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Mesoscopic description of the equal-load-sharing fiber bundle model
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One aim of the equal-load-sharing fiber bundle model is to describe the critical behavior of failure events. One
way of accomplishing this is through a discrete recursive dynamics. We introduce a continuous mesoscopic
equation catching the critical behavior found through recursive dynamics. It allows us to link the model
with the unifying framework of absorbing phase transitions traditionally used in the study of nonequilibrium
phase transitions. Moreover, it highlights the analogy between equal-load-sharing and spinodal nucleation.
Consequently, this work is a step toward the quest of a field theory for fiber bundle models.
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I. INTRODUCTION

While equilibrium phase transitions are today well un-
derstood, a general framework to study the nonequilibrium
counterpart is still lacking. Recently, major efforts have been
invested into identifying the universality classes related to
nonequilibrium phase transitions. The theory of absorbing
phase transitions (APTs) is emerging as a unifying framework
(or, more generally, field theory applied to nonequilibrium
scaling behavior) [1,2]. An absorbing phase transition occurs
when a system leaves an active state and enters an absorbing
state from which the system cannot escape by itself.

The APT formalism improved the understanding of the
universal behavior of a great variety of models such as epidemic
and population dynamics [3], sandpiles [4], interfaces in
random media [5], and reaction-diffusion systems [2]. The
most prominent and generic nonequilibrium universality class
is directed percolation, which is believed to describe the phase
transition toward a unique absorbing state of systems that is not
characterized by any special symmetry (except, effectively, the
rapidity reversal symmetry) or conservation law. This is known
as the Janssen-Grassberger directed percolation conjecture
[6,7].

Fiber bundle models (FBMs) describe rupture phenomena
as irreversible fiber breaking processes through discrete break-
ing rules [8,9]. In their simplest form, they consist of two stiff
parallel clamps with fibers between them. All the fibers have
the same elastic constant. However, the maximum force each
fiber can sustain before it fails irreversibly is set by a threshold
drawn for each fiber from a probability distribution. Due to
irreversibility, detailed balance does not hold. Therefore, fiber
bundle models are nonequilibrium systems. We focus here
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on the dynamical description of the equal-load-sharing (ELS)
model, which is the mean-field (MF) limit of the fiber bundle
models [10]. This is the model we sketched earlier in this
paragraph. The equal-load-sharing fiber bundle model may
be described through a discrete recursion relation (recursion
dynamics) [11]. It was shown that ELS undergoes a phase
transition.

The aim of this work is to derive a mesoscopic equation
encapsulating the ELS critical dynamics. We show the close
formal connection, in the limit of vanishing external field,
between ELS critical behavior and an APT process: the
compact directed percolation (CDP) model. Next we show
that the ELS mesoscopic equation can be derived as a purely
relaxational model depending on a Hamiltonian describing the
ELS stationary behavior. Then, based on a symmetry argument,
we highlight the origin of the analogy between the FBM and
spinodal nucleation [12,13].

In Sec. II we review the critical properties of the fiber bundle
model using recursive dynamics. In Sec. III we provide a
mesoscopic description of ELS. We numerically compare ELS
and the mesoscopic equation in Sec. IV. We proceed in Sec. V
to show the phenomenological and formal similarities between
ELS and CDP in an external field. Section VI demonstrates
how the ELS fiber bundle model may be described through
an overdamped Langevin equation. Then, in Sec. VII we
explicitly link the FBM and spinodal nucleation. In Sec. VIII
we summarize and discuss our work.

II. RECURSIVE DYNAMICS OF THE
EQUAL-LOAD-SHARING FIBER BUNDLE MODEL

The ELS fiber bundle model describes the breaking process
of N initially intact fibers subject to a homogeneous external
field σ , the initial load per fiber. A fiber j is characterized
by a strength τj , which is a threshold value sampled from
a probability distribution p. We denote by n(t ) the number
density (number of surviving fibers divided by N ) of intact
fibers at time t ; k(t ) = 1 − n(t ) is the density of broken fibers
(the damage) with n(0) = 1. The dynamics of the system under
load is defined as follows. At discrete time t > 0, all fibers j
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such that

τj <
σ

n(t − 1)
(1)

break irreversibly. Then the number of intact fibers is updated
and the process continues until the system reaches a station-
ary configuration. We note that, by definition, the model is
infinitely dimensional, i.e., space plays no role. Local load
redistribution introduces a spatial effect in the fiber bundle
model and is studied, for example, in the local-load-sharing
fiber bundle model where the nearest neighbors of the failed
fibers absorb the load they were carrying at failure [8,9].

