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We consider several quadrilateral origami tilings, including the Miura-ori crease pattern, allowing for crease-
reversal defects above the ground state which maintain local flat foldability. Using exactly solvable models, we
show that these origami tilings can have phase transitions as a function of crease state variables, as a function of
the arrangement of creases around vertices, and as a function of local layer orderings of neighboring faces. We use
the exactly solved cases of the staggered odd eight-vertex model as well as Baxter’s exactly solved three-coloring
problem on the square lattice to study these origami tilings. By treating the crease-reversal defects as a lattice
gas, we find exact analytic expressions for their density, which is directly related to the origami material’s elastic
modulus. The density and phase transition analysis has implications for the use of these origami tilings as tunable
metamaterials; our analysis shows that Miura-ori’s density is more tunable than Barreto’s Mars density, for
example. We also find that there is a broader range of tunability as a function of the density of layering defects
compared to as a function of the density of crease order defects before the phase transition point is reached;
material and mechanical properties that depend on local layer ordering properties will have a greater amount
of tunability. The defect density of Barreto’s Mars, on the other hand, can be increased until saturation without
passing through a phase transition point. We further consider relaxing the requirement of local flat foldability
by mapping to a solvable case of the 16-vertex model, demonstrating a different phase transition point for
this case.
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I. INTRODUCTION

Recently, foldable origami crease patterns (CPs) have seen
much use as programmable matter [1,2], tunable metama-
terials [3,4], self-deployable systems [5,6], architecture [7],
and medical devices [8–11]. In many of these explorations,
the origami CP hinges are self-folding after application of
heat [12,13], electric current [1,2,5], lasers [14], and various
liquids [15], to name some examples. See [16] for a recent
review.

In [3] the authors show experimentally how the elastic
modulus of a Miura-ori origami CP depends on the density of
defects present, that is, the number of creases with opposite
orientations than the original CP. Defects can also arise in
the production of reversible self-folding origami based on
hydrogel bilayers [17], and in [5] the authors report that
initially some creases started self-folding in the opposite
orientation before correcting themselves. Presumably, defects
naturally arise after several cycles of reversible self-folding
and unfolding and they certainly arise through environmental
factors. Along these lines, there has been recent interest in
finding the minimum number of crease orientations necessary
to force the orientations of the remaining creases in the lattice
as the origami CP is being activated, the so-called forcing sets
[18,19]; due to multistability, however, defects can easily arise
from forcing sets [20,21].

We are interested in characterizing flat-foldable defects
which can arise in origami CPs, and so we here study origami
CPs from the perspective of exactly solvable equilibrium
statistical mechanics. Our statistical ensembles are presumed
to be either a large collection of manufactured origami CPs,
self-folding once to their final shape or else a single origami

undergoing many cycles of reversible self-folding and unfold-
ing, in which case it would approach equilibrium after a number
of such cycles. We do not consider localized tuning of creases
on the lattice, such as forcing sets, but rather use homogeneous
variables throughout the lattice and assume that all creases
must be folded. Our exact solutions allow us to derive not
only exact phase transition point locations, but also free-energy
expressions which allow the derivation of its thermodynamical
properties.

The nature of this work bridges the theoretical models of
exactly solvable lattice statistical mechanics with the more
experimental work on origami engineering, condensed matter
physics, and materials science. We do not assume a familiarity
with all of these areas and attempt to explain a sufficient
amount of origami results and theory in order to both allow the
statistical mechanics theorists to understand the applications
of the models to origami and explain sufficiently the methods
and models of statistical mechanics to those not familiar with
the exactly solved models. Those more familiar with origami
and more interested in the applications of the theory may wish
to skip some details of the models and focus on Secs. VI and
VIII, while those not familiar with origami and its applications
may wish to spend more time studying the Introduction and
Secs. II and III.

In our models, the ground state represents a known origami
CP crease configuration and excitations above the ground
state represent defects in the foldable lattice due to reversal
of the states of the creases, from mountain to valley or vice
versa. The phase transitions of our models represent points
at which the long-range order in the lattice disappears, either
with respect to crease states in the lattice or else with respect
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FIG. 1. Mapping of mountain folds to solid lines (left) and valley
folds to dashed lines (right).

to relative face layer orderings, which is the ordering of the
stacking of faces locally after folding, so that correlations of
either of these variables decay exponentially above the phase
transition point. As a consequence of our analysis, we are able
to characterize CPs which are more stable against defects than
others and, conversely, which are more tunable as a metama-
terial. Some CPs do not feature a phase transition point and
so defects can be added to the lattice until saturation without
changing its long-range-order properties. Our models enable
us to predict the defect density as a function of the preference
of creases for the reversed state. To the extent that mechanical
properties of the origami CP depend on the defect density,
knowledge of how much to bias the creases in the lattice allows
for a tuning of the defect density and hence of the mechanical
properties.

Origami CPs readily lend themselves to vertex model inter-
pretations in statistical mechanics. If we represent mountain
creases by solid lines and valley creases by dashed lines as
in Fig. 1, then we have a direct correspondence with vertex
models with two-state edges, having Boltzmann weights vi =
exp(−βεi ) defined in terms of the configuration of mountain
and valley creases around a vertex in the lattice, where εi

represents an interaction energy or chemical potential and
β = (kBT )−1, where kB is Boltzmann’s constant and T is the
temperature. With these definitions, we sum over all of the
possible valid vertex configurations in the lattice to arrive at
the partition function Z,

Z =
∑
configs

∏
i

v
mi

i , (1)

where mj are the number of vertex weights vi in the lattice.
In the thermodynamic limit where the number of lattice sites
N → ∞, the free energy f is defined by

−βf = lim
N→∞

ln(Z1/N ). (2)

From the free energy, all thermodynamic quantities and critical
phenomena can be derived.

Vertex models in statistical mechanics are often defined on a
regular lattice. The lattice edge lengths and angles are typically
disregarded; only the graph connectivity of vertices is usually
of interest. For origami CPs, on the other hand, not only the
graph but the angles and edge lengths are important for its
foldability properties. In particular, necessary flat-foldability
conditions require that the alternating sum of angles around a
vertex add to π (Kawasaki’s theorem), that each vertex be of
even degree, and that the difference in the number of mountain
and valley creases around each vertex equal two (Maekawa’s
theorem) [22]. Also, changing the angles of creases around
a vertex can change the number of valid mountain-valley
crease assignments which are flat-foldable around that vertex,
even while still satisfying Kawaski’s theorem at that vertex.
Therefore, since we are interested in changing crease assign-

ments to allow for defects, we must also incorporate the effect
of the CP angles on the number of allowed crease assignments
around a vertex into our models. Furthermore, aside from the
importance of angles in flat foldability and determining the
number of valid crease assignments, flat-foldable CPs with
the same connectivity and the same crease assignments but
different angles can have very different folding properties, as
seen in [23], where the Miura-ori, Barreto’s Mars, the quadri-
lateral mesh, and the dual square twist CPs only differ in their
angles, even though their resulting global foldings are quite
different. We will not directly consider the resulting folding of
the CP.

Sufficient conditions for the global flat foldability of an
origami CP is an NP-hard problem [24], depending on the
global layer ordering of the facets. This layer ordering condi-
tion can in principle be translated into a statistical mechanics
model, by mapping to a solid on solid (SOS) model with a par-
tial height ordering around each vertex and summing over those
configurations which admit a global height ordering. As far as
we are aware, this kind of model cannot be reduced to only
nearest-neighbor interactions. We therefore do not consider
global flat foldability. Because of the inherent difficulty of deal-
ing with global flat-foldability conditions, we will only con-
sider local flat-foldability requirements. Furthermore, we do
not assume rigid flat faces during folding but assume that dur-
ing folding the faces can bend before settling down to a final (lo-
cally at least) flat-foldable state; we discuss rigid foldability in
Sec. VIII.

Ours is not the first attempt to relate origami crease patterns
to statistical mechanics. Most other work has been done
considering foldings of polymerized membranes or tethered
membranes on a lattice, that is, random crumplings of the
lattice where not all bonds need to be folded. See [25] for such a
study on the square lattice, [26–37] for studies on the triangular
lattice, and [38–40] for studies on the union-jack lattice. Also,
one-dimensional folding as a meander problem was considered
in [41,42]. In [43,44] foldings of all edges of triangulations by
regular triangles of arbitrary genus surfaces were considered,
but since their only restrictions were even degree vertices
which were three-colorable, in order to allow the mapping of
all triangular faces onto each other, they disregarded Kawasaki
and Maekawa’s theorems. See [45–47] for reviews on these
topics just mentioned. We also note [48], where a mapping was
given from the kagome lattice Heisenberg antiferromagnet to a
folded triangular sheet. Except for the exact calculation of the
folding entropies of random crumpling on a triangular lattice
[49] and of flat-foldable Miura-ori states [50], we are unaware
of other exact results. Our work here uses exactly solvable
models to study origami CPs in general.

As a means of studying origami CPs using the methods
of solvable equilibrium statistical mechanics, we will confine
ourselves in this paper to origami CPs whose graph connec-
tivities are of the form of a square lattice, that is, regular
degree four lattices. We consider staggering units of up to four
vertices in our models of isohedral quadrilateral tilings of the
plane which are flat foldable. These flat-foldable tilings are the
simple square tiling, the parallelogram or rhombus (pmg) tiling
commonly known as Miura-ori, the trapezoid tiling, called
chicken wire in [23], and the kite tiling, called Huffman in
[23], where we use the International Union of Crystallography
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FIG. 2. Odd eight-vertex model weights, with bond states shown in terms of line type, dashed or solid, representing valley or mountain
creases, respectively.

short crystallographic notation for the wallpaper groups to
distinguish Miura-ori from the parallelogram p2 and rhombus
cmm tilings. We will use the standard naming conventions
of the trapezoid and kite tiling but use the Miura-ori name,
which is well known in the origami literature, rather than
the parallelogram or rhombus pmg tiling naming conven-
tion; we will also refer to the square tiling as the simple
square CP.

In our translation of the CPs to our square lattice models
we impose the flat-foldability restrictions inherent in the
origami CP due to the values of its angles. We will generally
only consider locally flat-foldable origami CPs, except when
looking at CPs which break Maekawa’s theorem at vertices.
Since we are not considering global flat foldability, it is possible
that some of the configurations of crease assignments which are
included in the partition function summation are not globally
flat foldable. We also do not consider rigid foldability but

assume that faces can bend. Indeed, the ground-state crease
assignment of the trapezoid CP can self-intersect globally if
only rigid foldability is being considered [51]; the ground state
is globally flat foldable however.

Maekawa’s theorem applied to degree 4 vertices demands
an odd number of mountain and valley creases. Thus there
are eight valid locally flat-foldable vertex configurations at
each square lattice vertex, shown in Fig. 2, which immediately
recalls the odd eight-vertex model [52,53].

