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Dimensionality-dependent crossover in motility of polyvalent burnt-bridges ratchets
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The burnt-bridges ratchet (BBR) mechanism is a model for biased molecular motion whereby the construct
destroys track binding sites as it progresses and therefore acts as a diffusing forager, seeking new substrate sites.
Using Monte Carlo simulations that implement the Gillespie algorithm, we investigate the kinetic characteristics
of simple polyvalent BBRs as they move on tracks of increasing width. We find that as the track width is increased
the BBRs remain nearly ballistic for considerable track widths proportional to the span (leg length) of the
polyvalent walker before transitioning to near-conventional diffusion on two-dimensional tracks. We find there
exists a trade-off in BBR track association time and superdiffusivity in the BBR design parameter space of span,
polyvalency, and track width. Furthermore, we develop an analytical model to describe the ensemble-average
motion on the track and find it is in good agreement with our Gillespie simulation results. This work offers
insights into design criteria for de novo BBRs and their associated tracks, where experimentalists seek to optimize
directionality and track association time.
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I. INTRODUCTION

Diffusion, driven by random thermal motion, results in
slow transport over long distances. Nature has overcome this
problem through the evolution of impressive protein-based
machines that achieve processive and directional motion de-
spite their noisy thermal environment. Within the cell’s cy-
toplasm, the molecular motors kinesin [1], dynein [2], and
myosin [3] achieve directional motion on their intracellular
tracks by converting chemical energy in the form of ATP into
mechanical stepwise translocation [4,5]. There are, however,
other means by which cellular systems can achieve directed
motion besides conventional cytoplasmic motors. In this
work, we examine a class of machines that achieve directional
motion by a “burnt-bridges ratchet” (BBR) mechanism.

A BBR has a probability p of destroying a substrate track
site as it passes [6]. Following a successful cleavage event,
the asymmetry produced in the track prevents backwards
stepping. Motion forwards is driven purely by thermal motion
without the need for an energetically driven conformational
change in the walker. In order to achieve processive motion
the time scale of track association must be long enough such
that the BBR can cleave the substrate, explore neighboring
sites, and rely on thermal fluctuations to move. In one dimen-
sion (1D), with p = 1, the motion of a BBR is expected to
be ballistic, while in two dimensions the motion is expected
to resemble a self-avoiding walk. We also note that BBR
nanomachines can be considered as diffusing foragers, where
a parameter of interest is the number of cleavage events
before the walker depletes its local environment and “starves”
(detaches) [7].
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Matrix-metalloproteases (MMPs) are enzymes that move
one-dimensionally via a BBR mechanism along collagen fib-
rils in the extracellular matrix [8,9]. Individual MMPs have
been observed to move superdiffusively along their collagen
tracks at speeds up to 5.8 μm/s [10]. In contrast to the one-
dimensional motion of MMPs, the protein-based ParA/ParB
system found in bacteria is an example of a two-dimensional
BBR system [11,12]. This system is responsible for parti-
tioning extrachromosomal low-copy plasmid DNA during cell
division [13]. These BBRs have been observed to move di-
rectionally at speeds of ∼ 0.1 μm/s on their two-dimensional
tracks [11]. Nature has therefore implemented the BBR mech-
anism in both one-dimensional and two-dimensional systems,
where these BBRs have achieved speeds comparable to ki-
nesin in saturating ATP conditions [14].

Inspiration from biological systems has led to the de-
velopment of synthetic nanomachines that achieve di-
rectional motion through various stepping mechanisms
[15–24]. The motivation for the design and implementation
of synthetic nanomachines is twofold: To create a molecular
system that mimics the behavior of biological counterparts,
thereby enabling us to learn about fundamental physical prin-
ciples that give rise to observed biological molecular motor
phenomena; and to create new technologies that perform tasks
currently out of our reach [17].

Many of the autonomous synthetic biologically based
nanomotors thus far realized are DNA-based BBRs
[16,17,20,22]. In the limit of low polyvalency, Cha et al. [22]
developed a DNA walker that moves in a self-avoiding fashion
along carbon nanotubes by catalyzing cleavage of its RNA
footholds. At the other extreme, DNA-coated microspheres,
so-called DNA monowheels, hybridize to a substrate surface
coated with complementary RNA and have a high polyvalency
with thousands of cleavable substrate contacts [25]. The DNA
monowheel has demonstrated impressive velocities for an
artificial system of up to 2 μm/min, as well as near-ballistic
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motion on its two-dimensional substrate track [25]. In contrast
to the monowheel’s high polyvalency, most DNA walkers are
bipedal [19,26,27].

In this work, we refer to the total number of legs as
the polyvalency. Polyvalency of BBRs is thought to have a
profound impact on directionality and track attachment times
[25]. Analytical approaches to understanding the effects of
polyvalency on BBR dynamics are difficult as the memory
requirement for visited sites leads to non-Markovian behavior
[28,29]. Because of this, researchers have largely turned to
simulations to model the behavior of synthetic BBR nanomo-
tors [30–33].