The control parameter of ELS is σ . As we will see below,
ELS exhibits critical behavior close to the critical point σ = σc.
The exponents characterizing the system in the vicinity of the
critical point do not depend on the choice of the threshold
probability (see [8,9,12]). In the following we will work with
the uniform threshold distribution for simplicity.

Formally, the system dynamic is described by a recursive
relation [8,9]. The density of broken fiber k(t ) is given by the
threshold cumulative distribution P (τ ) = ∫ τ

0 p(τ ′)dτ ′,

k(t ) = P

(
σ

n(t )

)
=

∫ σ/n(t )

0
p(x)dx. (2)

Thus,

n(t + 1) = 1 − P

(
σ

n(t )

)
= 1 − σ

n(t )
(3)

since P (τ ) = τ for the uniform distribution on the unit inter-
val. The breaking process occurs until the system reaches a
stationary configuration

n∗ = 1 − σ

n∗
, (4)

with n∗ the stationary solution of Eq. (3). Therefore, the
equation of state for the stable system is

n2
∗ − n∗ + σ = 0. (5)

Defining the system order parameter as η = n∗ − 1/2 [8,9],
we observe that

η ∼ (σc − σ )β, (6)

with σc = 1/4 and β = 1/2 as the order parameter exponent.
Thus, to keep η real, we study the system for the load σ � σc.

At the critical point, i.e., at σ = σc and for t → ∞, given
Eq. (3), we have

η ∼ t−α, (7)

with α = 1. This characterizes the critical slowing down of the
fiber bundle model.

Other standard universal exponents are found in the same
way. The susceptibility is

χ =
∣∣∣∣∂η∗
∂σ

∣∣∣∣ ∼ (σc − σ )β−1 = (σc − σ )−γ , (8)

with γ = 1/2 the susceptibility exponent. Note that, since the
model is governed by only one physical parameter, which is the
external load σ , the susceptibility exponent depends directly on

TABLE I. Mean-field exponents of the fiber bundle model (ELS)
using standard notation.

Notation ELS

β 1/2
γ 1/2
ν‖ 1/2
α 1

the order parameter. The relaxation time ξ‖ toward a stationary
solution follows [8]

ξ‖ ∼ (σc − σ )−ν‖ , (9)

with ν‖ = 1/2 being the time correlation length exponent. We
summarize the ELS universal exponents in Table I.

The continuous limit of Eq. (3) can be readily obtained and
is [8]

∂n

∂t
= −n2 − n + σ

n
. (10)

The presence of the density in the denominator of this equation
makes it hardly amenable for a standard field theory treatment.
In the following we introduce an alternative mesoscopic
equation.

III. MESOSCOPIC ELS EQUATION

We show how to simplify, keeping the same critical behav-
ior, the ELS continuous equation (10). Introducing the order
parameter η = n − 1/2 in Eq. (10), we have

∂η

∂t
= − η2 − J

η + 1/2
, (11)

where J = σc − σ = 1/4 − σ . In the double limit η � 1/2
and J → 0, we can write

∂η

∂t
≈ 2(−η2 + J ). (12)

We observe, in the limit of t → ∞, that we recover exactly
stationary behavior of the ELS model. We further simplify the
equation by absorbing the factor 2 in the time parameter,

∂η

∂t
= −η2 + J. (13)

This generalized equation encapsulates the mesoscopic behav-
ior of the ELS model.

Indeed, for example, the order parameter exponent is
given by

η∗ ∼ J β, (14)

with η∗ the stationary solution and β = 1/2. At criticality, i.e.,
for J = 0, we have

ηc(t ) ∼ t−α, (15)

where α = 1. The susceptibility and time correlation length
can also be computed easily (see, for example, [14]). It appears
that Eq. (13) reproduces the universal exponents of the ELS
model. The scaling forms of ELS and the mesoscopic equation
(13) are studied in the next section.
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Equation (13) (among other microscopic interpretations)
coincides with the mean-field rate behavior of a coagulation
with input (CI) reaction-diffusion process, where η is the
particle density. More precisely, CI describes particles A

diffusing on a lattice that coagulate when they meet (A + A →
A) with a source term (∅ → A) acting at rate J . This system is
characterized by an upper critical dimension du

c = 2. It was
extensively studied by Droz and co-workers (see [15,16]).
The mean-field rate equation (13) holds for CI above d = 2.
This formal similarity between CI and the FBM invites us
to formulate the latter using reaction-diffusion or epidemic
propagation phenomenon terminology (see Sec. V).