In the CPs we consider there is one continuous degree
of freedom in their definitions, given in terms of an angle θ

in the staggering quadrilateral unit, as shown in Fig. 3. For
any angle θ < 90◦, geometrical folding constraints force two
or four vertex weights to be disallowed, that is, vi = 0, in
these CPs, as shown in Fig. 4. When the angle θ = 90◦, all
four CPs become degenerate with the homogeneous square
lattice CP where all eight vertex weights vi can be nonzero.

FIG. 3. Four of the five origami CPs we consider: (a) the Miura-ori CP, (b) the trapezoid CP, (c) Barreto’s Mars CP, and (d) the kite CP; the
simple square tiling is not shown.
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FIG. 4. (a) Single vertex with angles labeled and (b) dependence of the allowed flat-foldable vertex weights on the angle pattern examples.

Therefore, we will assume in talking about these CPs that
θ �= 90◦.

From the perspective of allowed vertex weights at each
vertex of the CP according to the table in Fig. 4, the Miura-ori
CP is column staggered with units of two vertices, trapezoid
and kite CPs are bipartite staggered with units of two vertices,
and Barreto’s Mars CP is column staggered with units of four
vertices. However, as we will see below, it is more useful, in
order to set the correct ground state, to consider the Miura-ori
CP as a column staggered lattice with units of four vertices.
Very few exact results are known for staggered vertex models,
the majority being free-fermion eight-vertex models; the only
solved staggered vertex models which are not free-fermion
models have extra interactions which do not have a natural
origami interpretation [53]. Therefore, we will focus on free-
fermion models, which have simple solution constructions in
terms of Pfaffian or dimer methods. Bipartite staggered even
eight-vertex models with units of two vertices were studied
in [54], column staggered even and odd eight-vertex models
with units of two vertices were studied in [53], and column
staggered even eight-vertex models with units of four vertices
were considered in [55]. Because staggered even eight-vertex
models can always be mapped to staggered odd eight-vertex
models by reinterpreting bond occupation variables [52,53],
we can make use of the results in these papers for our purposes.
For reference, in Appendix A we give the dimer method of
solution for the column staggered odd eight-vertex model with
units of four vertices, from which all of the remaining vertex
model results can be specialized. The free energies are given
in Appendix B.

We find that the Miura-ori and trapezoid CPs have phase
transition points as a function of the vertex weights, points be-
yond which the long-range order of the ground state disappears.
We also find that Barreto’s Mars CP has purely noninteracting
defects and that the kite CP can be treated as an effective
one-dimensional model. Therefore, neither Barreto’s Mars nor
kite CPs have a phase transition point. For the simple square
CP, the equivalent homogeneous odd eight-vertex free-fermion
model does not have a phase transition unless at least two of
the vertex weights are disallowed at each vertex [52], but if
we consider a staggering of two or four units, then there exist
phase transitions for all positive weights, which we give in
Sec. IV E.

The Miura-ori and trapezoid CPs can also be mapped
to the exactly solved three-coloring problem on the square
lattice [50,56–58], where colors represent relative layering
orders of neighboring faces. The model does not allow two
neighboring faces to have the same color, and the ground state
is chosen to only have two colors in a checkerboard fashion.
The introduction of the third color maps to the appearance of
defects on the lattice. The three-coloring problem has a known

phase transition which these two CPs also exhibit as a function
of these face layer defects. Because the three-coloring problem
does not satisfy the free-fermion condition, this is a phase
transition point outside of those seen in the mapping to the
staggered free-fermion odd eight-vertex model solutions, and
it also happens for a different order parameter in the problem,
namely, the relative local face layer orderings.

In Sec. VI we treat the models as a lattice gas of defects, and
using the free-energy results, reinterpreted as pressure, we find
exact analytic expressions for the density of defects in these
models. We consider crease-reversal defects as “particles” as
well as layer ordering defects. Our analysis of the densities
allow us to conclude that Miura-ori and trapezoid densities
are less stable against defects, and hence more tunable, than
Barreto’s Mars density. We also give analytic expressions for
the isothermal compressibility and compute the equations of
state of these lattice gas models.

Finally, we also consider relaxing the local flat-foldability
requirement by breaking Maekawa’s theorem on the simple
square CP in Sec. VII. There are then a total of 16 valid
vertex weights at each vertex and by imposing a crease reversal
symmetry to the vertex weights, we make use of a weak-graph
transformation to map this model to an even eight-vertex model
with the known solvable subcase of the free-fermion model
[53,59]. We find for this model another phase transition point.
We discuss in Sec. VIII rigid foldability, finite lattice results,
higher degree CPs, free-fermion models, and lattice versions
of random crumpling. We finish the paper in Sec. IX with some
conclusions.

II. FLAT-FOLDABLE CREASE-REVERSAL DEFECTS

The flat-foldability requirement about each vertex means
that crease assignment defects cannot occur in isolation. In
order to satisfy Maekawa’s theorem, an even number of crease
reversals from the ground state must occur at each vertex, either
two or four, and since a crease joins two vertices, neighboring
vertices are affected. The arrangement of angles in the CP
further limits the number of possible crease reversals around
a vertex. We show the valid types of crease reversals around
vertices in Fig. 5, where we also indicate which types are valid
for each CP.

From the valid crease reversals around each vertex, we can
see that the kite’s crease defects form lines which traverse
the entire lattice and Barreto’s Mars forms only small crease
defect loops around the diamond faces of the CP which are
independent of each other. The types of crease defects which
occur in Miura-ori, trapezoid, and simple square CPs are more
interesting and can interact with each other. For these three
CPs, all finite terminating crease defects form loops enclosing
polygonal areas which can be viewed as being composed of
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FIG. 5. Schematic representation of the valid crease reversals around vertices, with crease reversals indicated by solid red lines. All CPs
admit the seventh type. In addition, the kite CP admits the first two types; Miura-ori, trapezoid, and Barreto’s Mars CPs admit the first four
types; and Barreto’s Mars CP admits the first two only on one sublattice and the next two on the other sublattice only. The simple square CP
admits all seven types.

a number of individual face defects that have been joined
together. For these three CPs then, the finite-size defects have
as their basic units what we call face flips, where all four creases
around a face are reversed. All of the defects in Barreto’s Mars
have face flips as their building blocks, but the other CPs can
also have isolated lines of defects which traverse the entire
lattice which cannot be built up using only face-flip defects. In
Fig. 6 we show a sample of possible face-flip defects for these
models at low and high densities of crease reversals.

Though face flips are useful for understanding defects,
except for Barreto’s Mars it is important that the crease-reversal
models use crease reversals as a defect variable and not face
flips. At low density, the two cases will agree, but at high face-
flip density the lattice will be covered by face flips, which is
equivalent to the ground state and not the fully crease-reversed
lattice. Since we are interested in characterizing the effect of
defects in the lattice and want the high density to correspond
to the lattice being fully crease reversed, we see that we cannot
use face flips as a useful Boltzmann weight in these models.
For Barreto’s Mars, since the only allowed defects occur on
the diamond faces and the defects are noninteracting, face flips

are an equally valid Boltzmann weight and the model can be
viewed as a noninteracting lattice gas of diamonds.

III. ORIGAMI BOLTZMANN WEIGHTS

Origami CPs fold in a manner which depends on the
crease assignments, the arrangement of those creases around
individual vertices, and the ordering of the layers of faces.
We consider Boltzmann weights for each of these three cases,
weights that depend on the arrangement of crease assignments
around a vertex using the standard odd eight-vertex model
weights shown in Fig. 2, individual crease Boltzmann weights
for mountain and valley crease assignments separately, and
relative layer ordering weights for faces with respect to their
neighboring faces. We consider each type of weight in turn
below.

A. Vertex Boltzmann weights and free-fermion models

If treated purely as a vertex model, the origami models then
have Boltzmann weights which depend only on the pattern

FIG. 6. Schematic representation of face-flip defect configurations, where solid red lines represent crease reversals for Miura-ori, trapezoid,
Barreto’s Mars, and the simple square CPs. The first two rows are at low density and the bottom row is at high density. The top middle
configuration cannot occur except for the simple square CP, and Barreto’s Mars face-flip defects only occur for its diamond faces.
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of mountain and valley creases around a vertex, as shown
in Fig. 2. From the perspective of flat foldability, this is a
natural set of variables, since flat foldability depends crucially
on the arrangement of the creases around a vertex [22].
Since vertex models are well studied in statistical mechanics,
we can make use of exact solutions to study flat-foldable
origami CPs, in particular we make use of free-fermion models.
Since we generally consider that crease assignment defects
must also respect local flat-foldability requirements, we limit
the vertex weights to only the set of eight weights shown
in Fig. 2, except in Sec. VII, where we break Maekawa’s
theorem.

So-called free-fermion models are eight-vertex models
which satisfy a free-fermion condition, which for the odd
eight-vertex model is [53]

v1v2 + v3v4 = v5v6 + v7v8. (3)

This condition allows the model to be solved via Pfaffian
techniques, such as via dimer methods [60,61], which we
demonstrate explicitly in Appendix A. On the homogeneous
square lattice the free-fermion model is equivalent to the
Ising model on the union-jack or checkerboard lattices [53].
Except for the simple square CP, the other origami CPs require
staggering units, and it is unknown whether there are similar
interpretations for staggered free-fermion models in terms of
Ising models on a different lattice.

Since we are primarily interested in staggered lattices, we
choose independent sets of vertex weights for each vertex of
the two or four vertices appearing in each unit, each of which
satisfies its own free-fermion condition. Except for the simple
square CP, the pattern of angles around a CP’s vertices causes
certain vertex weights to be disallowed, with examples shown
in Fig. 4. For the trapezoid CP we use two independent sets of
weights vi and wi which satisfy

v1v2 = v5v6 + v7v8, (4)

w3w4 = w5w6 + w7w8. (5)

We are interested in the ground state being given by alternations
of v1 and w3 with the remaining allowed vertex weights being
considered defects. If we choose v1 = w3 = 1 as the ground-
state weights and if we choose v5 = v6 = v7 = v8 = y and
w5 = w6 = w7 = w8 = y for the defects which involve two

FIG. 7. Graphical interpretation of the factor of 2 in the free-
fermion condition of the Miura-ori and trapezoid models. Shown on
top is the interpretation around each vertex with four crease reversals
and on the bottom is an example with two face-flip defects.