Those who seek to experimentally develop synthetic
nanomachines are met with the challenge of designing not
only the machine itself but also the substrate track with which
it is to interact. Missing from the literature is an exploration
of how the width of the substrate track is expected to impact
BBR kinetics. In this work we implement the Monte Carlo
Gillespie algorithm [34] to investigate the dependence of the
mean-squared displacement, track attachment time, kurtosis,
and extent of substrate cleavage on the dimension of the
substrate track. We generalize our results by altering the
polyvalency and span of the BBRs to explore how these
attributes influence ensemble-average kinetics of BBRs mov-
ing on tracks of increasing width. In this work we focus
on ideal BBRs where substrate binding is followed by a
probability p = 1 of catalyzing the bound site. Our BBRs
cannot unbind from substrate without a cleavage event and
cannot rebind to a cleaved product site. Samii et al. [31] report
that nanomachines that can unbind from substrate and rebind
to product display an increase in track attachment time as
a function of increasing polyvalency. Similarly, Yehl et al.
[25] report that the prolonged track attachment of their BBR
DNA monowheel is because of the dramatically increased
polyvalency. In contrast to these results, in our system we
find that increasing the polyvalency of BBRs results in a
dramatic decrease in track association time. Our results further
indicate that reducing the dimensionality of the track to one
dimension is not necessary to promote linear ballistic motion.
There exists a tolerance window in track width that allows for
maximally superdiffusive walkers.

II. MODEL AND METHODS

A. Kinetic model

We model polyvalent BBRs as n legs coupled to a pointlike
hub referred to as the global constraint (Fig. 1). The n legs
are noninteracting, but only a single leg can occupy any given
track site. The legs chemically interact with the track via
substrate binding and cleavage, followed by release from the
cleaved product. To incorporate leg length into the kinetic
model, each of the n legs is assigned a span, which is defined
as the maximum distance between any two bound legs. As
shown in Fig. 1(a) a circle of radius R = span is drawn
around each bound leg. The substrate track sites that fall
within the mutual overlap of all legs’ spans are considered
binding options for the unbound legs. We note that our model
is fundamentally different from that of Olah et al. [32] where
they allowed binding to all sites within a distance � of each

(a)

(b)
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Accepted binding sites

Track sites within the span 
(not feasible to bind) 

keff→kon→

SpSpan = 4

Substrate-bound leg

Substrate site 
Product site 

Span = 4

FIG. 1. (a) Each bound leg is assigned a span which defines the
radius of a circle, shown in green (gray) circles, around the bound
location, shown in red (dark gray). The mutual overlap of bound-
leg spans, shown in yellow (light gray), marks the feasible binding
locations for unbound legs (not shown) during the following kinetic
move. (b) Each BBR leg can interact with any available substrate
track site (gray triangle) via a rate of attachment, kon. keff includes
both substrate cleavage and release.

bound leg. We allow for binding within a small region around
the global constraint, where the region [shown in yellow or
light gray in Fig. 1(a)] is determined by the currently bound
legs. In this way we account for the collectively imposed
constraint of all bound legs limiting the options for fresh track
coupling.

To study the motion of BBRs we developed a kinetic
model similar to that used by Samii et al. [30,31] and Olah
et al. [32] whereby we implement the Monte Carlo Gillespie
algorithm [34] to study polyvalent walker dynamics. Our
kinetic model, as shown in Fig. 1(b), is a simple model that
allows for substrate binding and substrate cleavage followed
by unbinding. We employ a substrate binding rate, kon =
20 s−1, and cleavage rate, keff = 0.054 s−1. keff incorporates
both the cleavage and detachment processes. These rates are
similar to those used by Samii et al. [30,31]. We made the
decision to set the dissociation rates from uncleaved substrate
sites to zero and the product binding rate to zero. This allows
us to to focus on a strict burnt-bridges ratchet system distinct
from that of previous work on similar systems [30–32]. Each
substrate-bound leg is guaranteed to cleave and release to the
unbound state where it may bind again to fresh substrate.
Therefore, our legs have a probability of p = 1 to cleave each
bound substrate site.

A kinetic move is chosen by a Monte Carlo Gillespie
algorithm that samples from all available transitions of all
legs. For example, if there are 2 unbound legs, 3 bound legs,
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and 12 available substrate sites, then there are 24 possible
binding transitions and 3 possible transitions to cleave and
release. A particular transition with rate ki is chosen with a
probability Pi = ki∑

ki
. After a choice of transition is made,

time is updated according to t = 1∑
ki

ln( 1
X

), where X is a
random variable uniformly distributed on (0,1]. The central
hub position is updated by determining the average position
of the bound legs. We then track the motion of this pointlike
hub for kinetic analysis.

B. Track design and BBR parameters

To explore the effect track dimensionality has on BBRs,
we employed a large range of tracks that increase in width
by factors of 2. In total we cover tracks of widths 2n for
n = 0, 1, 2, 3, . . . , 12, where a track width of 20 is a one-
dimensional track. For all 520,000 independent runs reported
in this work, track widths of 212 = 4096 can be considered
infinitely two dimensional as no ratchet reached the bound-
aries within the maximum simulation time of 25 000 s for each
independent run. As we varied the track width, the length of
the track was consistently kept to 5000 lattice sites (effectively
infinite in length). The track widths chosen were convenient
as they allowed us to probe the effects of confinement through
gradually increasing the track size away from one dimension
into an infinite two-dimensional plane. All tracks were ini-
tialized as all-substrate tracks; we do not impose any initial
asymmetry. All of the BBRs were initialized in the geometric
center of the track with one leg bound.

Motivated by previous work [11,12,16,20,24,25,30–33],
we focused on four BBR designs. In the notation of (poly-
valency, span) we examined the behavior of BBRs with pa-
rameters (12,8), (3,8), (12,3), and (3,3). The limit of (12,3)
BBRs was chosen because all available binding locations
within a span of 3 can be saturated. In this limit the BBRs are
expected to produce a complete wake of cleaved sites such
that the constructs cannot cross previously visited territory.
This contrasts with (3,8) BBRs, which we expected to produce
sparsely cleaved trajectories.

