovian cases, X and S are both non-Markovian with un-
known memory lengths in general. However, by applying the
FMA method analytically, we have, when the approximating
memory length m � 2 (see Appendix E),

qx

(
χ

(m)
t

∣∣χ (m)
t−1

) = qx

(
χ

(2)
t

∣∣χ (2)
t−1

) =
∑
st−1

d(st−1|xt−2)ε(xt |st−1)

= qx (xt |xt−2),

qs

(
ς

(m)
t

∣∣ς (m)
t−1

) = qs

(
ς

(2)
t

∣∣ς (2)
t−1

) =
∑
xt−1

ε(xt−1|st−2)d(st |xt−1)

= qs (st |st−2).

These transition probabilities indicate that both X and S have
memory length of 2. However, they can still be regarded as
“sampled Markovian” systems since qx and qs have no corre-
lation with the states at t − 1. For example, xt−2 exerts influ-
ence on xt via st−1 but not via xt−1 directly. Thus, they can
be rewritten as qx (xt |xt−2) and qs (st |st−2), respectively. But,
neither system can be taken as Markovian systems because
the knowledge of states at t − 2 and t − 1 must be known
for generating the processes of both systems. The stationary
distribution of X and S is recognized as πx (x) and πs (s) be-
cause the equalities πx (xt ) = ∑

xt−2
qx (xt |xt−2)πx (xt−2) and

πs (st ) = ∑
st−2

qs (st |st−2)πs (st−2) both hold in steady state.
It is noteworthy that the transition probabilities qx and

qs can be written into the sums of the series of transition
probabilities via different “channels,” respectively,

qx (xt |xt−2) =
∑

s

qx (xt , s|xt−2), qs (st |st−2)

=
∑

x

qs (st , x|st−2),

where qx (xt , s|xt−2) = d(s|xt−2)ε(xt |s) (s = st−1 for short);
qs (st , x|st−2) = ε(x|st−2)d(st |x) (x = xt−1 for short); the no-
tation forms of qx (xt , s|xt−2) and qs (st , x|st−2) are given by
the chain rule of probabilities. By the description of dynamics
of the systems, s is determined by xt−2 via d(s|xt−2) then xt

is determined by s via ε(xt−2|s). Thus, qx (xt , s|xt−2) is the
transition probability that X jumps from xt−2 to xt through
the channel s. Analogously, qs (st , x|st−2) is the transition
probability that S jumps from st−2 to st through the channel x.
These two series of transition probabilities would be helpful
for clarifying the meaning of the time-irreversible MIR in this
model.

TABLE I. An example of encoding the states xt−1 and xt (X =
{1, 2, 3, 4}) by the Huffman coding. xt−1 and xt are controlled by
st−1 = 1 and st−2 = 2, respectively. The optimal code lengths lx are
also shown in the table.

xt−1 = 1 xt−1 = 2 xt−1 = 3 xt−1 = 4

ε(xt−1|st−2) 1/4 1/4 1/4 1/4
lx (xt−1|st−2) 2 2 2 2
Codewords 01 00 11 10

xt = 1 xt = 2 xt = 3 xt = 4
ε(xt |st−1) 1/2 1/4 1/8 1/8
lx (xt |st−1) 1 2 3 3
Codewords 0 10 111 110

In this model, − log πx (x) and − log πs (s) can be taken as
the potential landscapes of the subsystems X and S, respec-
tively. These two landscapes measure the self-information of
the system states in bits which is independent of the time and
the other system. The information fluxes of X and S can be
taken as

Jx (xt |xt−2) = πx (xt−2)qx (xt |xt−2) − πx (xt )qx (xt−2|xt ),

Js (st |st−2) = πs (st−2)qs (st |st−2) − πs (st )qs (st−2|st ).