IV. DATA COLLAPSE

In the preceding section we showed that the mesoscopic
description is obtained as the limit t → ∞ and/or J → 0 of the
ELS dynamics. By definition, two systems belong to the same
universality class if they have the same critical exponents and,
near the critical point, if their scaling functions are identical.
With this aim, we numerically solve and compare Eqs. (10)
and (13). We note that while the exact solution of Eq. (13) is
easy to obtain, a numerical approach is needed for the ELS one.
Hence, we carry out the data collapse for different solutions
close to the critical point.

We note that ηELS(t, J ) = nELS(t, J ) − 1/2 is the shifted
solution of (10) with J = 1/4 − σ and ηmeso(t, J ) the solution
of (13). We take the initial configurations nELS = 1 = ηmeso.
Both solutions, near criticality, behave as

η = (at t )−αR[J (at t )1/ν‖], (16)

with R and at the corresponding ELS or mesoscopic scaling
functions and nonuniversal metric factors. Normalizing R by
R(0) = 1, we can find the metric factors as the amplitude of the
power law at the critical point J = 0. We obtain aELS

t = 1/2
and ameso

t = 1 [see Eq. (12)].
To compare RELS and Rmeso we rescale, for the ELS and the

mesoscopic equation, the time by the corresponding metric
factors, i.e., t → t/at . The solutions are presented in Fig. 1.
The data collapse is shown in Fig. 2. It provides a convincing
hint that the mesoscopic equation and the ELS model belong
to the same universality class.1

The differences observed between the two models are
consistent with the considered approximations to derive the
mesoscopic equation (13). The term “mesoscopic” is justified
since it captures the critical behavior of the ELS model for
large time and/or small control parameter J .

1The exact solution of (13) for a nonzero initial condition η(0) > 0
gives a small imaginary contribution. Note that we do not observe it
numerically, using a standard ordinary differential equation solver.
We neglect it as it does not contribute to the singular behavior
of the transition. The imaginary part decreases exponentially with
time and thus the stationary solution is real since we take J � 0.
Moreover, the critical solution J = 0 is also real [ηmeso(t, J = 0) =
1/(1 + t )]. Finally, since we do not have an exact solution for the
ELS equation (10), nothing guarantees that the solutions are also real.
However, as for the mesoscopic equation, we do not observe any
imaginary parts through numerical solutions.
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FIG. 1. Solutions of the ELS continuous equation (10) and meso-
scopic equation (13) with the time rescaled by t → t/at .

V. FIBER BUNDLE MODEL AS AN ABSORBING PHASE
TRANSITION

In the absence of conservation laws or specific symmetries,
it is expected that nonequilibrium phase transitions from
an active to a unique absorbing state are described by the
directed percolation universality class [2,6,7]. Here we show
that the mesoscopic ELS behavior, in zero external field, is
characterized by a particular symmetry, namely, the particle-
hole symmetry.

The large-scale behavior of ELS is encompassed by the
order parameter mesoscopic equation (13). Rewriting it in term
of the density of intact fibers n, i.e., η = n − nc (nc = 1/2),
we have

∂n

∂t
= λn(1 − n) − σ, (17)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

J
ELS

= 10-9

J
ELS

= 10-8

J
ELS

= 10-5

J
ELS

= 10-3

J
meso

= 10-9

J
meso

= 10-8

J
meso

= 10-5

J
meso

= 10-3

J || t

t

FIG. 2. Data collapse according to the scaling form (16) with
α = 1 and ν‖ = 1/2. The time is rescaled by t → t/at .
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with λ = 1. In zero external field σ = 0, Eq. (17) obeys the
particle-hole symmetry, i.e.,

n ↔ 1 − n, λ ↔ −λ.