FIG. 8. Crease assignment weight notation convention on a unit
of four vertices for crease weights a, . . . , h, each of which represents
two weights for the mountain and valley assignment separately, e.g.,
am and av for the a crease notation, respectively. The notation for the
four vertex weights ti , ui , vi , and wi are also shown.

crease reversals (each crease is shared between two vertices,
so the factor of y2 is split between them), then we must have
v2 = 2y2 and w4 = 2y2 in order to respect the free-fermion
condition. The defect corresponding to reversing all four
creases at a vertex then is twice as large as the naive factor of y2

one might presume for each crease reversal. We can interpret
this extra factor of 2 occurring in the fully crease-reversed
vertex weights in the graphical sense, shown in Fig. 7, that
each of the vertices with four crease reversals corresponds to
two different arrangements of the defect loops. Therefore, the
effect of imposing the free-fermion condition is to favor defects
clustering together in the lattice. As long as y < 1

2 , defect
weights v2 and w4 will be smaller than the other defect weights.
However, as we will see below, the model has a phase transition
point at y = √

2/2, at which point the vertex weights which
are crease reversals of the ground-state weights are equally
favored, that is, v2 = w4 = v1 = w3 = 1. For Miura-ori CPs,
similar considerations and results hold.

For Barretos’s Mars CP, there are four vertex weights disal-
lowed at each vertex and we have the free-fermion conditions

FIG. 9. From top left to bottom right, the vertex weight notation
conventions for each vertex unit of Miura-ori, trapezoid, Barreto’s
Mars, and kite CPs.
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for the four sets of vertex weights

v1v2 = v7v8, w3w4 = w7w8, t1t2 = t5t6, u3u4 = u5u6

(6)

with the ground state given by v1, w3 t2, and u4 according to
Fig. 9. Again setting the ground-state weights to equal 1, we
can choose defect weights given by a factor y that corresponds
to the number of crease reversals at each vertex, that is, the
fully crease-reversed defect weights v2, w4, t1, and u3 all equal
y2 and the remaining weights equal y. The extra factor of 2 in
the fully crease-reversed weights of Miura-ori and trapezoid
CPs is not present in this model.

B. Crease Boltzmann weights

The partition function of any vertex model can be modified
to show explicitly the dependence of the partition function on
the edge states, that is, the crease assignments; this is done
by using a transformation of the vertex weights, which we
now show. We define crease Boltzmann weights am, av, . . . , hv

as shown in Fig. 8 for a general unit of four vertices, with
individual weights for mountain and valley assignments of the
same crease and where this is indicated by the subscript.

In order to avoid either double counting or using square
roots, we use the following asymmetric transformation of the
vertex weights, where for each vertex weight we add in its
lower and right crease assignment dependence

v1 → ambvv1, v3 → avbvv3, v5 → avbmv5, v7 → avbvv7,

v2 → avbmv2, v4 → ambmv4, v6 → ambvv6, v8 → ambmv8,

w1 → cmdvw1, w3 → cvdvw3, w5 → cvdmw5, w7 → cvdvw7,

w2 → cvdmw2, w4 → cmdmw4, w6 → cmdvw6, w8 → cmdmw8,

t1 → emfvt1, t3 → evfvt3, t5 → evfmt5, t7 → evfvt7,

t2 → evfmt2, t4 → emfmt4, t6 → emfvt6, t8 → emfmt8,

u1 → gmhvu1, u3 → gvhvu3, u5 → gvhmu5, u7 → gvhvu7,

u2 → gvhmu2, u4 → gmhmu4, u6 → gmhvu6, u8 → gmhmu8.

(7)

All of the odd eight-vertex results below can incorporate the
extra dependence on the crease assignments after performing
these transformations. We can choose the crease assignment
variables corresponding to the ground-state crease configura-
tion to all have value 1. Then as long as the remaining crease
assignment variables are less than 1, the ground state will
continue to be favored.

For free-fermion models, the free-fermion condition is
valid identically with or without such a crease assignment
dependence. For the simple square CP, Barreto’s Mars, and
the kite CP, the free energy can be written purely in terms of
crease assignment weights, since in the free-fermion condition
each of the vertex weights can be chosen to have the value
vi = wi = ti = ui = 1. For the Miura-ori and trapezoid CPs
though, the free-fermion condition cannot be satisfied in this
manner, so the vertex weight dependence must continue to
be explicitly shown. We show explicitly below for the simple
square CP that a phase transition point can be found which
depends solely on these crease assignment weights.

C. Relative local face layering Boltzmann weights

The third type of origami Boltzmann weight we consider
captures the relative layer ordering of neighboring faces. We
show in Sec. V below how to map from the vertex weights of
the Miura-ori and the trapezoid models to the three-coloring
problem on the square lattice, where each face on the square
lattice is assigned one of three colors such that no two neigh-
boring faces have the same color. The convention we define in
Fig. 10 for both models shows how to assign face colors so that
mountain and valley creases between two neighboring faces
describes the relative layering of the two faces consistently

in the lattice. We then consider color Boltzmann weights zi

for the states of each face. The exactly solvable three-coloring
problem has a known phase transition point, which happens
whenever all three color fugacities are equal z0 = z1 = z2, so
another phase transition point depending on the local layer
ordering of faces can be established analytically, falling outside
of the free-fermion model’s free-fermion condition constraints.

IV. FLAT-FOLDABLE VERTEX MODELS

We now consider the origami CPs as staggered free-fermion
odd eight-vertex models which have flat-foldable crease
assignment defects. Using vertex weights as well as crease
assignment weights, we consider their free energies as well as
their critical phenomena.

A. Miura-ori CPs

For the Miura-ori four-vertex unit we use the vertex weight
notation shown in Fig. 9. At each vertex, the pattern of the
angles causes two vertex weights to be disallowed, so we
have

v3 = v4 = t3 = t4 = w1 = w2 = u1 = u2 = 0. (8)

We can use the free-fermion conditions for each independent
set of vertex weights to set the ground state to be given only in
terms of the weights v1, w3, t2, and u4 as discussed above. We
give the fully asymmetric free energy in Appendix B.
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The fully asymmetric model has phase transition points given when the following conditions hold:

t1v2w4u3 + v1w3t2u4 + (v5w6 + v7w8)(t5u6 + t7u8) + (v6w5 + v8w7)(t6u5 + t8u7)

± (v5w7 − v7w5)(t5u7 − t7u5) ± (v6w8 − v8w6)(t6u8 − t8u6) = 0, (9)

t1v2w4u3 + v1w3t2u4 ± (v5w7 + v7w5)(t5u7 + t7u5) ± (v6w8 + v8w6)(t6u8 + t8u6)

− (v5w6 − v7w8)(t5u6 − t7u8) − (v6w5 − v8w7)(t6u5 − t8u7) = 0. (10)

There can be up to five phase transitions in this model, which are generically logarithmic of second order, although in special
cases it can have two first-order phase transitions or up to three second-order phase transitions with exponent 1

2 [55].
If we assume that the vertex weights ti and ui are given by the corresponding crease-inverted vi and wi weights, respectively,

the free energy factorizes as an exact square and the phase transition points become more simply

v1w3 ± v2w4 = 0, (11)

v2
1w

2
3 + v2

2w
2
4 + 2(v5w6 + v7w8)(v6w5 + v8w7) − 2(v5w7 − v7w5)(v6w8 − v8w6) = 0, (12)

v2
1w

2
3 + v2

2w
2
4 − 2(v5w6 − v7w8)(v6w5 − v8w7) + 2(v5w7 + v7w5)(v6w8 + v8w6) = 0. (13)

If we further assume full symmetry of the weights so that the wi weights are equal to the vi weights rotated by 180◦, the phase
transition conditions become

v2
1 ± v2

2 = 0, (14)

v4
1 + v4

2 + 2(v5v8 + v6v7)(v6v7 + v5v8) − 2
(
v2

5 − v2
7

)(
v2

6 − v2
8

) = 0, (15)

v4
1 + v4

2 − 2(v5v8 − v6v7)(v6v7 − v5v8) + 2
(
v2

5 + v2
7

)(
v2

6 + v2
8

) = 0. (16)

If we choose v1 = 1 to set the ground state and v5 = v6 = v7 = v8 = y with y < 1, the free-fermion condition gives v2 = 2y2

and the free energy is given as

−βfMi = 1

16π2

∫ 2π

0

∫ 2π

0
ln[1 + 4y4 + 16y8 + 4y4(cos θ1 + cos θ2 − cos θ1 cos θ2)]dθ1dθ2. (17)

The phase transition points then become

1 ± 4y4 = 0, (18)

1 + 16y8 + 8y4 = 0 (19)

and we see that there is a physical phase transition point at a
positive y value

yc =
√

2/2. (20)

This point yc corresponds to the point where the fully
crease-reversed vertex weights equal the ground-state weights
v2 = w4 = t1 = u3 = 1, although the remaining valid vertex
weight defects are still less favored, less than 1, at this
point.

B. Trapezoid CP

For the trapezoid two-vertex unit we use the vertex weight
notation shown in Fig. 9. At each vertex, the pattern of the
angles causes two vertex weights to be disallowed, so we
have

v1 = v2 = w3 = w4 = 0. (21)

We can use the free-fermion conditions for each independent
set of vertex weights to set the ground state to be given only in
terms of the weights v3 and w1, as discussed above. We give
the free energy in Appendix B.

This model has phase transition points when the following
conditions hold:

v3w1 + v4w2 ± v5w7 ± v6w8 ± v7w5 ± v8w6 = 0, (22)

v3w1 + v4w2 ± v5w7 ± v6w8 ∓ v7w5 ∓ v8w6 = 0. (23)

There can be up to three phase transitions of the model which
are in general logarithmic of second order, although in special
cases there is only one phase transition which has exponent
1
2 [54].

If we assume the symmetry such that the wi vertex weights
are equal to the 180◦ rotated vi weights, then the free-energy
factorizes into two parts and the phase transition points are
given by

v2
1 + v2

2 ± v2
5 ± v2

6 ± v2
7 ± v2

8 = 0, (24)

v2
1 + v2

2 ± v2
5 ± v2

6 ∓ v2
7 ∓ v2

8 = 0. (25)

If we choose v1 = 1 to set the ground state and v5 = v6 = v7 =
v8 = y with y < 1, the free-fermion condition gives v2 = 2y2

and the free energy becomes

−βfT = 1

8π2

∫ 2π

0

∫ 2π

0
ln{1 + 4y4

+ 2y2[cos θ2 − cos(θ1 + θ2)]}dθ1dθ2. (26)
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The phase transition points then become

1 + 4y4 ± 4y2 = 0, (27)

1 + 4y4 = 0 (28)

and we see that there is a physical phase transition point at the
positive y value

yc =
√

2/2. (29)

It can be shown that the free energy of (26) is equal to the
free energy (17) of Miura-ori. In this symmetric defect case,
but not in general, the two models are therefore equal. As
with the Miura-ori case, yc corresponds to the point where
the fully crease-reversed vertex weights equal the ground-state
weights v2 = w4 = 1, although the remaining valid vertex
weight defects are still less favored, less than 1, at this point.