B. Dynamical observables of stochastic dynamics

Since the stochastic dynamics of the systems in this case
is identified in the above, we can evaluate the nonequilibrium
entities: the EPRs R(Z), R(X), and R(S) by using Eq. (8),
and the time-irreversible MIR IB (X, S) by using Eq. (7)
analytically. In this model, we can give the nonequilibrium
entities an intuitive picture by connecting them to the dynam-
ical observables. According to the argument by Shannon [14],
the system states can be encoded into series of codewords (se-
quences of 0 and 1) by using the optimal coding methods such
as Shannon-Fano coding [15] or Huffman coding [26]. The
(optimal) code lengths are equal to the negative logarithmic
(conditional) probabilities corresponding to the system dy-
namics. These lengths measure the bits of information that the
events with respect to system states (such as transitions) are
observed by outer observers. These lengths can be observed
stochastically and can be summed up or averaged along with
the time sequences. Thus, they can be taken as the dynamical
observables of systems. These dynamical observables (opti-
mal lengths of codewords) can be classified into two groups:
one group associating with the controls between systems and
one group associating with the transitions between system
states.

(1) The conditional probabilities d and ε contain the de-
tailed information of the (feedback) controls between systems.
According to the argument by Shannon, we can assign a
codeword for every state of X with respect to a fixed control
condition s and assign a codeword for every state of S with
respect to a fixed control condition x. An example can be
found in Table I. The optimal code lengths lx and ls are
equal to the bits of information of the (feedback) controls
between systems (negative logarithmic control probabilities)
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correspondingly, which read as

lx (xt |st−1) ≡ − log ε(xt |st−1),

ls (st |xt−1) ≡ − log d(st |xt−1),

where we use the convention log = log2. The optimal code
lengths quantify the detailed control information with bits.
They can be taken as the dynamical observables associating
with the controls.

(2) The transition probabilities with respect to the com-
posite systems and subsystems q, qx , and qs contain the
detailed information of the detailed system dynamics. We can
assign a codeword for every state transition corresponding
to the transition probabilities. The optimal code lengths are
equal to the bits of information of the transitions between
system states (negative logarithmic transition probabilities)
correspondingly, which read as

hz(xt , st |xt−1, st−1) ≡ − log q(xt , st |xt−1, st−1),

hx (xt |xt−2) ≡ − log qx (xt |xt−2),

hs (st |st−2) ≡ − log qs (st |st−2),

h(s)
x (xt |xt−2) ≡ − log qx (xt , s|xt−2),

h(x)
s (st |st−2) ≡ − log qs (st , x|st−2),

where hz, hx , and hs correspond to transition probabilities
of Z, X, and S, respectively; h(s)

x and h(x)
s correspond to

the transition probabilities of X and S via detailed channels,
respectively. These optimal code lengths quantify the transi-
tion information with respect to Z, X, and S, respectively,
with bits. They can be taken as the dynamical observables
associating with the system transitions.

According to the expressions of the transition probabilities
q, qx , and qs , we note that the observables of the transitions
(h) can be constructed from the observables of the controls (l).
This is due to the interactions between the subsystems. More
explicitly, we have

hz(xt , st |xt−1, st−1) = lx (xt |st−1) + ls (st |xt−1),

hx (xt |xt−2) = log
∑

s

2h
(s)
x (xt |xt−2 )

= log
∑

s

2lx (xt |s)+ls (s|xt−2 ),

hs (st |st−2) = log
∑

x

2h
(x)
s (st |st−2 )

= log
∑

x

2ls (st |x)+lx (x|st−2 ),

h(s)
x (xt |xt−2) = lx (xt |s) + ls (s|xt−2),

h(x)
s (st |st−2) = ls (st |x) + lx (x|st−2).

Thus, hz contains the detailed information of interaction that
S controls X [lx (xt |st−1)] and X controls S [ls (st |xt−1)] at a
transition from t − 1 to t . h(s)

x provides the detailed informa-
tion that X controls S [ls (s|xt−2)] at t − 2 and S feeds back to
X at t [lx (xt |s)]. h(x)

s measures the detailed information that
S controls X [lx (x|st−2)] at t − 2 and X feeds back to S at t

[ls (st |x)]. hx and hs average the detailed information carried
by h(s)

x and h(x)
s , respectively, by taking all possible channels

into account. Then, it would be appropriate to measure the
information that one subsystem gains at specified state when
it controls a state transition of the other subsystem from t − 2
to t by using the differences

h(s)
x (xt |xt−2) − hx (xt |xt−2)

= − log
qx (xt , s|xt−2)

qx (xt |xt−2)
= − log qx (s|xt−2, xt ),

h(x)
s (st |st−2) − hs (st |st−2)

= − log
qs (st , x|st−2)

qs (st |st−2)
= − log qs (x|st−2, st ).