For each BBR design, on each track width, we ran 10 000
independent trajectories. For example, (3,3) has 10 000 inde-
pendent runs on a track width of 1 and another 10 000 on
a track width of 2, etc. Trajectories end when no BBR legs
remain coupled to the track. We do not allow rebinding of
detached BBRs. If the BBRs remain attached to the track for
25 000 s the simulation is also ended.

C. Analytical methods

1. Mean-squared displacement

The mean squared displacement (MSD) is a useful measure
used to assess the anomalous nature of a diffusive walk [35].
The MSD is defined as the variance in displacement, �X, and
scales with a power-law dependence,

MSD( �X) ≡ Var[ �X] = 〈( �X − �μ)2〉 ∝ tα, (1)

where �μ is the mean position and α describes the power-law
scaling behavior of the system. For a given ensemble of trajec-
tories one can assess the slope of the log-log MSD-time plots
to compute α. For all BBR permutations and track widths

we computed the MSD via ensemble averaging according to
Eq. (2), which is equivalent to Eq. (1),

MSD(�r ) = (〈x2〉 − 〈x〉2) + (〈y2〉 − 〈y〉2) ∝ tαr , (2)

where �r is the position of the BBR’s global constraint. The x

and y components of �r can be examined independently. We
therefore also define MSD(x) and MSD(y) as

MSD(x) = 〈x2〉 − 〈x〉2 ∝ tαx , (3)

MSD(y) = 〈y2〉 − 〈y〉2 ∝ tαy . (4)

MSDs at each time point are calculated using only those BBRs
still attached to the track.

2. Kurtosis

Kurtosis is defined as the standardized fourth moment of a
distribution about its mean and is given by

β2[ �X] = m4

σ 4
= 〈( �X − �μ)4〉

(〈( �X − �μ)2〉)2
, (5)

where m4 is the fourth moment, σ the standard deviation,
and �μ the mean. The kurtosis is a useful descriptor for a
distribution’s deviation from Gaussian. Gaussian distributions
have a kurtosis of 3. Therefore, it is convenient to define γ2,
the excess kurtosis, as γ2 = m4

σ 4 − 3.
As our BBRs progress on their respective tracks, they pro-

duce time-evolving displacement distributions. In particular,
we are interested in characterizing the differences between the
evolving x and y components of the displacement distribu-
tions to understand the effect of constraints on the dynamics
of BBRs. To this end, γ2 provides a measure of the shape of
the distributions and allows for easy comparison across a large
parameter space of BBR designs.

III. RESULTS

A. Sample trajectories and distributions

Single trajectories in two dimensions for (3,8), (3,3),
(12,3), and (12,8) BBRs are presented in Fig. 2 (left column).
Our lowest span BBR systems, (12,3) and (3,3) BBRs, tend
to become easily entrapped by their product wakes, leading to
detachment. With increased span and decreased polyvalency,
such as the (3,8) system, BBRs can reach over their previous
trajectories into areas of fresh substrate.

Snapshots of the ensemble behavior of each BBR design
in two dimensions are included in Fig. 2 (right column)
beside their respective sample trajectories. The (3,3), (12,3),
and (12,8) systems all develop a low occupancy near their
center starting position, while the (3,8) system maintains the
highest BBR occupancy around the origin. These ensemble
snapshots are taken from Supplemental Movies S1–S4 [36],
which present the full dynamic evolution of the ensemble
behavior.

B. Mean-squared displacement

Figure 3(a) shows log-log plots of MSD(�r) vs. time for
(3,8) BBRs on all examined track widths. We report values
of α in the long-time limit when α̇ ≈ 0. A one-dimensional
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FIG. 2. Left column: The start and detachments points for each
trajectory are indicated with a triangle and square, respectively;
the time noted is the lifetime of that trajectory. (3,3), (12,3), and
(12,8) BBRs are less likely to cross previously visited territories
and exhibit more directional walks compared to (3,8) BBRs. Right
column: Snapshots of ensemble BBR position distributions, taken
from Supplemental Movies S1–S4 [36]. Color coding and gray scale
represent the number of independent BBRs at that location in time.
All BBR designs, except for (3,8), develop ringlike distributions with
decreased occupancy at the origin.

track results in ratchets moving ballistically with α ≈ 2. As
track width increases α begins to decrease. One would naïvely
expect that as the width of the track increases, the constructs
have increased probability to change direction, thus lowering
α. However, this transition does not occur monotonically.
Figure 3(b) shows that we observe a minimum in αr as a
function of track width for all BBR designs.

The nonmonotonic behavior of αr as a function of track
width prompted closer inspection of the MSD. The log-
log plot of MSD(x) [Fig. 3(c)] depicts the expected MSD
power-law behavior: As the track width increases αx is found

FIG. 3. (a) Log10-log10 MSD(�r)-time plots for (3,8) BBRs dis-
play the general trend of decreasing slope as a function of increasing
track width. (b) αr for (3,8) BBRs reaches a minimum at track widths
of 128–256 before subsequently increasing to a width-invariant
plateau of αr ≈ 1.1. A minimum αr at intermediate widths is ob-
served for all BBR designs examined in this work. (c) MSD(x) for
(3,8) BBRs scales from ballistic to superdiffusive as the track width
increases from one to two dimensions. (d) αx as a function of width
for all BBRs displays a monotically decreasing trend. (e) MSD(y)
for (3,8) evolves to αy = 0 for all BBRs that are constrained by track
boundaries. (f) For narrow tracks the BBRs move under confinement
and display αy ≈ 0. As track width increases such that the BBRs do
not interact with the boundaries, αy takes on the same values as αx

for all BBR designs.

to decrease monotonically to a width-independent minimum
[Fig. 3(d)]. By contrast, log-log MSD(y) time [Fig. 3(e)]
attains a slope of αy ≈ 0 for narrow track widths in long-time
limits [Fig. 3(f)].