C. Barreto’s Mars CP

For the Barreto’s Mars four-vertex unit we use the vertex
weight notation shown in Fig. 9. At each vertex, the pattern of
the angles causes four vertex weights to be disallowed so that
we have

t3 = t4 = t7 = t8 = u1 = u2 = u7 = u8 = 0, (30)

v3 = v4 = v5 = v6 = w1 = w2 = w5 = w6 = 0. (31)

We can use the free-fermion conditions for each independent
set of vertex weights to set the ground state to be given only in
terms of the weights v7, w8, t5, and u6 as discussed above. As
shown in Appendix B, the free -energy is given simply by the
expression

−βfMa = 1
8 ln[(t1u3v2w4 + t2u4v1w3 + t5u6v7w8

+ t6u5v8w7)2 − 2u3u4w3w4(t1t2v1v2 − t5t6v7v8)].

(32)

Upon expanding, the argument of the logarithm contains only
positive terms, so there is no physical phase transition point
for this model. We can understand this as follows. All of
the possible flat-foldable crease-reversal defects correspond
to the reversal of all creases around only the diamond faces
of the lattice. Since two diamond faces never share a mutual
crease, all of the defects occur independently of all others; there
is no interaction among the defects. Therefore, a decimation
procedure could be performed for each diamond face and the
resulting model would be in a frozen state.

If we rewrite the free energy with defect fugacities as

t5 = u6 = v7 = w8 = 1, (33)

t6 = u5 = v8 = w7 = y2, (34)

t1 = t2 = u3 = u4 = v1 = v2 = w3 = w4 = y, (35)

we have the very simple expression

−βfMa = 1
2 ln(1 + y4). (36)

This agrees with our earlier interpretation of the face-flip
defects in Barreto’s Mars as a noninteracting lattice gas of
diamond faces. A noninteracting lattice gas with fugacity z on
a lattice of size N will have a partition function give by

Z =1+N z +
(N

2

)
z2 + · · ·+

(N
N

)
zN=(1+ z)N , (37)

with a free energy given by

−βf = ln(1 + z). (38)

The defect free energy of Barreto’s Mars now follows, since
each diamond in Barreto’s Mars requires four y creases z = y4

and there are N /2 diamond faces in the lattice.

D. Kite CP

For the kite two-vertex unit we use the vertex weight
notation shown in Fig. 9. At each vertex, the pattern of the
angles causes four vertex weights to be disallowed, so we have

v3 = v4 = v5 = v6 = w1 = w2 = w7 = w8 = 0. (39)

We can use the free-fermion conditions for each independent
set of vertex weights to set the ground state to be given only in
terms of the weights v8 and w6, as discussed above.

We give the free energy as a specialization of the four-
unit column staggered odd eight-vertex free-fermion model
in Appendix B, but this is unnecessary. It can be shown by
considering the possible valid neighbors of each vertex weight
that a given vertex weight must always be repeated on the
lower-right diagonal of the weight. For a toroidal boundary
condition lattice, the model is effectively a one-dimensional
model. We can therefore solve it directly by a standard transfer
matrix procedure and without needing to impose the free-
fermion condition on the weights.

A given unit of two vertices can only have the following
eight valid vertex weight combinations

v1w3, v1w5, v8w4, v8w6, v2w4, v2w6, v7w3, v7w5.

(40)

We then define the following asymmetric one-dimensional
transfer matrix, with rows and columns indexed by the order
shown in (40):

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1w3 0 0 v8w6 v2w6 v7w3 0
v1w3 0 0 v8w6 v2w6 v7w3 0
v1w3 0 0 v8w6 v2w6 v7w3 0
v1w3 0 0 v8w6 v2w6 v7w3 0

0 v1w5 v8w4 0 v2w4 0 0 v7w5

0 v1w5 v8w4 0 v2w4 0 0 v7w5

0 v1w5 v8w4 0 v2w4 0 0 v7w5

0 v1w5 v8w4 0 v2w4 0 0 v7w5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)
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The matrix T has rank 2 with nonzero eigenvalues

λ± = 1
2 [v1w3 + v2w4 + v7w5 + v8w6 ±

√
D], (42)

where

D = (v1w3 − v2w4)2 + (v7w5 − v8w6)2

+ 2(v1w3 + v2w4)(v7w5 + v8w6)

+ 4v1v2w5w6 + 4v7v8w3w4. (43)

The partition of the one-dimensional model with N sites and
periodic boundary conditions is given by

ZH = Tr(T N ), (44)

so it can be written as

ZH = λN
+ + λN

− . (45)

In the case of the two-dimensional lattice with toroidal bound-
ary conditions, since each row is repeated above and below,
only shifted diagonally, the partition function of the lattice
with M rows is found by taking the Mth power of each of
the weights which appear in the one-dimensional partition
function. The quantity D cannot vanish for positive weights,
so the kite model, like Barreto’s Mars, does not have a phase
transition.

E. Simple square CP

The simple square CP admits all eight of the odd eight-
vertex weights at each vertex of the lattice. We look at the
square lattice with homogeneous vertex weights, with units of
two vertices as either column or bipartite staggered and with
units of four vertices, column staggered. We use the vertex
weight notation convention of Fig. 8.

In Appendix B we list the free energies of each of these cases
except for the units of the four-vertex case, whose expression is
quite large but can be found, alternatively, via a mapping of [53]
from the even to the odd staggered eight-vertex model of the
expressions found in [55]. All of the previous results except
for the one-dimensional derivation of the kite model can be
found by suitable specializations of this general free energy,
although in some cases the specialization is not immediately
obvious; see [54] and [55] for examples of specializations
for the staggered even eight-vertex model. Therefore, the free
energies of the staggered odd eight-vertex models with units
of two vertices can be found more simply from the derivations
in [53].

The phase transition points of the homogeneous lattice are
given by the following conditions [52,53]:

(v1v2 + v3v4) = (v5v6 + v7v8) = 0, (46)

(v1v3 + v2v4) = 0, (47)

(v5v7 + v6v8) = 0, (48)

(v1v2 + v3v4)(v5v6 + v7v8) + (v1v3 − v2v4)2

+ (v5v7 − v6v8)2 = 0. (49)

From the phase transition point conditions, we can see that at
least two of the weights must vanish for a phase transition to

occur, for example, v1 = v2 = 0. The phase transitions will in
general be logarithmic of second order, except in special cases
where it can have an exponent of 1

2 [62].
The column staggered lattice with units of two vertices has

phase transitions at the points [53]

(v5 + v8)(w6 + w7) ± (v6 − v7)(w5 − w8) = 0, (50)

(v6 + v7)(w5 + w8) ± (v5 − v8)(w6 − w7) = 0 (51)

and the bipartite staggered lattice with units of two vertices has
phase transitions at the points [53]

− v1w3 − v2w4 + v3w1 + v4w2 + v5w7 + v6w8

+ v7w5 + v8w6 = 0,

v1w3 + v2w4 − v3w1 − v4w2 + v5w7 + v6w8

+ v7w5 + v8w6 = 0,

v1w3 + v2w4 + v3w1 + v4w2 − v5w7 − v6w8

+ v7w5 + v8w6 = 0,

v1w3 + v2w4 + v3w1 + v4w2 + v5w7 + v6w8

− v7w5 − v8w6 = 0. (52)

There can be up to three phase transitions of these models,
which are in general logarithmic of second order, although
in special cases there is only one phase transition which has
exponent 1

2 [54].
The expressions for the phase transition points of the

general four-unit column staggered model are given by the
expressions

−�1 + �2 + �3 + �4 = 0, (53)

�1 − �2 + �3 + �4 = 0, (54)

�1 + �2 − �3 + �4 = 0, (55)

�1 + �2 + �3 − �4 = 0, (56)

where

�1 = t1u1v2w2 + t2u2v1w1 + t3u3v4w4 + t4u4v3w3

+ t5u7v7w5 + t6u8v8w6 + t7u5v5w7 + t8u6v6w8,

(57)
�2 = t1u1v3w3 + t2u2v4w4 + t3u3v1w1 + t4u4v2w2

+ t5u7v5w7 + t6u8v6w8 + t7u5v7w5 + t8u6v8w6,

(58)
�3 = t1u3v2w4 + t2v1u4w3 + t3u1v4w2 + t4u2v3w1

+ t5u6v7w8 + t6u5v8w7 + t7u8v5w6 + t8u7v6w5,

(59)
�4 = t1u3v3w1 + t2u4v4w2 + t3u1v1w3 + t4u2v2w4

+ t5u6v5w6 + t6u5v6w5 + t7u8v7w8 + t8u7v8w7.

(60)

There can be up to five phase transitions in this model, which
are generically logarithmic of second order, although in special
cases it can have two first-order phase transitions or up to three
second-order phase transitions with exponent 1

2 [55].
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We can also consider the general free energy as a function only of crease assignment weights, instead of vertex weights using
the transformation (7), and setting all vertex weights to unity vi = wi = ti = ui = 1. The phase transition points are then given
by the conditions

± (fmhm − fvhv )(bmdm − bvdv )(amcmevgv + avcvemgm) − (fmhm + fvhv )(bmdm + bvdv )(amcvevgm + avcmemgv )

± (fmhv − fvhm)(bmdv − bvdm)(amcmemgm + avcvevgv ) − (fmhv + fvhm)(bmdv + bvdm)(amcvemgv + avcmevgm) = 0,

(61)

± (fmhm − fvhv )(bmdm − bvdv )(amcvevgm + avcmemgv ) + (fmhm + fvhv )(bmdm + bvdv )(amcmevgv + avcvemgm)

± (fmhv − fvhm)(bmdv − bvdm)(amcvemgv + avcmevgm) + (fmhv + fvhm)(bmdv + bvdm)(amcmemgm + avcvevgv ) = 0.

(62)

A sufficient but not necessary condition for a phase transition in
these expressions is that at least four crease assignment weights
are identically zero, for example, fm = hv = bm = dm = 0 or
am = cv = em = gm = 0. We see that in general for the square
lattice, phase transitions do not occur unless the symmetry of
the lattice is broken.

V. FLAT-FOLDABLE THREE-COLORING MODELS

The Miura-ori and trapezoid CPs can be put into a 3-to-1
correspondence with the three-coloring model on the square
lattice, as shown in Fig. 10. This was pointed out in [50]
for the Miura-ori CP, although it only considers the total
enumeration of colorings and not the generalization to Bax-
ter’s three-coloring problem with three-color fugacity weights
zi [56].

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

FIG. 10. Shown on the left are conventions for changing the face
color across creases for the Miura-ori (top) and trapezoid (bottom)
CPs. Following the arrow direction, a valley crease increases the face
color number while mountain creases decrease the face color number
(mod3). Shown on the right is one of the three possible color ground
states the Miura-ori (top) and trapezoid (bottom) CPs map to. The
other two possible ground states are found by globally increasing or
decreasing all face color values by one (mod3).