Here, the qx (s|xt−2, xt ) = qx (xt ,s|xt−2 )
qx (xt |xt−2 ) and qs (x|st−2, st ) =

qs (st ,x|st−2 )
qs (st |st−2 ) represent the probabilities that the specified states

s and x conditioning on the transitions xt−2 → xt and st−2 →
st , respectively. This can be seen directly from the chain rule
of probabilities. Then, h(s)

x (xt |xt−2) − hx (xt |xt−2) measures
the information gain of S at s when it controls the transition
xt−2 → xt ; h(x)

s (st |st−2) − hs (st |st−2) measures the informa-
tion gain of X at x when it controls the transition st−2 → st .

C. Associate dynamical observables with entropy production
rates and time-irreversible mutual information rate

By noting the meaning of the dynamical observables of
transitions, we use the differences between these observables
of backward and forward transitions to define the net bits of
information gain or loss of the systems at every transition,
respectively, as follows:

dhz(xt , st |xt−1, st−1) ≡ hz(xt−1, st−1|xt , st )

−hz(xt , st |xt−1, st−1) = log
q(xt , st |xt−1, st−1)

q(xt−1, st−1|xt , st )
,

dhx (xt |xt−2) ≡ hx (xt−2|xt ) − hx (xt |xt−2)= log
qx (xt |xt−2)

qx (xt−2|xt )
,

dhs (st |st−2) ≡ hs (st−2|st ) − hs (st |st−2)= log
qs (st |st−2)

qs (st−2|st )
.

Here, the corresponding system (X, S, or Z) loses net bits of
information (dh > 0) or gains net bits of information (dh <

0) via the interactions with the environments at transition from
t − m to t (m is exact memory length of the system). By
taking the averages of dh over all the possible transitions of
the corresponding systems, we have

〈dhz〉=R(Z) � 0, 〈dhx〉=R(X) � 0, and 〈dhs〉=R(S) � 0.

This means the information of the system under concern is
always dissipated into the environments irreversibly with the
rate of bits measured by the EPR.

We should emphasize that the meanings of the EPRs of
interacting (non-Markovian) information systems are quite
different from those of the systems which are driven by time-
invariant environments because one system always behaves
as the time-variant environment of the other system. This can
be seen from the relations among the EPRs R(Z), R(X), and
R(S) directly in this model. The observables with respect to
transitions of subsystems via channels h(s)

x and h(x)
s build the

bridge among the EPRs. We use the differences between these
observables of backward and forward transitions via the same
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channel to define the net bits of information gain or loss of the
systems at every transition as follows:

dh(s)
x (xt |xt−2) ≡ h(s)

x (xt−2|xt ) − h(s)
x (xt |xt−2)

= log
qx (xt , s|xt−2)

qx (xt−2, s|xt )
,

dh(x)
s (st |st−2) ≡ h(x)

s (st−2|st ) − h(x)
s (st |st−2)

= log
qs (st , x|st−2)

qs (st−2, x|st )
.

dh(s)
x is recognized as the net bits of information gain (dh(s)

x <

0) or loss (dh(s)
x > 0) of system X at transitions xt−2 → xt

via the “channel” s; and dh(x)
s is recognized as the net bits of

information gain or loss of system S at transitions st−2 → st

via the “channel” x. By averaging dh(s)
x and dh(x)

s over all the
possible transitions of the corresponding channels, we have
the sub-EPRs of subsystems corresponding to channels,

R(s)(X) ≡ 〈
dh(s)

x

〉
, R(x)(S) ≡ 〈

dh(x)
s

〉
.

Clearly, the EPR of the composite system Z can be recast by
series of these sub-EPRs,

R(Z) =
∑

s

R(s)(X) =
∑

x

R(x)(S).