The invariance under this transformation is characterizing the
CDP universality class [1,17] (also called compact domain
growth). The CDP upper critical dimension is dc = 2. For d >

2, the process is exactly described by Eq. (17) with σ = 0. In a
CDP process, the dynamics occurs only at boundaries between
clusters of active and inactive sites. In other words, using
the FBM terminology, the dynamics take place at the domain
walls between clusters of intact and broken fibers. Moreover,
fibers cannot break (or be created, due to irreversibility)
spontaneously; they break only under load redistribution which
occurs at the boundaries between clusters of broken and intact
fibers.

In this work we focus on ELS and thus we do not have access
to spatial features of the FBM. However, the local-load-sharing
(LLS) model [10], an FBM for which load redistribution acts
locally and whose MF limit is ELS, is precisely characterized
by a dynamics that takes place at the interfaces between clusters
of intact and broken fibers. Thus, at a phenomenological level,
the attempt to relate ELS with CDP is founded. However, in the
FBM, unlike in CDP, a broken fiber cannot recover. We expect
that it does not impact, on average, the large-scale behavior of
the order parameter.

Here we clarify the role played by the external field σ . The
ELS model is driven by σ , which breaks the particle-hole
symmetry. The external field σ initiates the primary holes,
the seeds, around which load redistribution take place. Indeed,
Eq. (3) at step t = 0 gives n(1) = 1 − σ considering, initially,
that all fibers are intact, n(0) = 1. Then the dynamics occurs
first around the seeds and then around the germinative clusters
of broken fibers until the system reaches a stable configuration
given σ .

In this section we aimed at linking the FBM with CDP,
a well-known process that undergoes an absorbing phase
transition. We took advantage of the symmetry of the meso-
scopic equation in zero external field to compare formally and
phenomenologically ELS with CDP. However, since we work
at the MF level we cannot elaborate a unique field theory
describing FBM. A mapping of the LLS model to an APT
process is needed.

We note that the external field σ destroys the absorbing
phase and reduces it to a point. Considering η = n − nc as the
order parameter, the absorbing point is located at σ = σc =
1/4. In zero field, CDP has two absorbing states, the empty
lattice and the fully occupied lattice reflecting the emerging
Z2 symmetry.

VI. EQUAL-LOAD-SHARING AS AN OVERDAMPED
LANGEVIN EQUATION

The ELS fiber bundle model in its dynamical formulation
exhibits a dynamical phase transition. It provides, in the
vicinity of the critical point, a natural process that ensures
a timescale separation between the kinetics of the order
parameter and the renaming physical quantities [2]. As we will
see, the ELS model can be described through an overdamped

Langevin equation of the form

∂η(t )

∂t
= −δH [η]

δη
+ ζ (t ), (18)

with H the Hamiltonian of the system and ζ (t ) a noise term.
Since, in essence, ELS is a mean field, we set ζ (t ) = 0.

A. Derivation of H

The ELS and other versions of the fiber bundle model are
mainly studied in their quasistatic limit. In this picture, fibers
are broken one by one. The quasistatic limit corresponds to
slowly stretching the fibers. Therefore, it is convenient to
introduce the fiber elongation x = σ/n since it is assumed that
fibers behave as Hookean springs.

The ELS energy contents, defined through the work done
on the fiber bundle under increasing load, was recently studied
by Pradhan et al. [18]. The total energy content at damage
k = 1 − n and elongation x is

H [x, k] = θ

(
x2(1 − k) +

∫ k

0
dδ(P −1(δ))2

)
, (19)

with θ = Nκ/2, κ the Hookean constant, and P −1(δ) the
inverse function of the threshold cumulative distribution. The
first term of Eq. (19) is the Hookean energy and the second
one is the energy dissipated through fiber failures and hence
responsible for the formation of holes, that is, clusters of broken
fibers.

The equation of state of the system is

0 = δH [x, k]

δk
= θ (−x2 + [P −1(k)]2) (20)

and thus, since x and P −1(k) are positive quantities,

x = P −1(k) = k, (21)

assuming a uniform threshold distribution on the unit interval.
By definition of the elongation we have

x = σ

n∗
= k. (22)

Hence, using k = 1 − n∗, we obtain again Eq. (5), the equation
of state of ELS. We are interested in catching the stationary
critical behavior of the system at the Hamiltonian level in an
expression easier to handle than Eq. (19). Since the system
equation of state is given by Eq. (5), we can write

δH [n∗, σ ]

δn∗
= n2

∗ − n∗ + σ = 0. (23)

Integrating this expression, we observe that

H [η, J ] = η3/3 − Jη, (24)

with η = n∗ − 1/2 and J = σc − σ . We note that this Hamil-
tonian was previously studied in the context of spinodal
nucleation (see Sec. VII).