Figure 3(b) also shows that the large track width val-
ues of αr depend on polyvalency and span. Short span and
large polyvalency results in the highest αr = 1.4, whereas
the lowest αr = 1.1 is found by lowering polyvalency and
increasing the span. All of our examined BBR designs display
similar MSD trends as a function of track width, as shown in
Supplemental Fig. S1 [36].

C. Detachment curves

In our simulations we do not allow for reattachment once
all of the legs of the BBR have detached. Thus, it is useful to
investigate how track association times vary with polyvalency
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FIG. 4. (a) Fraction of BBRs remaining bound in one dimension
for all BBR designs examined in this work. The inset shows the
early time behavior. (b) Fraction of BBRs remaining bound in two
dimensions for all BBR designs examined. For both 1D and 2D
tracks (3,8) BBRs remain associated to the track for the longest
times, whereas (12,3) BBRs associate to the track for the shortest
times. (c) Fraction of (12,8) BBRs remaining bound for all track
widths. The detachment curves saturate past track widths of 256. (d)
t1/2 as a function of track width for all BBR designs. (e) The ratio
of t1/2 values for various BBR designs. (f) αx values from Fig. 3(d)
plotted against their respective t1/2 values.

and span. Figures 4(a) and 4(b) display the fraction of BBRs
remaining bound for all examined BBR designs in the 1D and
2D track limits. We find that (3,8) BBRs remain associated to
the track for the longest times, whereas (12,3) BBRs detach
the fastest. In Fig. 4(c) we show that track association time
increases monotonically as a function of increasing track
width for (12,8) BBRs. The detachment curves saturate and
overlap for track widths larger than 256. All BBR designs
display a similar trend and can be viewed in Supplemental
Fig. S2 [36].

For all detachment curves we define t1/2 as the time at
which 50% of the BBRs have detached from the track. For
(3,8) BBRs we observed negligible detachment on tracks of
width greater than 32, and therefore we cannot report t1/2

values for wider tracks. Figure 4(d) depicts t1/2 as a function
of track width for each BBR design. We can see that both
polyvalency and span have large effects on the observed t1/2.
Across all track widths (12,3) BBRs consistently detach faster
than all other BBR designs. For (12,3) ratchets, increasing

track width from one to two dimensions results in an increase
of t1/2 by a factor of 10 [Fig. 4(d)]. A similar comparison of
(12,8) BBRs yields a factor of 60 increase in track association
time. Therefore, in the limit of large polyvalency and short
span we see less of a gain in track attachment time by
increasing the track width than for larger span.

We next compared the different designs directly by taking
ratios of the t1/2 trends as shown in Fig. 4(e). In the limit of
low polyvalency, increasing span from 3 to 8 has a profound
effect on increasing track association time. Similarly, in the
limit of high span, decreasing polyvalency from 12 to 3 pro-
foundly increases track association time. However, if the span
is kept constant at 3, then the decrease in polyvalency from
12 to 3 has little impact on track association time across all
track widths. Therefore, the improvement in track association
time gained from decreasing polyvalency is only realized for
the BBR systems with large span.

In Fig. 4(f) we plot αx against t1/2. For all BBR systems αx

tends to decrease with increasing t1/2 values.

D. Excess kurtosis

The ensemble-average displacement of the ratchets away
from the origin results in evolving displacement distributions,
as shown in Supplemental Movies S5 and S6 [36]. All of the
BBRs are initialized at the center of the track, and therefore
the initial distribution is peaked at the origin at t = 0 s. As
BBRs progress along the track, their cleavage of track sites
limits options for turning back. In one dimension, as the BBRs
randomly break the track symmetry a bimodal distribution
develops whose modes propagate in opposite directions. Fig-
ure 5(a) illustrates the typical development and separation of
the two modes on a narrow track width of 8 for (3,8) BBRs.
From Supplemental Movie S5 [36], one can see that the modes
are both separating and dispersing with time. Figure 5(b)
shows the results of computing the excess kurtosis, γ2(x),
for these (3,8) BBRs on all track widths. In all cases γ2(x)
initializes slightly higher than the Gaussian value of 0 as
the distribution is initially peaked sharply around the origin.
On narrow tracks γ2(x) rapidly reduces to the −2.0 limit,
indicating a distribution whose probability is located at the
edges of its domain. For wider tracks, γ2(x) reduces to −0.25.
Similar behavior is seen for the other BBR designs, as shown
in Supplemental Fig. S3 [36].

We next look at the correponding evolution of position
distributions for the y coordinates. The y-position distribu-
tion for (3,8) BBRs on a track width of 128 evolves into a
uniform distribution across the accessible domain of lattice
sites. To understand how this lateral shape of the distribution
changes on interacting with the boundary we compute γ2(y)
[Fig. 5(d)]. For wide tracks, where the BBRs do not reach the
boundaries, we see that γ2(y) approaches −0.25, the same as
found for γ2(x). However, for (3,8) BBRs on a track width
of 128, which begin to approach the track boundary around
∼ 1000 s, we see that γ2(y) decreases to −1.2, the value for a
uniform distribution [37]. For these (3,8) BBRs γ2(x) remains
constant at −0.25 once they have reached the y boundaries.
The shape of the x-displacement distribution is therefore not
affected by interactions with the track boundary, while the
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FIG. 5. (a) The evolving x-position distribution for (3,8) BBRs
on a track of width 8. The numbers 1–4 represent the distribution
at specific times. Two modes develop that move symmetrically
in opposing directions. (b) Excess kurtosis, γ2, for x-displacement
distributions for (3,8) BBRs on all track widths. On narrow tracks
γ2(x ) quickly approaches −2.0. As track width increases the excess
kurtosis settles to γ2(x ) = −0.25. The numbers 1–4 correspond to
the histograms from (a). (c) The evolving y-position distribution for
(3,8) BBRs on a track of width 128. (d) For large track widths γ2(y )
limits to −0.25, the same as γ2(x ). Under confinement γ2(y ) settles
to −1.2, the value for a uniform distribution, as illustrated by the
numbers 1–4 from part (c).

y-displacement distribution clearly is. Similar behavior is seen
for the other BBRs (Supplemental Fig. S4) [36].