As it is shown in Sec. V B, the differences

dh(s)
x (xt |xt−2) − dhx (xt |xt−2) = log

qx (s|xt−2, xt )

qx (s|xt , xt−2)
,

dh(x)
s (st |st−2) − dhs (st |st−2) = log

qs (x|st−2, st )

qs (x|st , st−2)

measure the net bits of information that one system gains
or loses when it controls the other system. By taking the
averages of these differences over all the possible transitions
and channels of the corresponding systems, we have〈

dh(s)
x − dhx

〉 = R(S|X),
〈
dh(x)

s − dhs

〉 = R(X|S).

In this model, the explanation of R(S|X) is that it measures
the information dissipation rate of system S when it works
as the time-variant environment of X. R(X|S) measures the
information dissipation rate of system X when it works as the
time-variant environment of S.

Equation (11) [R(X|S)=2IB (X, S)+R(X) and R(S|X) =
2IB (X, S) + R(S)] indicates that one part of R(S|X) [or
R(X|S)] supplies the self-information dissipation R(S) [or
R(X)], the other part maintains the time-irreversible MIR
IB (X, S) between systems in this model.

D. Bounds of time-irreversible part of mutual information rate

By using the FMA method, the EPRs R(X) and R(S) have
lower bounds R(X(1) ) and R(S(1) ), respectively, where X(1)

and S(1) refer to the Markov approximations of X and S,
respectively. The corresponding transition probabilities can be
given by

fx (xt |xt−1) =
∑
st−1

π (st−1|xt−1)ε(xt |st−1) = πx (xt ),

fs (st |st−1) =
∑
xt−1

π (xt−1|st−1)d(st |xt−1) = πs (st ),

where π (st−1|xt−1) = π (xt−1,st−1 )
πx (xt−1 ) and π (xt−1|st−1) =

π (xt−1,st−1 )
πs (st−1 ) are the stationary conditional probabilities with

respect to S and X, respectively. These two conditional
probabilities work in the Markov approximations like
d(st−1|xt−2) and ε(xt−1|st−2) in the exact dynamics
[qx (xt |xt−2) and qs (st |st−2)], respectively. However, the
transition information at time transitions t − 2 → t − 1 and
t − 1 → t are totally lost both in fx and fs . The stationary
distributions of the Markov approximations are thus πx and
πs , respectively. The corresponding approximations of the
EPRs R(X) and R(S) can be given by

R(X(1) ) = 0, R(S(1) ) = 0.

Consequentially, we have the approximated time-irreversible
MIR

IB (X(1),S(1) ) = 1
2R(Z).

By noting Eq. (14), we then have the lower and upper bounds
of the time-irreversible MIR IB (X, S) that

1
2 max{R(S), R(X)} � IB (X, S) � 1

2R(Z).

VII. CONCLUSION

In this work, we quantify the nonequilibrium information
dynamics of the two interacting non-Markovian systems: the
Markov-type master equation with memory dependence de-
picts the self-evolution; the nonequilibrium non-Markovian
information dynamics of the composite system and mutual
information rate depicts the interactions. We characterize the
time irreversibility of non-Markovian information dynamics
by applying landscape-flux theory. The key point of this the-
ory is the decomposition of the driving force in a Markov-type
master equation into time-reversible part (detailed balance
preserving landscape part) and time-irreversible part (detailed
balance breaking nonequilibrium flux part). Correspondingly,
the time-irreversible part of mutual information rate turns
out to be closely related to the entropy production rates of
subsystems and composite system. Based on our study, we
propose the finite memory approximation method which can
be used to analyze the time irreversibility or the nonequilibri-
umness of non-Markovian processes explicitly. The proposed
example and the corresponding analysis show the validity of
our method.
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APPENDIX A

Let C be a finite-state, discrete-time, irreducible, ergodic,
and stationary system with memory length of m. Let C be its
state space. Let π be its stationary joint distribution of state
sequences ν with length of m. Let q(νt |νt−1) be the transition
probability. Then, C is time irreversible beyond m if and only
if the stationary flux J (νt |νt−1) is vanishing. That is to say, the
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probabilities

Pr(c1, c2, . . . , cT ) = Pr(cT , cT −1, . . . , c1)

hold for T > m iff J (νt |νt−1) = 0.
To prove this, we just need to show that the conclusion

holds for T = m + 2. We have

Pr(c1, . . . , cm+2) − Pr(cm+2, . . . , c1)