Baxter’s three-coloring problem on the square lattice is an
exactly solved model where each face of the square lattice is
allowed one of three colors with the condition that no two
neighbors can share the same color. This model has a 3-to-1
mapping from the even six-vertex model [63] and can also be
mapped to Baxter’s symmetric even eight-vertex model [57]. It
is always possible to map a staggered odd eight-vertex model
to a staggered even eight-vertex model and then specialize to
a homogeneous even eight-vertex model [53], for example,

v1 = w4 = ω
(e)
5 , v2 = w3 = ω

(e)
6 ,

v3 = w2 = ω
(e)
8 , v4 = w1 = ω

(e)
7 ,

v5 = w7 = ω
(e)
1 , v6 = w8 = ω

(e)
2 ,

v7 = w5 = ω
(e)
4 , v8 = w6 = ω

(e)
3 , (63)

where the weights ω
(e)
i refer to the even eight-vertex model

weights; see Fig. 15 for the ω
(e)
i notation convention. When

this mapping is specialized to the even six-vertex model so that
ω

(e)
7 = ω

(e)
8 = 0, we see that both the Miura-ori and trapezoid

models have a mapping to the even six-vertex model and
hence to the three-coloring problem. Alternatively, we show
a direct mapping to the three-coloring problem in Fig. 10,
giving a convention for how to change face colors across crease
assignments [50]. We represent the colors by numbers 0, 1, 2
and we increase the color across a valley crease or decrease
the color across a mountain crease in the direction of the
arrows (mod3). The mapping is unique except for the initial
color chosen for a face somewhere in the lattice. In Fig. 10
we show color ground states for the Miura-ori and trapezoid
CPs, although two other different ground states are possible by
globally increasing or decreasing all face colors by 1 (mod3).

Mapping from the three-coloring problem to the vertex
models, we see that it is necessary to consider that the vertex
weights come in three colors wi,j . We then have the following
mapping from color fugacity variables zk to colored six-vertex
weights wi,j [57]:

(
ω

(e)
1,j

)4 = (
ω

(e)
2,j

)4 = (zj )2zj−1zj+1,(
ω

(e)
3,j

)4 = zj (zj−1)2zj+1,(
ω

(e)
5,j )2 = (

ω
(e)
6,j−1

)2 = (zj )2(zj−1)2,(
ω

(e)
4,j

)4 = zj zj−1(zj+1)2.

(64)
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The three-coloring problem can also be mapped to Baxter’s
symmetric even eight-vertex model [57],

(a2 − c2)(b2 − d2) = 0, (a2 − b2)(c2 − d2) = 0,

(b2c2 − a2d2)(−a2 + b2 + c2 − d2) = (z0z1z2)2,

(a2 + b2 + c2 + d2) = z0z1 + z1z2 + z2z0,

(65)

where

ω
(e)
1 = ω

(e)
2 = a, ω

(e)
3 = ω

(e)
4 = b,

ω
(e)
5 = ω

(e)
6 = c, ω

(e)
7 = ω

(e)
8 = d.

(66)

Baxter has given the free energy of the three-coloring problem
in the form [56]

−βf = 1

3
ln(z0z1z2) + 1

2
ln

[
64(1 − 9t2)2/3

27(1 + t )3(1 − 3t )

]
, (67)

where t is found from

(1 − 3t2)3

1 − 9t2
= (z0z1 + z1z2 + z2z0)3

27(z0z1z2)2
(68)

and where t is the root in the range 0 � t < 1
3 .

The face colors have a convenient origami interpretation:
They give the local ordering of the layers of each face with
respect to its neighbors. As discussed above, determining the
global layer ordering of an origami CP, even one which is
locally flat foldable, is an NP-hard problem. We see from this
interpretation of the three-coloring problem, however, how
to map the global flat-foldability problem to a suitable SOS
model. We require, rather than three colors around a vertex,
a partial ordering of the layers around each vertex and we
then sum over those configurations which admit a global layer
ordering, counting multiplicity. Further consideration of this
type of SOS model is beyond the scope of this work.

We can see from Fig. 10 that the ground states for these
models have equal numbers of two colors, so we assume
without loss of generality that z0 = z1 = 1. It can easily be
seen, then, that individual face-flip defects have the effect
of introducing the third color into the lattice, although in
combination they can add extra one or zero colors, for example,
in the middle case of the middle row of Fig. 6. The third color
faces can be considered as particles with fugacity z = z2, so
that we can treat the model as a kind of hard square lattice
gas, as discussed by Baxter [56]. In this case, we can write the
pressure P as

P = 1

3
ln(z) + 1

2
ln

[
64(1 − 9t2)2/3

27(1 + t )3(1 − 3t )

]
, (69)

where

t =
⎧⎨
⎩

√
2z[1+8z−√

1+12z+36z2+32z3]
6z

, z < 1
√

z(z−1)
3z

, z > 1.

(70)

The three-coloring problem has a second-order phase tran-
sition with critical exponent 1

2 when z0 = z1 = z2, or in our
defect case z = 1 [56,63,64]. We see from the colored six-
vertex mapping in (64) that this corresponds to

ω
(e)
1 = ω

(e)
2 = ω

(e)
3 = ω

(e)
4 = ω

(e)
5 = ω

(e)
6 (71)
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FIG. 11. Shown on the left is the convention for changing the face
color across creases for the kite CP. Following the arrow direction, a
valley crease increases the face color number while mountain creases
decrease the face color number (mod3). Shown on the right is one
of the three possible color ground states the kite model maps to. The
other two possible ground states are found by globally increasing or
decreasing all face color values by one (mod3).

and correspondingly

v1 = v2 = v5 = v6 = v7 = v8 = w3 = w4

= w5 = w6 = w7 = w8, (72)

which falls outside of the free-fermion constraint for the Miura-
ori and trapezoid models. Therefore, we have found an extra
phase transition point of these models, which characterizes
the state where all vertex weights have equal strength or,
equivalently, all local layer orderings are equally probable.
Above we have found phase transition points dependent on
vertex weights, that is, the arrangement of creases around a
vertex, as well as dependent on the crease assignments. We
now also have found a phase transition dependent on the local
layering of neighboring faces.

We show in Fig. 11 a mapping from the kite CP to the
three-coloring problem, but since the only defects in this model
are lines which traverse the entire lattice, the mapping is not
surjective. It can be seen from this mapping that each line of
defects causes a shift by one (mod3) of all faces below the
defect line. This agrees with the demonstration above that the
kite model is effectively a one-dimensional model. We note
that the ground-state configuration of Barreto’s Mars has a
mapping to the three-coloring problem but its defects do not.

VI. LATTICE GAS OF DEFECTS

We would like to understand analytically the density of
defects in these models, since the material properties of the
origami tiling, such as their elastic modulus, depend on the
density of defects [3]. As such, we can reinterpret these models
as lattice gas models where the particles are the defects. If
we choose our defect particles to be the creases themselves,
we will use the variable y, in agreement with the analysis in
Sec. IV. At low densities, each defect requires four creases, so
it is reasonable to choose as another defect variable z = y1/4,
which at low densities also corresponds to face-flip defects. For
Barreto’s Mars, this correspondence at all densities is one to
one, since the defects never interact with each other. However,
for the other models, the correspondence is only approximate
except at low densities, as can be seen in Fig. 6 and discussed
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in Sec. II. For Miura-ori and trapezoid CPs, these face-flip
defects behave similarly to the hard-square lattice gas, since
at low densities they cannot be adjacent to each other and at
high densities they form a checkerboard pattern [65–68]. For
intermediate densities though, four particles can enclose a fifth
one, as seen in Fig. 6, so the two models are not equal. The
three-coloring defect color can also be considered as a hard
particle with properties similar but not equal to hard squares
[56], so we will use the notation z for both y1/4 and the fugacity
of the third color z2 in the three-coloring problem.

As a lattice gas of defects, the partition function can then
be reinterpreted as a grand canonical partition function Z , and
in the thermodynamic limit, we have the pressure P ,

βP = lim
N→∞

ln(Z1/N ). (73)

Once we rewrite the pressure in terms of the defect fugacity
variables y or z, we can then find exact expressions for the
density ρ of defects in the lattice, that is, the average number
of defects n per site,

ρ = 〈n〉
N = βz

∂P

∂z
. (74)

The isothermal compressibility kT is further given by

kT = 1

ρ

∂ρ

∂P
= βz

ρ2

∂ρ

∂z
. (75)

The exact free-energy results above can all be used to calculate
the defect density and other thermodynamic quantities exactly.
We only make use here of the symmetric defect model results
from Sec. IV.

The crease defect density for Miura-ori and trapezoid CPs
are equal and are given by

ρMi,Tr(y) = 1 − 2

π

(
1
4 − y4

)
(

1
4 + y4

)K

(
y2(

1
4 + y4

)
)

(76)

= 4y4 − 4y8 + 16y12 − 36y16 + · · · , (77)

ρMi,Tr(z) = ρMi,Tr(y1/4)

4
(78)

= z − z2 + 4z3 − 9z4 + · · · , (79)

where K is the complete elliptic integral of the first kind and
the crease density of Barreto’s Mars defects are given as

ρMa(y) = 2y4

(1 + y4)
, ρMa(z) = z

2(1 + z)
. (80)

The layer order defect densities for Miura-ori and trapezoid
CPs are large algebraic expressions but can be found through a
straightforward application of (74) to the expressions (69) and
(70) in Sec. V.

Miura-ori and trapezoid CPs have a phase transition point
at yc = √

2/2 and zc = 1
4 , where ρ(yc ) = 1 and ρ(zc ) = 1

4 ,
respectively; Barreto’s Mars does not have a phase transition. In
all cases the densities approach ρ → 2 as y → ∞ and ρ → 1

2
as z → ∞. We plot in Fig. 12 the densities of each case.

For low crease-reversal defect fugacities of the Miura-ori
and trapezoid models, the density behaves as a quartic up to
near the phase transition point, as can be seen in the plot in
Fig. 12(b) where the density is almost linear in z up to zc.

FIG. 12. Comparison of the crease-reversal defect densities as a
function of (a) y and (b) z for Miura-ori and trapezoid CPs (solid
black line) and Barreto’s Mars CPs (blue dashed line). Also shown in
(b) is the Miura-ori and trapezoid layer defect density as a function of
layer defects z (dotted red line). Phase transition points are indicated
by circles.

The Barreto’s Mars defect density is always smaller than the
corresponding density for the Miura-ori and trapezoid models
for the same fugacity variable, showing that it is more stable
against defects. Conversely, the defect density of the Miura-ori
and trapezoid models is more easily tunable. As a function of
layer ordering defects, the Miura-ori and trapezoid’s density
does not agree with their density as a function of crease defects
except only at very low and very high densities and otherwise
has a more complex behavior, with a phase transition at zc = 1
where ρ(zc ) = 1/3. Since the phase transition in the three-
coloring problem happens for a larger value of z than the phase
transition as a function of creases, we see that the long-range
crease order disappears before the long-range layering order in
the lattice. Therefore, to the extent that mechanical properties
depend on the layering order versus the crease order, these
origami CPs are more stable and tunable for a larger range of
defect densities.