E. Bimodal Gaussian model

To further our understanding of the time dependence of
γ2(x) we analytically derived the excess kurtosis for a prob-
ability density function comprised of two Gaussian distribu-
tions with equal variance and equal but opposite means, as
shown in Eq. (6),

P (x|μ, σ ) = 1

2
√

2πσ 2
e
− (x−μ)2

2σ2 + 1

2
√

2πσ 2
e
− (x+μ)2

2σ2 . (6)

We computed the second and fourth moments of P (x) to
determine the excess kurtosis (shown in the Appendix). We
find γ2 to be given by

γ2 = 2μ4 + 12μ2σ 2 + 6σ 4

2(μ2 + σ 2)2
− 3. (7)

The MSD of this distribution is

MSD = 〈(x − μ)2〉 = μ2 + σ 2. (8)

We examine four cases in our analytical model:

(a) Constant separation, Brownian dispersion :

μ = μ0; σ 2 = Dt

(b) Linear separation, constant dispersion :

FIG. 6. Results of the bimodal Gaussian model. (a) In the limit
of Brownian dispersion (case a) we recover conventional diffusion
at long times. For all other cases we find the long-time limit of α to
represent ballistic motion. (b) With increasing σ (t ) and constant μ

(case a), γ2 reaches the Gaussian limit of γ2 = 0. In cases b and c,
which describe distributions that separate faster than they disperse,
γ2 decreases to −2.0. When σ and μ increase at the same rate γ2

remains constant (case d).

μ = bt ; σ 2 = D0

(c) Linear separation, Brownian dispersion :

μ = bt ; σ 2 = Dt

(d) Linear separation & dispersion :

μ = bt ; σ = D1t

For each of the above cases, Eq. (8) can be expressed as a
quadratic equation with different coefficients,

MSD = a0 + a1t + a2t
2. (9)

Tuning the linear and quadratic coefficients can be used to
tailor the power-law scaling α. For example, if b = 0 and D >

0, then we achieve conventional diffusion (α = 1), whereas
if D = 0 and b > 0 we get ballistic motion (α = 2). If both
b > 0 and D > 0, then the type of diffusion depends on the
ratio D

b
, which dictates the time scales of interest.

In Fig. 6 we take D = D1 = b = 1, μ0 = D0 = 10, and
compute MSD [Fig. 6(a)] and γ2 [Fig. 6(b)]. For case a, we
find the system exhibits subdiffusive motion for time scales
up to 103 s [Fig. 6(a)]. We do not see conventional diffusion
unless we compute α at longer times. Similarly, for case c,
subdiffusive behavior is observed at short time scales followed
by a crossover to ballistic motion at longer times.

The excess kurtosis also varies by case. For case a, where
the mean of the modes is fixed at ±μ0 with Brownian disper-
sion, γ2 increases from −2.0 to the Gaussian limit of 0. With
cases b and c, where the modes are separating faster than they
are dispersing, γ2 decreases from 0 to −2.0. Last, for case d,
where μ(t ) and σ (t ) are both linearly increasing at the same
rate, γ2 takes on a constant value of −0.5.

F. Substrate digestion rates

Those who study starved random walks are often con-
cerned with the number of food items the walker consumes
before starvation [7]. In our model starvation can be defined
as the walker having no accessible substrate “food” sites
within its reach. While we have already characterized the
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FIG. 7. (a) Digestion rate, kd , for each BBR design across all
track widths. For all BBR designs substrate digestion rates are found
to be width-independent for tracks larger than a width of ∼ 8.
(b) Average number of substrate sites digested before detachment
(starvation) for all BBRs across all examined track widths. For (3,8)
BBRs, average cleavages are reported for tracks only up to width 32,
as most (3,8) BBRs remained bound on larger track widths.

total time associated to the tracks, here we characterize track
digestion rates and total successful cleavages before starvation
(detachment). We define the substrate digestion rate, kd , as the
average number of cleavages observed for each BBR design
per second. kd is distinct from keff which is known a priori and
used to simulate cleavage kinetics in the Gillespie algorithm.

In Fig. 7(a) we report kd for all examined BBRs across
all track widths. Not surprisingly, we find polyvalency to be
the dominating factor for increasing the digestion rate, where
both (12,8) and (12,3) BBRs have the highest kd . Interestingly,
cleavage rates for the 12-legged BBRs increase with track
width to a constant value, whereas three-legged BBRs expe-
rience a slight decrease in their cleavage rates as the width of
the track is increased. When we examine the average number
of cleavages before detachment, the inherent track association
time, characterized by t1/2, is the dominating system param-
eter. Figure 7(b) displays average cleavage events vs. track
width, which scales similarly to t1/2 [Fig. 4(d)].