= π (νm)q(νm+1|νm)q(νm+2|νm+1)

−π (̃νm+2)q (̃νm+1 |̃νm+2)q (̃νm |̃νm+1). (A1)

By noting Eq. (3), we proceed with (A1) and have

Pr(c1, . . . , cm+2) − Pr(cm+2, . . . , c1)

= π (νm)(D1 + B1)(D2 + B2)

−π (̃νm+2)(D̃2 + B̃2)(D̃1 + B̃1), (A2)

where

D1 = D(νm+1|νm), B1 = B(νm+1|νm),

D2 = D(νm+2|νm+1), B2 = B(νm+2|νm+1),

D̃2 = D (̃νm+1 |̃νm+2), B̃2 = B (̃νm+1 |̃νm+2),

D̃1 = D (̃νm |̃νm+1), B̃1 = B (̃νm |̃νm+1).

By noting that

π (νt−1)D(νt |νt−1) = π (̃νt )D (̃νt−1 |̃νt ),

π (νt−1)B(νt |νt−1) = −π (̃νt )B (̃νt−1 |̃νt ),

we have Pr(c1, . . . , cm+2) − Pr(cm+2, . . . , c1) = 0 iff B1 =
B2 = 0. We can complete the proof for arbitrary T > m by
using mathematical induction.

APPENDIX B

Here is a geometrical interpretation for Jx . If X is
Markovian (m = 1), the stationary joint distribution of its
two-state sequences Pr(xt−1, xt ) forms a matrix [Pr(xt−1, xt )].
Then, its probability flux Jx (xt |xt−1) is the antisymmetrical
part of Pr(xt−1, xt ) which also forms a matrix (a second-
order tensor), namely, [Jx (xt |xt−1)] = [Pr(xt−1, xt )] −
[Pr(xt−1, xt )]† = [Pr(xt−1, xt )] − [Pr(xt , xt−1)]. Here, the
dagger symbol represents the matrix transpose. If X is non-
Markovian and it has a memory length of m > 1, then the joint
stationary distribution of (m + 1) sequences Pr(χt−1, χt ) =
πx (χt−1)qx (χt |χt−1) [where (χt−1, χt ) ≡ [xt−m, . . . , xt ]]
forms a tensor of order m + 1, denoted by [Pr(χt−1, χt )],
defined on a coordinates system [xt−m, . . . , xt ].

To obtain its “tensor”-transpose [Pr(χt−1, χt )]†, we fix all
other coordinates except xt−m+k and xt−k [k = 0, . . . , (m −
1)/2] and obtain a series of matrices of (xt−m+k, xt−k )
at all fixed coordinates, namely, the series of ma-
trices [Pr(. . . , xt−m+k, . . . , xt−k, . . .)]. We then transpose
these matrices and obtain [Pr(. . . , xt−m+k, . . . , xt−k, . . .)]† =
[Pr(. . . , xt−k, . . . , xt−m+k, . . .)]. We do these transpose op-
erations from k = 0 to k = (m − 1)/2 to guarantee that all
the matrices of the coordinates (xt−m+k, xt−k ) have been
transposed.

FIG. 3. Geometrical interpretation for the probability flux of a
non-Markovian system X with memory. X has memory length of 2
with state space X = {0, 1, 2}. The joint probabilities Pr(χt−1, χt ) =
Pr(xt−2, xt−1, xt ) are arranged into a tensor space of order 3, i.e.,
into the lattices of a cube. By fixing xt−1 = 0, 1, 2, we obtain a
series of matrices [Pr(xt−2, 0, xt )] (red), Pr(xt−2, 1, xt )] (green), and
[Pr(xt−2, 2, xt )] (blue), with different colors corresponding to the
planes shown in the cube. The probability flux which is also a
third-order tensor is obtained by calculating the antisymmetrical
part of each matrix, i.e., [Jx] = [Pr(χt−1, χt )] − [Pr(χt−1, χt )]† =
[Pr(χt−1, χt )] − [Pr(χ̃t , χ̃t−1)].