We note also that at defect saturation y, z → ∞, the CP is
totally crease reversed and folds in an orderly fashion like the
ground-state folding, though reversed. Therefore, the points
ρ(y) = 1 and ρ(z) = 1

4 seem to represent states of maximal
folding disorder and we see that the crease defect phase
transition points at yc = √

2/2 and zc = 1
4 exactly correspond

to these points. The layer defect phase transition point at zc =
1, interestingly, is at a higher defect density, corresponding to
2/3 of the defect saturation.

The isothermal compressibility kT is proportional to the
derivative of the density

dρMi,Tr (y)

dy
= 4

πy

[
K

(
y2(

1
4 + y4

)
)

− E

(
y2(

1
4 + y4

)
)]

,

(81)

dρMi,Tr(z)

dz
= 1

4πz

[
K

(
z1/2(

1
4 + z

)
)

− E

(
z1/2(

1
4 + z

)
)]

, (82)

where E is the complete elliptic integral of the second kind,
and

dρMa(y)

dy
= 8y3

(1 + y4)2
,

dρMa(z)

dy
= 1

2(1 + z)2
. (83)
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FIG. 13. Comparison of the derivative of the crease-reversal
defect density as a function of (a) y and (b) z for Miura-ori and
trapezoid CPs (solid black line) and Barreto’s Mars CPs (blue dashed
line). Also shown in (b) is the Miura-ori and trapezoid layer defect
density derivative as a function of layer defects z (dotted red line).

Again, expressions for Miura-ori and trapezoid CPs as a
function of the layer defect fugacity z can be found in a
straightforward fashion. We plot in Fig. 13 the derivative of the
densities as a function of both crease-reversal defect fugacities
y and z and layer defect fugacity z. In Fig. 14 we further
compute the equation of state of these models.

VII. SIMPLE SQUARE CP WITH MAEKAWA DEFECTS

As a final investigation we can consider breaking
Maekawa’s theorem at each vertex of the homogeneous simple
square CP; the model will no longer be locally flat foldable.
This opens up eight more possible vertex configurations,
the even eight-vertex weights ω

(e)
i shown in Fig. 15, for

a total of 16 weights in the model. This is the 16-vertex
model [53].

There are few exactly solvable known cases of the general
16-vertex model. The only known cases with all nonzero
weights are Baxter’s symmetric even eight-vertex model
[59,63,64], the even and odd free-fermion models mapped
via the weak-graph expansion transformation [52,53,59], and
Deguchi’s model [69]. Of these, the only solvable case with

all positive weights is the 16-vertex representation of the even
free-fermion eight-vertex model [59], which has weights in the
symmetric form

ω
(e)
2i = ω

(e)
2i−1, v2i = v2i−1, i = 1, . . . , 8 (84)

ω
(e)
1 ω

(e)
3 + ω

(e)
5 ω

(e)
7 = v1v3 + v5v7, (85)

where this second condition is the 16-vertex model’s represen-
tation of the free-fermion condition. This model has a mapping
via a weak-graph transformation [53] to the even free-fermion
eight-vertex model with weights w̃i , given by

w̃1 = 1
2

(
ω

(e)
1 + ω

(e)
3 + ω

(e)
5 + ω

(e)
7 + v1 + v3 + v5 + v7

)
,

(86)

w̃2 = 1
2

(
ω

(e)
1 + ω

(e)
3 + ω

(e)
5 + ω

(e)
7 − v1 − v3 − v5 − v7

)
,

(87)

w̃3 = 1
2

(
ω

(e)
1 + ω

(e)
3 − ω

(e)
5 − ω

(e)
7 − v1 − v3 + v5 + v7

)
,

(88)

w̃4 = 1
2

(
ω

(e)
1 + ω

(e)
3 − ω

(e)
5 − ω

(e)
7 + v1 + v3 − v5 − v7

)
,

(89)

w̃5 = 1
2

(
ω

(e)
1 − ω

(e)
3 + ω

(e)
5 − ω

(e)
7 − v1 + v3 + v5 − v7

)
,

(90)

w̃6 = 1
2

(
ω

(e)
1 − ω

(e)
3 + ω

(e)
5 − ω

(e)
7 + v1 − v3 − v5 + v7

)
,

(91)

w̃7 = 1
2

(
ω

(e)
1 − ω

(e)
3 − ω

(e)
5 + ω

(e)
7 − v1 + v3 − v5 + v7

)
,

(92)

w̃8 = 1
2

(
ω

(e)
1 − ω

(e)
3 − ω

(e)
5 + ω

(e)
7 + v1 − v3 + v5 − v7

)
.

(93)

The exact solution of the even free-fermion eight-vertex model
has the free energy [62]

−βf = 1

8π2

∫ 2π

0

∫ 2π

0
dθ1dθ2 ln(A + 2B cos(θ1)

+ 2C cos(θ2) + 2D cos(θ1 − θ2) + 2E cos(θ1 + θ2),
(94)

FIG. 14. Equations of state as a function of crease-reversal densities (a) ρ(y ) and (b) ρ(z) for Miura-ori and trapezoid CPs (solid black
line) and Barreto’s Mars CPs (blue dashed line). Also shown in (b) is the Miura-ori and trapezoid equation of state as a function of layer defect
density ρ(z) (dotted red line). Phase transition points are indicated by circles.
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FIG. 15. Even eight-vertex model weights, with bond states shown in terms of line type, dashed or solid.

where

A = w̃2
1 + w̃2

2 + w̃2
3 + w̃2

4, (95)

B = w̃1w̃3 − w̃2w̃4, (96)

C = w̃1w̃4 − w̃2w̃3, (97)

D = w̃3w̃4 − w̃7w̃8 = w̃5w̃6 − w̃1w̃2, (98)

E = w̃3w̃4 − w̃5w̃6 = w̃7w̃8 − w̃1w̃2, (99)

which has phase transitions at the points given by each of
the following conditions, expressed in terms of the 16-vertex
model weights ω

(e)
i and vi :

ω
(e)
1 + ω

(e)
3 = ω

(e)
5 + ω

(e)
7 + v1 + v3 + v5 + v7, (100)

ω
(e)
5 + ω

(e)
7 = ω

(e)
1 + ω

(e)
3 + v1 + v3 + v5 + v7, (101)

v1 + v3 = ω
(e)
1 + ω

(e)
3 + ω

(e)
5 + ω

(e)
7 + v5 + v7, (102)

v5 + v7 = ω
(e)
1 + ω

(e)
3 + ω

(e)
5 + ω

(e)
7 + v1 + v3. (103)

These phase transitions are second-order logarithmic phase
transitions in general, except in certain subcases where they
are second order with critical exponent 1

2 [62].
If we choose all Maekawa defects to have equal weights so

that ω
(e)
i = ω, then the free-fermion condition becomes

2ω2 = v1v3 + v5v7. (104)

The free-fermion condition (104) shows that this solvable case
requires Maekawa defects to have Boltzmann weights ω

(e)
i of

the same order as the flat-foldable weights vi , which may not
be a suitable assumption for certain applications, and it is not a
simple extension of the flat-foldable model considered earlier
in Sec. IV E. Its phase transitions occur at

v1 + v3 = 4ω + v5 + v7, (105)

v5 + v7 = 4ω + v1 + v3. (106)

VIII. DISCUSSION

A. Rigid foldability

In this paper we have concentrated on local flat-foldability
properties of origami CPs. A further interest in the study of
origami CPs is the determination of their rigid foldability
[7,19,23,70–73], where as long as the hinges move, the faces
are not require to bend for the lattice to fold. The Miura-ori,
Barreto’s Mars, trapezoid, and kite CPs are rigidly foldable
in their ground states [23]. It can be proven that the defects
break rigid foldability, using known relations between crease
assignments and fold angles for degree 4 vertices [74]. In

practice, this may not present an issue. Indeed, an origami
triangular lattice tessellation in [13] with 198 creases of size
333 μm was able to self-fold correctly while requiring face
bending to achieve the final state. Therefore, it would be
beneficial to also model the face bending properties of these
models [12]. Using a triangular or union-jack lattice from
which to construct staggered free-fermion odd eight-vertex
models, it would be possible to model some face bending
properties. In [3] the authors showed how defects create subtle
diagonal creases along neighboring faces, which a triangular
lattice can easily capture. Otherwise, the two states of the
diagonal bond can represent a concave or a convex face
curvature. Using a union-jack lattice, each face of the origami
CP is now covered with four creases which meet at a vertex.
The two states of each bond in the face can then be used to
model various degrees of curvature of the face.

B. Free-fermion models

Most of the exactly solvable models used in this work
were free-fermion models. The homogeneous free-fermion
model, used to model the homogeneous simple square CP
as well as the Maekawa defects case, is equivalent to the
union-jack and checkerboard lattice Ising models, and its phase
transitions can all be mapped to the triangular lattice Ising
model [53]. It is unknown whether staggered free-fermion
eight-vertex models also have similar interpretations in terms
of Ising models on larger or modified lattices. In principle, the
correlation functions of all free-fermion models can be studied
in a straightforward manner by generalizing the methods in
[75], but as far as we are aware this has not yet been carried
out for any of the cases of interest in this work.

C. Finite lattice results

We have focused in this work on the thermodynamic limit,
since it is only in this limit that phase transitions arise and
can be analyzed. However, finite lattice partition functions
are of interest in any experimental implementation of these
origami CPs. Free-fermion model partition functions can be
solved exactly on the finite lattice, in particular on the finite
torus, using the methods in [60,61]. This may be of interest
in practical applications, since toroidal boundary conditions
become a better approximation to free boundary conditions
as the size of the lattice increases. In fact, for large enough
lattice sizes the thermodynamic limit results may be a very
good approximation of the properties of finite free boundary
origami lattices.

D. Random crumpling

Various previous studies have considered random crum-
plings on lattices (see [45–47] for reviews), but they have
generally neglected to distinguish between mountain and
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valley folds and did not incorporate Maekawa’s theorem at each
vertex; they also did not use exactly solvable models. It would
be interesting to seek an exact solution of these problems.
In order to model random lattice crumpling problems, three-
state bond variables are necessary, one for the absence of a
crease and two for mountain and valley creases, and it is
necessary to disallow sudden corner bends of creases. Also,
higher degree vertices are preferable, since they can model
more crease angles in the lattice. Three-state vertex models,
such as the 19-vertex Izergin-Korepin model [76], are well
known, although the only known exactly solvable models are
for the square lattice, and their symmetries do not allow the
exclusion of corner bends of creases, which locally break
Kawasaki’s theorem and hence are not locally flat foldable,
without destroying the integrability of the model.