IV. DISCUSSION

A. Mean-squared displacement

The MSD contains information on a BBR’s ability to move
directionally, a key design criterion for synthetic molecular
motors. MSD scales as tα , where α characterizes the type of
anamolous diffusion inherent to the system [35]. For values
of α ranging from 0 < α < 1, the motion is subdiffusive,
which describes characteristic motion slower than that of
conventional diffusion. A value of α = 1 describes a system
that undergoes conventional diffusion. Systems with 1 < α <

2 are superdiffusive, a property of systems that undergo active
transport. When α = 2 the system exhibits linear (ballistic)
motion and is ideal for molecular transport systems.

We find the long-time α values to be highly dependent
on track width, span, and polyvalency. We expected α to
maximize on narrow tracks for each BBR design, as the effect
of confinement would promote linearly directed motion. With
reference to Figs. 3(b) and 3(d), we find that α is maximum
for narrow tracks and persists with near ballistic values for
tracks of width larger than 1 lattice site. For (12,8) BBRs, αx

remains constant for track widths up to 16, whereas for (3,8)
BBRs αx begins to decrease at a track width of 4 (half the span
for this system) [Fig. 3(d)]. Therefore, both polyvalency and
span play a role in maintaining optimally ballistic motion as
the effects of confinement are relaxed.

At early times all examined BBRs display subdiffusive be-
havior at time scales proportional to 1

keff
, as was also reported

by Olah et al. [32]. We observe initially subdiffusive behavior
for all track widths. This makes intuitive sense as each run
is initialized with one leg bound to the track. Unbound legs
then need to bind and cleave in order to translocate the global
constraint, which by design occurs on a time scale of 1

keff
regardless of the effects of confinement.

In Fig. 3(f) we report αy values from fitting to the late-
time MSD trends when the BBRs have had sufficient time
to reach the boundaries. As the track width increases, the
characteristic time for αy to transition to 0 increases. When
αy = 0, MSD(y) takes on the variance of a uniform distribu-
tion whose domain is defined by the track boundaries.

The surprising result in Fig. 3(b), where αr develops a
minimum as a function of width, can then be explained by
interactions with the boundary, which impose a subdiffusive
characteristic on αr . When the BBRs are not constrained by
the track boundaries we find that αr = αx = αy . For suffi-
ciently long simulation times, and for BBR designs that tend
not to detach such as the (3,8) system, we expect all BBRs to
eventually reach the boundary and for αy to approach 0; the
minimum in αr would then disappear.

For effectively two-dimensional tracks, larger span and
lower polyvalency, such as the (3,8) BBRs, results in a lower
αr of 1.1. The evolution of the ensemble of (3,8) BBRs, as
shown in Supplemental Movie S2 [36], also displays a perma-
nent high occupancy around the starting position. Conversely,
higher polyvalency and shorter span, such as the (12,3) BBRs,
results in a greater αr of 1.4. For the (12,3) system, the
evolution of the ensemble distribution (Supplemental Movie
S3 [36]) also displays low occupancy around the starting
position, leading to a ringlike structure in the two-dimensional
distribution. The emergence of the ring structure indicates that
the ensemble exhibits radially directed motion, away from the
starting position.

Increased polyvalency therefore leads to the most superdif-
fusive walk in two dimensions. Why is this so? In our Gille-
spie model, the rate of binding to substrate, kon, is ∼ 400 times
higher than the effective rate of cleavage, keff . Therefore,
all unbound legs will preferentially bind to locally available
substrate sites. Each unbound leg acquires a transition rate,
kon, for each of the available N substrate sites. For (12,3)
BBRs this means that all legs will preferentially saturate the
track. The increased number of track-associated legs means
that the product wake produced by the BBR is also denser.
By contrast, (3,8) BBRs can access larger regions of the track
with each step, and with a polyvalency of only 3 their product
wake is expected to be sparse. By this reasoning, the (12,3)
BBRs are expected to have higher αr values than the (3,8)
BBRs because it is harder for the global constraint to change
direction; multiple legs need to coordinate to move the global
constraint towards a new direction, leading to a higher value
of αr .
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Substrate track sites that have previously been visited,
and subsequently turned to product sites, cannot be revisited.
However, the global constraint can still visit its previous loca-
tions and cross over its path because the legs can bind beyond
their nearest neighbors. The more times the global constraint
revisits a location the less likely it will be to return because the
local region becomes further depleted of substrate. Therefore,
despite the ideal burnt-bridges behavior of each leg, our BBRs
do not scale as a strict self-avoiding walk. There may be merit
in the application of models for weakly self-avoiding walks
to polyvalent BBRs [38]. The BBR system may also bear
relevance to foragers eating a subset of food per site [39,40].

B. Track dissociation and its effect on α

The width of the track has a strong effect on both the
observed α values and the track association time, as shown
in Fig. 3 and Fig. 4. As stated αx does not begin to decrease
until a track width of 16 for (12,8) BBRs [Fig. 3(d)]. However,
their track association time increases dramatically from a
width of 1 to a width of 16 [Fig. 4(c)]. To understand the
relationship between αx and t1/2 we first looked to see if
they are correlated. In Fig. 4(f) we see that αx is relatively
constant and independent of t1/2 for these BBRs on tracks of
width 1–16. t1/2 ≈ 100 s on a track of width 1, whereas on
a track of width 16 t1/2 ≈ 2000 s. By increasing the width
of the track to twice that of the BBR span, the (12,8) system
maintains ballistic behavior while gaining more than an order-
of-magnitude increase in track attachment time. A further
increase in track width from 16 to 4096 results in an increase
of t1/2 by a factor of 2.5 but a decrease in αx from ∼ 2.0 to ∼
1.3. We therefore conclude that if one wishes to increase both
directionality and track association time, designing tracks of a
width proportional to the span of the ratchet is optimal. When
one further increases the track width, α begins to decrease.