Then, we obtain the “tensor” transpose [Pr(χt−1, χt )]† =
[Pr(χ̃t , χ̃t−1)] where Pr(χ̃t , χ̃t−1) = πx (χ̃t )qx (χ̃t−1|χ̃t ).
Similar to Markovian case, we have [Jx (χt |χt−1)] =
[Pr(χt−1, χt )] − [Pr(χ̃t , χ̃t−1)] to be the the antisymmetrical
part of tensor [Pr(χt−1, χt )].

A case where X has memory length of 2 has been shown
in Fig. 3. It then can be easily verified that [Jx (χt |χt−1)]
is an antisymmetrical tensor of order m + 1 such that
[Jx (χt |χt−1)]† = [Jx (χ̃t−1|χ̃t )] = −[Jx (χt |χt−1)].

APPENDIX C

Here, we derive the exact form of mutual information rate
[MIR, Eq. (6)] and the entropy production rate [EPR, Eq. (8)]
in steady state. At first, we introduce two related quantities:
the “forward” entropy rate H (C) and “backward” entropy rate
H̃ (C) of process C, where the description of C has been given
in Appendix A. These two quantities are defined by

H (C) = lim
T →∞

1

T
〈− log Pr(�(T ))〉�(T ), (C1)

where �(T ) is arbitrary possible time sequence of C in time
T , and

H̃ (C) = lim
T →∞

1

T
〈− log Pr(�̃(T ))〉�(T ), (C2)

where �̃(T ) is the time reversal of �(T ).
The MIR [Eq. (14)] can be rewritten into the combination

of forward entropy rates as

I (X, S) = H (X) + H (S) − H (X, S). (C3)

The EPR [Eq. (27)] can be rewritten into the difference
between the backward entropy rate and forward entropy rate
as

R(C) = H̃ (C) − H (C), for C = X, S, or (X, S). (C4)
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Thus, we can obtain the MIR and EPR by evaluating H (C) and H̃ (C). In information theory, these two entropy rates can be
obtained from a typical sequence of C, where “typical” means in �(T )

(1) the number of the occurrences of a state sequence ν in �(T ) is

π (ν)T + o(T ), for large T ; (C5)

(2) the number of the transitions from a memory νt to νt+1 in �(T ) is

π (νt−1)q(νt |νt−1)T + o(T ), for large T . (C6)

Then, according to the law of large numbers, we have

H (C) = − lim
T →∞

1

T
log Pr(�(T )) = − lim

T →∞
1

T

{ ∑
νt

π (νt ) log π (νt )
+T

∑
νt−1

∑
νt

π (νt−1)q(νt |νt−1) log q(νt |νt−1) + o(T )

}
= −

∑
νt

∑
νt−1

π (νt−1)q(νt |νt−1) log q(νt |νt−1). (C7)

Similarly, we have

H̃ (C) = −
∑
νt

∑
νt−1

π (νt−1)q(νt |νt−1) log q (̃νt−1 |̃νt ). (C8)

By substituting (C7) and (C8) into (C3) and (C4), respectively, we then have Eqs. (6) and (8).

APPENDIX D

The log-sum inequality shows that two positive functions f and g with respect to two variables η and ψ satisfy the following
inequality:

∑
η,ψ

f (η,ψ ) log
f (η,ψ )

g(η,ψ )
�

∑
η

⎛⎝∑
ψ

f (η,ψ )

⎞⎠ log

∑
ψ f (η,ψ )∑
ψ g(η,ψ )

,

where the equality holds if and only if f (η,ψ )/g(η,ψ ) is not a function of ψ .
The definition of the EPR suggests that

R(X, S) = lim
T →∞

∑
�s (T ),�x (T )

Pr(�x (T ),�s (T )) log
Pr(�x (T ),�s (T ))

Pr(�̃x (T ), �̃s (T ))

� lim
T →∞

∑
�x (T )

⎛⎝ ∑
�s (T )

Pr(�x (T ),�s (T ))

⎞⎠ log

∑
�s (T ) Pr(�x (T ),�s (T ))∑
�s (T ) Pr(�x (T ),�s (T ))

= R(X).