IX. CONCLUSION

We have made extensive use of exactly solvable models in
order to study phase transition points of origami CP models. We
have found phase transitions which depend on the arrangement
of crease assignments around a vertex, on individual crease as-
signments, as well as on the local layer ordering of neighboring
faces in the lattice. We also have found a phase transition in
the case of breaking Maekawa’s theorem at each vertex, so the
model is no longer locally flat foldable.

Using our exactly solvable models, we have interpreted the
flat-foldable crease-reversal and local layering order defects in
terms of a lattice gas, which allowed us to find exact analytic
expressions for their density as a function of the defect fugacity
variables. This has allowed us to characterize how stable
different CPs are against flat-foldable defects or, conversely,
how tunable the origami CP is for the setting of the defect
density. Miura-ori and trapezoid CPs have the same defect
density dependence which is less stable, and therefore more
tunable, than Barreto’s Mars CP.

We have found that Miura-ori and trapezoid CPs have
phase transition points which determine either the loss of
long-range crease order in the lattice or else the loss of long-
range layer ordering in the lattice. Since the phase transition
point depending on layer ordering is at a greater fugacity
location compared to crease order, we see that any mechanical
properties depending on layering order has a broader range
of tunability compared to mechanical properties depending
on crease ordering in the lattice. Barreto’s Mars CP does not
have a crease order phase transition point, and though it is
more stable against defects, defects can continue to be added
until saturation without destroying the long-range crease order
properties of the CP. The simple square CP has a crease order
phase transition point as long as the vertex weights or edge
crease weights are sufficiently anisotropic; furthermore, its free
energy, and hence its phase transition point, can be written
purely in terms of crease edge variables. Barreto’s Mars and
the simple square CPs do not feature a three-coloring problem
interpretation and so we were not able to analyze the layer
ordering properties of these models. The kite CP is effectively a
one-dimensional model whose defects are lines which traverse
the entire lattice, making it extremely stable; consequently, it
does not have a phase transition point. It remains to confirm
experimentally the conclusions of this paper.

ACKNOWLEDGMENTS

We gratefully acknowledge numerous helpful conversations
with Arthur A. Evans, as well as with Nathan Clisby and Iwan
Jensen, during the preparation of this work. We also thank
Robert J. Lang for a careful reading of the manuscript and
helpful suggestions. We would like to thank the Australian
Research Council for supporting this work under the Discovery
Project scheme (Project No. DP140101110).

APPENDIX A: DIMER MODEL SOLUTION OF THE
FOUR-STAGGERED ODD EIGHT-VERTEX MODEL

In this appendix we outline the dimer solution method
of [60,61], generalizing the construction in [53] to construct
the free energy of the odd eight-vertex four-unit staggered
free-fermion models. We consider a square lattice with toroidal
boundary conditions of size M × N and use the dimer con-
struction of [53], shown in Fig. 16. Each of the vertex weights
can be written in terms of the lattice bond weights zi , defined
in Fig. 17.

From Figs. 16 and 17, the odd eight-vertex weights vi have
the following expressions in terms of lattice bond weights zi :

v1 = z1z8 + z3z7, v2 = z6, v3 = z2z7 + z4z8, v4 = z5,

(A1)

v5 = z1z6 + z4z5, v6 = z8, v7 = z2z5 + z3z6, v8 = z7.

(A2)

It can be seen from these relations that the vertex weights vi

follow the free-fermion condition

v1v2 + v3v4 = v5v6 + v7v8. (A3)

One of the weights zi is superfluous and can be made arbitrary.
We here take z2 = 1. Solving for the bond weights zi in terms
of the vertex weights vi , we have

z1 = v4v8 + v5v6 − v3v4

v2v6
= v1v2 + v4v8 − v7v8

v2v6
, (A4)

z2 = 1, z3 = v7 − v4

v2
, z4 = v3 − v8

v6
, (A5)

z5 = v4, z6 = v2, z7 = v8, z8 = v6. (A6)

For the four-unit staggered odd eight-vertex free-fermion
model, we define independent vertex weights on each of
the four cluster units. We show in Fig. 17 the numbering
convention for each cluster. From the first to the fourth we use
the vertex weight notations vi , wi , ti , and ui , respectively. Each
independent set of vertex weights satisfies the free-fermion
constraint.

We use a straightforward column staggering of the four
units on the lattice. The model’s partition function is given
by a Pfaffian whose square is given by the determinant of the
matrix

M4U = T ⊗ IN ⊗ IM + A1 ⊗ H T
N ⊗ IM + A2 ⊗ HN ⊗ IM

+ B1 ⊗ IN ⊗ H T
M + B2 ⊗ IN ⊗ HM, (A7)
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FIG. 16. Correspondence between the odd eight-vertex model weights and dimer coverings.

where the In are n × n identity matrices, where the n × n

matrix Hn is defined as

Hn =

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠, (A8)

where the 20 × 20 matrix T is defined as

T =

⎛
⎜⎝

T1 0 0 0
0 T2 0 0
0 0 T3 0
0 0 0 T4

⎞
⎟⎠, (A9)

FIG. 17. (a) Vertex and bond weight definitions around a cluster for the odd eight-vertex model. (b) Orientation graph convention on a
column staggered lattice with four dimer cluster units for the odd eight-vertex model. The numbering convention for each of the four cluster
units is shown.
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where Ti are defined as

Ti =

⎛
⎜⎜⎜⎝

Ui Di Li Ri Ci

Ui 0 ∗ z1 z3 z5

Di ∗ 0 z4 z2 −z6

Li −z1 −z4 0 ∗ −z7

Ri −z3 −z2 ∗ 0 z8

Ci −z5 z6 z7 −z8 0

⎞
⎟⎟⎟⎠, (A10)

with the appropriate independent unit vertex weights substi-
tuted for the bond weights zi in each Ti and where the notation
∗ represents 0 except for the particular T elements

(T )U1,D3 = −(T )D3,U1 = 1, (A11)

(T )R1,L2 = −(T )L2,R1 = 1, (A12)

(T )U2,D4 = −(T )D4,U2 = −1, (A13)

(T )R3,L4 = −(T )L4,R3 = 1 (A14)

and where the nonzero elements of the 20 × 20 matrices A1,
A2, B1, and B2 are given by

(A1)D1,U3 = −(A1)D2,U4 = −1, (A15)

(A2)U3,D1 = −(A2)U4,D2 = 1, (A16)

(B1)L1,R2 = (B1)L3,R4 = −1, (A17)

(B2)R2,L1 = (B2)R4,L3 = 1. (A18)

The matrices Hn have eigenvalues e2πik/n, and since the Hn

are unitary,

HnH
T
n = 1, (A19)

so the eigenvalues of H T
n are e−2πik/n. The determinant of

M4U is then given by the double product of the determinant

D(θ1, θ2),

Det(M4U) =
∏
θ1

∏
θ2

D(θ1, θ2), (A20)

where D(θ1, θ2) is the determinant of the matrix T with
additional entries coming from the diagonalization of the
matrices A1, A2, B1, and B2,

(T )D1,U3 = −(T )D2,U4 = −e−iθ1 , (A21)

(T )U3,D1 = −(T )U4,D2 = eiθ1 , (A22)

(T )L1,R2 = (T )L3,R4 = −e−iθ2 , (A23)

(T )R2,L1 = (T )R4,L3 = eiθ2 , (A24)

where

θ1 = 2πn

N
, θ2 = 2πm

M
(A25)

with n = 1, . . . , N and m = 1, . . . , M .
The partition function Z4U is the square root of the deter-

minant of M4U.1 In the thermodynamic limit, the free energy
f4U is given by

f4U = − 1

4β
lim

M→∞
lim

N→∞
1

MN
ln Z4U (A26)

= − 1

4β
lim

M→∞
lim

N→∞
1

MN
ln Det(M4U)1/2, (A27)

where the leading factor of 4 is due to the fact that there are
four dimer clusters in each unit.

The logarithm of the products in the determinant can be
expanded and written as integrals in the thermodynamic limit,
giving the free-energy expression

−βf4U = 1

32π2

∫ 2π

0

∫ 2π

0
ln[D(θ1, θ2)]dθ1dθ2. (A28)

The expression for the free energy is of the form

−βf4U = 1

32π2

∫ 2π

0

∫ 2π

0
ln[A + 2B cos(θ1) + 2C cos(θ2) + 2D cos(θ1 + θ2) + 2E cos(θ1 − θ2) + 2F cos(2θ1)

+ 2G cos(2θ2) + 2H cos(2θ1 + θ2) + 2I cos(2θ1 − θ2) + 2J cos(θ1 + 2θ2) + 2K cos(θ1 − 2θ2)

+ 2L cos(2θ1 + 2θ2) + 2M cos(2θ1 − 2θ2)]dθ1dθ2, (A29)

where the A, . . . ,M are large polynomials in the four sets of
vertex weights ti , ui , vi , and wi .

Four phase transition conditions can be found by setting
θ1, θ2 = 0, π in D(θ1, θ2), as explained in [77,78]. A phase
transition occurs when at least one of the four conditions is
satisfied, and each of the conditions can define multiple phase
transition points [54,55,79,80]. For the homogeneous lattice,
that is, the unstaggered lattice, it can be proven that all of the

1On the finite lattice, for toroidal boundary conditions, four Pfaffians
are actually needed, but they become degenerate in the thermody-
namic limit [60,61].

physical phase transitions can be found from such conditions
[77,78]. For the staggered lattices we are considering, it
appears that no such proof is known however.