Both decreasing polyvalency and increasing span result in
increased track attachment time. Of the two design param-
eters, which has the strongest impact on maintaining track
assocation? To illustrate the effects of polyvalency on track
association we can compare (3,8) and (12,8) BBRs on tracks
of width 1 and 8. On a track width of 1, we find t1/2 to be 240
and 110 s for (3,8) and (12,8) BBRs, respectively [Fig. 4(d)].
However, the effect of polyvalency on track association highly
depends on the span, which we map out in Fig. 4(e). For
example, increasing polyvalency of span-3 BBRs results in
at most a factor of 2 increase in t1/2, even on two-dimensional
tracks. However, for span-8 BBRs, t1/2 increases by a factor
of 2 for one-dimensional tracks, but by a factor of 10 for
two-dimensional tracks when the number of legs is increased
from 3 to 12. Altering span also shows similar trends where
the gain in t1/2 depends strongly on the polyvalency.

It may seem counterintuitive that an increase in polyva-
lency leads to a decrease in t1/2 given previous work with
molecular spiders [16,31]. However, in molecular spider sys-
tems the walkers have a rate of product binding, konP, typically
taken to be the same as substrate binding, konS [30–32].
Therefore, when the walker digests all local substrate sites it
can search through local product sites for areas of fresh sub-
strate. In such a system, increased polyvalency means more
options for product site coupling and subsequently decreased

probability of detachment. By contrast, our system is a ideal
BBR where konP = 0, and we find increased polyvalency leads
to a decrease in track attachment time.

C. Excess kurtosis

The shape of the BBR position distribution has a time
dependence. Kurtosis is a convenient measure to compare
BBR position distributions across our parameter space of
width, polyvalency, and span. On narrow tracks the position
distribution for (3,8) BBRs immediately develops into two
modes that move in opposite directions. This is reflected as
a monotonic decrease in γ2(x) to −2.0 [Fig. 5(b)], which
indicates a distribution with probability isolated at the edges
of the domain. The splitting of the position distribution into
two oppositely moving modes is consistent with the ballistic
behavior characterized by α.

Having seen that the distributions formed two oppositely
moving modes inspired us to analytically derive kurtosis for a
PDF described by two Gaussians, as shown in Eq. (6). We an-
alytically derived γ2 [Eq. (7)] in one dimension and explored
the effects of dispersion and mode separation, as shown in
Fig. 6. Increasing dispersion, while maintaining a constant
separation of modes, leads to γ2 monotonically increasing
towards the Gaussian value of 0, indicating that the two
independent modes are completely overlapping. Conversely,
a linear increase in mode separation with constant dispersion
results in γ2 monotonically decreasing to −2.0. Furthermore,
dispersion and mode separation have compensatory effects on
γ2, such that if they are increasing at similar rates γ2 remains
constant. From our phenomenological Gaussian model we are
able to reproduce all of the BBR γ2 results by modifying σ

and μ.
Our analytical model offers insights into BBR behavior and

allows us to understand the effects of polyvalency, span, and
width on the shape of the position distributions. For example,
γ2(x) for (3,8) BBRs on wide tracks reaches a time-invariant
value of −0.25 [Fig. 5(b)]. From our bimodal Gaussian
model, this suggests that the dispersion and separation of the
modes are equal. We verify this for the (3,8) system where
we compute σ (t )/μ(t ) (Fig. 8). The ratio of σ (t )/μ(t ) is
known as the coefficient of variation. In our analytical system
the coefficient of variation is equal to D

b
, where D and b are

equivalent to diffusion and drift coefficients, respectively. The
ratio D

b
is a ratio of diffusion and mobility and has been used

to characterize the ability of Brownian ratchets to achieve
directional motion under external fields [41].

On wide tracks, for all BBR designs, γ2(y) takes on
the same values as γ2(x) (Supplemental Figs. S3 and S4)
[36]. As the BBRs are constrained by the boundaries, the
position distributions evolve into uniform distributions across
the width [γ2(y) = −1.2], consistent with our finding that
the variance given by MSD(y) approaches that of a uniform
distribution.

D. Substrate digestion rates

Across all track widths we find that BBRs with larger
span and polyvalency have the highest substrate digestion
rate (kd ), as shown in Fig. 7(a). The ratio of the binding
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FIG. 8. μ(t ) and σ (t ) for BBRs with 3 legs, span 8 on a track of
width 128. (a) μ|x|(t ) and μ|y|(t ) overlap until the ensemble of motors
reaches the y boundary at ∼ 1000 s, at which point μ|y|(t ) curves
over to the expected value of 32 for a uniform distribution bounded
by |y| = 0, 64. (b) σ|x| (t )

μ|x| (t ) and σ|y| (t )
μ|y| (t ) , the coefficients of variation,

indicate that the dispersion in y positions decreases substantially
more than the mean y position on interaction with the y boundary
(approximate time indicated by the vertical line). σ|x| (t )

μ|x| (t ) remains
relatively constant following the onset of BBR interaction with the
y boundary.

and effective cleavage rates used in the Gillespie model, kon

and keff , respectively, is ∼ 400. This means that an unbound
leg that can access a fresh substrate site is going to be 400
times more likely to bind to any one site than a bound
leg is to cleave and release. Thus, all legs are likely to be
bound to available substrate sites. (12,8) BBRs have access
to more local substrate than the other BBR designs given
that they have the largest polyvalency and the longest reach
(span), and therefore (12,8) BBRs are expected to cleave the
most per unit time. (12,3) BBRs are “second best” to (12,8)
BBRs with regards to the substrate digestion rate. All 12
legs can saturate to the track, but this design suffers from a
shorter span leading to an inability of (12,3) BBRs to reach
distant patches of fresh substrate, as compared to the (12,8)
system.