B. The ELS overdamped Langevin equation

The ELS critical slowing down (7) provides us with a natural
time–length scale separation between the order parameter
kinetics and the other physical quantities. These quantities
appear as surrounding noise from the order parameter’s point
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of view. Therefore, the critical dynamics of ELS may be
described by Eq. (18). By inserting the Hamiltonian (24) into
this equation, we find the previously introduced mesoscopic
equation (13).

This approach is directly inspired by the time-dependent
Ginzburg-Landau equation, which is also called model A
dynamics [2] describing, for example, the Glauber model.
Glauber dynamics is a minimal kinetic extension of the Ising
model for which detailed balance ensures that the system
relaxes toward the Ising canonical equilibrium probability dis-
tribution without conservation of the order parameter. We note
that in ELS the order parameter is also not a conserved quantity
since fibers break to eventually reach a stable configuration;
this justifies Eq. (18). However, unlike model A, ELS is a
genuine nonequilibrium process. Thus, there is no detailed
balance relation that can be used to derive a noise term for
Eq. (18).

VII. NUCLEATION FIELD THEORY AND ELS

In [12], an analogy between ELS and spinodal nucleation
[13] was observed. By studying the mesoscopic behavior of
ELS, we show explicitly the underlying reason, which relies
on particle-hole invariance of the mesoscopic ELS equation.

The Hamiltonian (24) is formally equal to the field-theoretic
description of spinodal nucleation [13]. More explicitly, the
Landau-Ginzburg-Wilson Hamiltonian in the mean-field ap-
proximation is the free energy

F [ψ] = bψ2 + cψ4 − hψ, (25)

with b = a(T − Tc ) the distance from the critical temperature
Tc, and a > 0 and c > 0 two constants. In zero external
field h = 0 and for T < Tc (i.e., b < 0), F exhibits the two
characteristic symmetric wells. Increasing h > 0, the well
located in negative ψ values becomes shallower and eventually
disappears at hs and ψs = −(|b|/6c)1/2, the spinodal. Then,
close to the spinodal, introducing the field φ = ψ − ψs and
neglecting the irrelevant φ4 term [13], we have

Fs[φ] = εφ − αφ3, (26)

with ε ∝ hs − h and α a positive constant depending on b and
c. The mean-field spinodal theory (26) is formally equivalent
to Eq. (24).

In Sec. V we showed that the ELS at the mesoscopic
level in zero external field is invariant under the particle-hole

symmetry. It allows us to employ the Z2 invariant expression
(25) to describe zero-field ELS. Indeed, introducing the lattice-
gas mapping ψ = 2n − 1, we can readily show that the spin-
sign symmetry is equivalent to the particle-hole symmetry for
the lattice gas

ψ ↔ −ψ ⇐⇒ n ↔ 1 − n. (27)

The lattice-gas variable is suitable to describe ELS since we
focus on particle density instead of magnetization.

To conclude, we argued and showed, relying on the particle-
hole symmetry, why the ELS model can be viewed as a
(genuine nonequilibrium) realization of spinodal nucleation.

VIII. DISCUSSION

In this work we derived a mesoscopic equation describing
the ELS critical behavior. The mesoscopic equation is invariant
under particle-hole symmetry in zero external field. It enables
us to formally link ELS with the compact directed percolation
model, which describes processes characterized by dynamics
occurring at intact broken clusters’ boundaries (which is
precisely how the FBM dynamics evolves). We described the
mesoscopic behavior of ELS as an overdamped Langevin
equation. The outcome is the derivation of a Hamiltonian
representing the ELS stationary behavior. Due to the particle-
hole symmetry, we made explicit the formal ELS–spinodal
nucleation equivalence.

One of the main outcomes of this work is to link the ELS
fiber bundle model, and more generally damage models, to the
powerful formalism developed to study nonequilibrium phase
transitions. It opens the way for a field-theoretic treatment of
such models. In this work we focused on ELS; due to its mean-
field nature it is not possible to define a unique field theory for
the FBM. Hence, future work should concentrate on space-
dependent fiber bundle models such as the local-load-sharing
model.
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