Also, the EPRs of two approximations with two memory lengths m1 and m2 (m1 > m2) satisfy

R(X,m1) =
∑

x1,...,xm1+1

Pr(x1, . . . , xm1+1) log
Pr(x1, . . . , xm1+1)

Pr(xm1+1, . . . , x1)

�
∑

x1,...,xm2+1

⎛⎝ ∑
xm1+1,...,xm2+1

Pr(x1, . . . , xm1+1)

⎞⎠ log

∑
xm1+1,...,xm2+1

Pr(x1, . . . , xm1+1)∑
xm1+1,...,xm2+1

Pr(xm1+1, . . . , x1)
= R(X,m2).

where we use the substitutions of variables η = [x1, ..., xm2+1] and ψ = [xm1+1, ..., xm2+1] for applying the log-sum inequality.

APPENDIX E

Assume that π is the unique stationary distribution of the composite system Z. This means that the transition matrix
[q(zt |zt−1)] has a unique eigenvalue of 1 and π is the corresponding eigenvector which is a probability distribution. Thus,
π satisfies that

π (xt , st ) =
∑

xt−1,st−1

π (xt−1, st−1)q(xt , st |xt−1, st−1).
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Let πx (x) = ∑
s π (x, s) and πs (s) = ∑

x π (x, s) be the two marginal stationary distributions. We can easily verify that∑
st−1

πs (st−1)ε(xt |st−1) =
∑
xt

∑
xt−1,st−1

π (xt−1, st−1)q(xt , st |xt−1, st−1) = πx (xt ),

∑
xt−1

πx (xt−1)d(st |xt−1) =
∑
st

∑
xt−1,st−1

π (xt−1, st−1)q(xt , st |xt−1, st−1) = πs (st ).

Let ρ(x, s) = πx (x)πs (s) be the direct product distribution. We then have∑
xt−1,st−1

ρ(xt−1, st−1)q(xt , st |xt−1, st−1) =
∑

xt−1,st−1

ρ(xt−1, st−1)ε(st−1|xt )d(st |xt−1)

=
(∑

st−1

πs (st−1)ε(xt−1|st )

)(∑
xt−1

πx (xt−1)d(st |xt−1)

)
= ρ(xt , st ).

Thus, ρ is a stationary distribution of Z. Since π is the unique stationary distribution of Z, then we must have π = ρ.
The FMA method shows that, for m � 2,

qx

(
χ

(m)
t

∣∣χ (m)
t−1

) =
∑

s1,,st
Pr(x1, s1)ε(x2|s1)d(s2|x1) . . . ε(xt |st−1)d(st |xt−1)∑

s1,...,st−1
Pr(x1, s1)ε(x2|s1)d(s2|x1) . . . ε(xt−1|st−2)d(st−1|xt−2)

=
(∑

s1
Pr(x1, s1)ε(x2|s1)

)(∑
s2

d(s2|x1)ε(x3|s2)
)
. . .

(∑
st−1

d(st−1|xt−2)ε(xt |st−1)
)

(∑
s1

Pr(x1, s1)ε(x2|s1)
)(∑

s2
d(s2|x1)ε(x3|s2)

)
. . .

(∑
st−2

d(st−2|xt−3)ε(xt−1|st−2)
)

=
∑
st−1

d(st−1|xt−2)ε(xt |st−1) = qx

(
χ

(2)
t |χ (2)

t−1

) = qx (xt |xt−2).

Similarly, we have qs (ς (m)
t |ς (m)

t−1 ) = ∑
xt−1

ε(xt−1|st−2)
d(st |xt−1) for m � 2.

To justify the numerical results of FMA, we can use a
conventional method which evaluates R(X), R(S), I (X, S),
and IB (X, S) directly from a typical sequence of Z (see [15]).
For large time T , the corresponding results can be given by

R(X) ≈ 1

T
log

Pr(�x (T ))

Pr(�̃x (T ))
, R(S) ≈ 1

T
log

Pr(�s (T ))

Pr(�̃s (T ))
,

I (X, S) ≈ 1

T
log

Pr(�z(T ))
Pr(Pr(�x (T ))Pr(�s (T ))

,

IB (X, S) ≈ 1

2T

(
log

Pr(�z(T ))

Pr(�̃z(T ))
− log

Pr(�x (T ))

Pr(�̃x (T ))

− log
Pr(�s (T ))

Pr(�̃s (T ))

)
,

where �z(T ) = (�x (T ),�s (T )) is a typical sequence of Z

[hence, �x (T ) and �s (T ) are typical sequences of X and S,
respectively] in time T ; �̃z(T ), �̃x (T ), and �̃s (T ) are the
corresponding time-reversal sequences. The convergence of
this method can be observed as T increases.