It was surprising to see that (3,3) and (3,8) BBRs experi-
enced a slight decrease in average substrate digestion rates as
a function of increasing track width [Fig. 7(a)]. The decline
is slight: from 0.18 s−1 in one dimension to 0.16 s−1 in two
dimensions for (3,3) BBRs. As the width is increased one
would naively think that more substrate should be available to
the BBR for any given combination of bound legs, therefore
resulting in an increase digestion rate. This was not found for
three-legged BBRs. Furthermore, for any given track width,
the average digestion rates for (3,3) and (3,8) BBRs are within
5%, suggesting that in the limit of low polyvalency, span
plays no significant role in altering the substrate digestion
rate.

Our hypothesis is that in one dimension, when the span-3
walkers move into their product wake, they quickly detach
as there is little opportunity to turn around towards fresh
substrate. However, as the track width is increased the walkers
have more opportunity to rescue themselves from a substrate-
barren environment. We speculate that on average, the (3,8)
and (3,3) walkers experience more substrate-barren terrain in
wider track widths, which leads to a lower average substrate
digestion rate as they spend more time rescuing themselves
from locally depleted regions.

The BBRs studied in this work can be considered as
polyvalent depletion-controlled foragers [7,42]. In Fig. 7(b)
we plot the average number of substrate sites digested by
each BBR on each track width. As a function of track
width, substrate digestion per lifetime scales similarly as t1/2

[Fig. 4(d)]. Despite (3,8) BBRs having the lowest kd across
all track widths, their greater track association time leads to
them having more time to digest substrate, resulting in the
most substrate cleaved prior to detachment.

V. CONCLUSIONS

The design and implementation of synthetic machinery
has shown great promise towards the control of motion at
the nanoscale. In particular, synthetic analogs of biological
molecular motors that implement a BBR mechanism have
made great progress. Our goal in this work was to explore
the effects of confinement on BBR performance and to pro-
vide design insights for de novo BBR motors. Our results
offer guidelines for researchers to follow when thinking
about optimizing particular BBR characteristics. To fabri-
cate a superdiffusive BBR in two dimensions, one should
increase polyvalency and decrease span, as has been done
in some systems [11,25]. Increasing span and decreasing
polyvalency, in contrast, results in large increases to track
attachment time but decreased directionality. Furthermore, we
found that narrow tracks result in ballistic dynamics, as well
as an order-of-magnitude increase in track attachment time
compared to a one-dimensional track. Last, we found that
increasing polyvalency results in an increased rate of substrate
digestion; however, the total average track association time is
the dominant factor that dictates total cleavage events before
detachment. Through exploring the dimensionality-dependent
crossover in motility of polyvalent BBRs, we have found
these systems to exhibit rich dynamics. We hope these results
provide useful insight towards the design of de novo BBR
systems.

ACKNOWLEDGMENTS

This work was funded by the Natural Sciences and En-
gineering Research Council of Canada (NSERC), through
a Discovery Grant to NRF. Computational resources were
provided by Compute Canada.

APPENDIX

On narrow tracks the BBR displacement distributions pro-
duce two modes that travel in the ±x̂ directions. To understand
how the kurtosis is expected to behave we derive γ2 for
a probability density function described by two Gaussian
modes centered at μ1 and μ2 with standard deviations σ1 and
σ2,

P (x|μ1, μ2, σ1, σ2) = 1

2
√

2πσ 2
1

e
− (x−μ1 )2

2σ2
1

+ 1

2
√

2πσ 2
2

e
− (x−μ2 )2

2σ2
2 . (A1)
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P (x) from Eq. (A1) can be used to compute the kth moment
about the mean according to

mk =
∫ ∞

−∞
(x − μ)kP (x)dx. (A2)

Kurtosis is defined as the standardized fourth moment. Since
a Gaussian distribution always has a kurtosis of 3, it is
convenient to define the excess kurtosis, γ2, as

γ2 = E[(x − μ)4]

(E[(x − μ)2])2
− 3 = m4

(m2)2
− 3. (A3)

Using Eq. (A2) we find the fourth and second moments to be

m4 = 1

2

(
μ4

1 + 6μ2
1σ

2
1 + 3σ 4

1 + μ4
2 + 6μ2

2σ
2
2 + 3σ 4

2

)
, (A4)

m2 = 1

2

(
μ2

1 + σ 2
1 + μ2

2 + σ 2
2

)
. (A5)

Substituting Eq. (A4) and Eq. (A5) into Eq. (A3) we find the
excess kurtosis of P (x) to be given by

γ2 = 2
(
μ4

1 + 6μ2
1σ

2
1 + 3σ 4

1 + μ4
2 + 6μ2

2σ
2
2 + 3σ 4

2

)
(
μ2

1 + σ 2
1 + μ2

2 + σ 2
2

)2 − 3.

(A6)
In our system there is symmetry in the two modes about

x = 0. Therefore, we make the further assumption that μ2 =
−μ1, so that μ2

2 = μ2
1 = μ2

0 and let σ1 = σ2 = σ0. γ2 can then
be written as

γ2 =
(
2μ4

0 + 12μ2
0σ

2
0 + 6σ 4

0

)
2
(
μ2

0 + σ 2
0

)2 − 3. (A7)
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