For numerical simulations, we simply let the state space of
the system X be X = {x : x = 1, 2, 3, 4} and the state space
of the system S be S = {s : s = 1, 2, 3}. The conditional
probabilities ε read as

ε =

⎡⎢⎣0.1168 0.5300 0.0591
0.2437 0.0093 0.3049
0.3219 0.3808 0.4136
0.3175 0.0799 0.2224

⎤⎥⎦.

The conditional probabilities d read as

d =
⎡⎣0.4525 0.4445 0.4231 0.3962

0.4539 0.2110 0.1870 0.1812
0.0935 0.3446 0.3899 0.4226

⎤⎦.

Here, values of ε and d are arranged into the matrices of
[ε(xt |st−1)] (with rows being labeled by x and columns being
labeled by s) and [d(st |xt−1)] (with rows being labeled by s

and columns being labeled by x), respectively. Consequen-
tially, the exact transition probabilities of X and S read as

qx =

⎡⎢⎣0.2990 0.1841 0.1716 0.1673
0.1430 0.2153 0.2237 0.2271
0.3572 0.3659 0.3687 0.3713
0.2008 0.2346 0.2360 0.2343

⎤⎥⎦,

qs =
⎡⎣0.4232 0.4367 0.4254

0.2222 0.3283 0.2088
0.3546 0.2350 0.3658

⎤⎦.

Here, values of qx and qs are arranged into the matrices of
[qx (xt |xt−2)] and [qs (st |st−2)] with rows being labeled by
states at t and columns being labeled by states at t − 2,
respectively. The exact stationary probabilities of X and S

TABLE II. Numerical results of R(Z), R(X), R(S ), I (X, S ),
IB (X, S ), IL

B (X, S ), and IU
B (X, S ).

R(Z) R(X) R(S ) I (X, S ) IB (X, S ) IL
B (X, S ) IU

B (X, S )

0.3208 0.0067 0.0062 0.2603 0.1540 −0.0031 0.1604
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FIG. 4. The values of (a) R(X(m) ), (b) R(S(m) ), (c) I (X(m),S(m) ), and (d) IB (X(m),S(m) ) from m = 1 to 6.

read as

πx = [πx (1), πx (2), πx (3), πx (4)]

= [0.1985, 0.2067, 0.3665, 0.2283],

πs = [πs (1), πs (2), πs (3)] = [0.4272, 0.2436, 0.3292].

We evaluate R(X(m) ), R(S(m) ), I (X(m),S(m) ), and
IB (X(m),S(m) ) by using FMA. We select the thresholds
of relative error δ = 10−5 for both entities. All the
calculations are terminated at M = 2. This demonstrates
the conclusion that the processes of the subsystems are both

non-Markovian chains with memory lengths of 2. In fact,
we have evaluated the model with unified memory lengths
from m = 1 to 6 to check whether there exists any exception
(see Fig. 4). We also calculate the lower and upper bounds
of IB (X, S), IL

B (X, S) = max{− 1
2R(X),− 1

2R(S)}, and
IU
B (X, S) = 1

2R(Z), respectively. The values of numerical
results are listed in Table II.

We also plot the curves of R(X), R(S), I (X, S), and
IB (X, S) with increasing T (1 � T � 106) by using the con-
ventional method as the comparison to the FMA method (see
Fig. 5).
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,S
)

(c)

0 1 2 3 4 5 6 7 8 9 10
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I B(X
,S

)

(d)

T

FIG. 5. Comparisons of (a) R(X), (b) R(S ), (c) I (X, S ), and (d) IB (X, S ) by using conventional method and exact values. Curved lines,
conventional method. Horizontal lines, exact values with m = 2.
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