APPENDIX B: FREE ENERGIES

Here we collect particular free-energy expressions. The
expressions for the general four-unit staggered model are very
large and we omit them. Using the mappings between the
staggered even eight-vertex models and staggered odd eight-
vertex models of [53], the expressions in [55] can alternatively
be used for the free energy of this most general case.
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1. Miura free energy

The expression for the Miura free energy is of the form (A29), where after simplifications of the general terms using the
free-fermion conditions for the four sets of vertex weights we have the following expressions for each term:

A = u2
3v

2
2w

2
4 t

2
1 + t2

2 u2
4w

2
3v

2
1 + 2t1t2v1v2u3u4w3w4 + 2t5t6u5u6v7v8w7w8 + 2t7t8u7u8v5v6w5w6 + (

v2
5w

2
6 + v2

7w
2
8

)
× (

t2
5 u2

6 + t2
7 u2

8

) + (
v2

5w
2
7 + v2

7w
2
5

)(
t2
5 u2

7 + t2
7 u2

5

) + (
v2

6w
2
5 + v2

8w
2
7

)(
t2
6 u2

5 + t2
8 u2

7

) + (
v2

6w
2
8 + v2

8w
2
6

)(
t2
6 u2

8 + t2
8 u2

6

)
+ 2(t7u5v5w7 + t8u6v6w8)(t5u7v7w5 + t6u8v8w6) + 2(t7u8v7w8 + t8u7v8w7)(t5u6v5w6 + t6u5v6w5)

+ 2(t1u3v2w4 + t2u4v1w3)(t5u6v7w8 + t6u5v8w7 + t7u8v5w6 + t8u7v6w5), (B1)

B = (−v2
5w6w7 + v2

7w5w8
)(

t2
5 u6u7 − t2

7 u5u8
) + (−v5v8w

2
6 + v6v7w

2
8

)(
t5t8u

2
6 − t6t7u

2
8

)
+ (−v5v8w

2
7 + v6v7w

2
5

)(
t5t8u

2
7 − t6t7u

2
5

) + (
v2

6w5w8 − v2
8w6w7

)(−t2
6 u5u8 + t2

8 u6u7
)

+ (t1u3v2w4 + t2u4v1w3)(t5u7v7w5 + t6u8v8w6 + t7u5v5w7 + t8u6v6w8)

+ (u5u7w5w7 + u6u8w6w8)(t5t6v7v8 + t7t8v5v6) + (u5u6w7w8 + u7u8w5w6)(t5t7v5v7 + t6t8v6v8) (B2)

C = (−u2
6w6w8 + u2

7w5w7
)(−t2

5 v5v7 + t2
8 v6v8

) + (
u2

5w5w7 − u2
8w6w8

)(
t2
6 v6v8 − t2

7 v5v7
)

− u5u7
[
t5t7

(
v2

5w
2
7 + v2

7w
2
5

) − t6t8
(
v2

6w
2
5 + v2

8w
2
7

)] + u6u8
[
t5t7

(
v2

5w
2
6 + v2

7w
2
8

) − t6t8
(
v2

6w
2
8 + v2

8w
2
6

)]
+ (v5v8w6w7 + v6v7w5w8)(t5t6u5u6 + t7t8u7u8) + (v5v6w5w6 + v7v8w7w8)(t5t8u6u7 + t6t7u5u8)

+ (t1u3v2w4 + t2u4v1w3)(t5u6v5w6 + t6u5v6w5 + t7u8v7w8 + t8u7v8w7), (B3)

D = [
t7

(−v2
5w6w7 + v2

7w5w8
)
t5 − t6t8

(
v2

6w5w8 − v2
8w6w7

)]
u7u8 − [

u8
(
t2
6 v6v8 − t2

7 v5v7
)
u5 + u6u7

(
t2
5 v5v7 − t2

8 v6v8
)]

w7w8

× [−u7
(
v5v8w

2
7 − v6v7w

2
5

)
u5 + u6u8

(
v5v8w

2
6 − v6v7w

2
8

)]
t6t5 − [

t8
(−u2

6w6w8 + u2
7w5w7

)
t5

− t6t7
(
u2

5w5w7 − u2
8w6w8

)]
v6v5 − (t5u7v5w7 + t6u8v6w8)(t1u3v2w4 + t2u4v1w3), (B4)

E = [
u8

(
t2
6 v6v8 − t2

7 v5v7
)
u5 + u6u7

(
t2
5 v5v7 − t2

8 v6v8
)]

w5w6 − [
t7

(−v2
5w6w7 + v2

7w5w8
)
t5 − t6t8

(
v2

6w5w8 − v2
8w6w7

)]
u5u6

× [
t8

( − u2
6w6w8 + u2

7w5w7
)
t5 − t6t7

(
u2

5w5w7 − u2
8w6w8

)]
v7v8 − [−u7

(
v5v8w

2
7 − v6v7w

2
5

)
u5

+ u6u8
(
v5v8w

2
6 − v6v7w

2
8

)]
t8t7 − (t1u3v2w4 + t2u4v1w3)(t7u5v7w5 + t8u6v8w6), (B5)

F = t5t6u7u8v7v8w5w6 + t7t8u5u6v5v6w7w8 + (v5v8w6w7 + v6v7w5w8)(t5t8u6u7 + t6t7u5u8), (B6)

G = t5t6u5u6v5v6w5w6 + t7t8u7u8v7v8w7w8 + (u5u7w5w7 + u6u8w6w8)(t5t7v5v7 + t6t8v6v8), (B7)

H = −w7w8v5v6(t5t8u6u7 + t6t7u5u8) − u7u8t5t6(v5v8w6w7 + v6v7w5w8), (B8)

I = −w5w6v7v8(t5t8u6u7 + t6t7u5u8) − u5u6t7t8(v5v8w6w7 + v6v7w5w8), (B9)

J = −u7u8w7w8(t5t7v5v7 + t6t8v6v8) − v5v6t5t6(u5u7w5w7 + u6u8w6w8), (B10)

K = −u5u6w5w6(t5t7v5v7 + t6t8v6v8) − v7v8t7t8(u5u7w5w7 + u6u8w6w8), (B11)

L = t5t6u7u8v5v6w7w8, (B12)

M = t7t8u5u6v7v8w5w6. (B13)

2. Trapezoid free energy

The trapezoid free energy can be specialized from the bipartite staggered odd eight-vertex model [53] rather than the four-unit
staggered odd eight-vertex model, and it is of the form

−βfT = 1

16π2

∫ 2π

0

∫ 2π

0
ln[A + 2B cos(θ1) + 2C cos(θ2) + 2D cos(θ1 + θ2) + 2G cos(2θ2) + 2J cos(θ1 + 2θ2)

+ 2L cos(2θ1 + 2θ2)]dθ1dθ2, (B14)
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where

A = v2
3w

2
1 + 2v3v4w1w2 + v2

4w
2
2 + v2

5w
2
7

+ v2
6w

2
8 + v2

7w
2
5 + v2

8w
2
6, (B15)

B = −v5v7w5w7 − v6v8w6w8, (B16)

C = (v3w1 + v4w2)(v7w5 + v8w6), (B17)

D = −(v3w1 + v4w2)(v5w7 + v6w8), (B18)

G = v7v8w6w5, (B19)

J = −v5v8w6w7 − v6v7w5w8, (B20)

L = v5v6w7w8. (B21)

3. Barreto’s Mars free energy

The Barreto’s Mars free energy can be specialized from the
full four-unit column staggered odd eight-vertex model. There
is a vast simplification so that only the A term in the integrand
is nonzero, giving the simple free-energy expression

−βfMa = 1
8 ln[(t1u3v2w4 + t2u4v1w3 + t5u6v7w8

+ t6u5v8w7)2 − 2u3u4w3w4(t1t2v1v2 − t5t6v7v8)].

(B22)

Upon expanding the argument of the logarithm, we see that all
of the terms are positive.

4. Kite free energy

The kite model free energy can be specialized from the
trapezoid free energy, giving

−βfK = 1

16π2

∫ 2π

0

∫ 2π

0
ln[A + 2C cos(θ2)

+ 2G cos(2θ2)]dθ1dθ2, (B23)

where

A = v2
1w

2
3 + v2

2w
2
4 + v2

7w
2
5 + 2v7v8w5w6 + v2

8w
2
6, (B24)

C = (v7w5 + v8w6)(v1w3 + v2w4), (B25)

G = w3w4v7v8. (B26)

We give in the main text an alternative derivation which does
not require the free-fermion condition on each set of vertex
weights.

5. Simple square free energies

The free energy of the general four-unit column staggered
odd eight-vertex free-fermion model is quite large. As noted
above, using mappings in [53], the expressions of [55] can
alternatively be used to find the free energy of this most general
case.

The four-unit free energy can be specialized to the column and bipartite staggered odd eight-vertex models with units of two
vertices, but we instead use the derivation of [53]. The respective free energies are given as [53]

−βfSC = 1

16π2

∫ 2π

0

∫ 2π

0
ln[A + 2B cos(θ1) + 2C cos(θ2) + 2D cos(θ1 − θ2) + 2E cos(θ1 + θ2)

+ 2G cos(2θ2) + 2H cos(θ1 − 2θ2) + 2I cos(θ1 + 2θ2)]dθ1dθ2, (B27)

A = (
v2

5 + v2
8

)(
w2

6 + w2
7

) + (
v2

6 + v2
7

)(
w2

5 + w2
8

) + 2v1v3w1w3 + 2v2v4w2w4 + 2v5v8w6w7 + 2v6v7w5w8, (B28)

B = v1v2w3w4 + v3v4w1w2 − v5v6w7w8 − v7v8w5w6 − (v5v7 − v6v8)(w5w7 − w6w8), (B29)

C = w5w8
(
v2

6 + v2
7

) − w6w7
(
v2

5 + v2
8

) − v5v8
(
w2

6 + w2
7

) + v6v7
(
w2

5 + w2
8

)
, (B30)

D = (v3v4 − v5v6)(w5w7 − w6w8) − (v5v7 − v6v8)(w3w4 − w5w6), (B31)

E = (v1v2 − v5v6)(w5w7 − w6w8) − (v5v7 − v6v8)(w1w2 − w5w6), (B32)

G = v8v5w7w6 + v7v6w8w5 − v3v1w3w1 − v4v2w4w2, (B33)

H = (v1v2 − v7v8)(w1w2 − w7w8), (B34)

I = (v1v2 − v5v6)(w1w2 − w5w6) (B35)

and

−βfSB = 1

16π2

∫ 2π

0

∫ 2π

0
ln[A + 2B cos(θ1) + 2C cos(θ2) + 2D cos(θ1 − θ2) + 2E cos(θ1 + θ2)

+ 2F cos(2θ1) + 2G cos(2θ2)]dθ1dθ2, (B36)

A = w2
8v

2
6 + w2

7v
2
5 + w2

5v
2
7 + w2

6v
2
8 + w2

3v
2
1 + w2

4v
2
2 + w2

1v
2
3 + w2

2v
2
4 + 2(v8v7 + v5v6)(w8w7 + w5w6), (B37)
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B = (v1w3 + v2w4)(v7w5 + v8w6) − (v3w1 + v4w2)(v5w7 + v6w8), (B38)

C = (v3w1 + v4w2)(v7w5 + v8w6) − (v1w3 + v2w4)(v5w7 + v6w8), (B39)

D = v1v4w2w3 + v2v3w1w4 − v6v8w6w8 − v5v7w5w7, (B40)

E = v1v3w1w3 + v2v4w2w4 − v6v7w5w8 − v5v8w6w7, (B41)

F = −(v1v2 − v5v6)(w1w2 − w5w6), (B42)

G = −(v1v2 − v7v8)(w1w2 − w7w8). (B43)

Both of these free energies can be specialized to the homogeneous lattice, giving [52,53]

−βfS = 1

8π2

∫ 2π

0

∫ 2π

0
dθ1dθ2 ln[A + 2B cos(θ1) + 2C cos(θ2) + 2D cos(θ1 − θ2) + 2E cos(θ1 + θ2)], (B44)

A = (v1v2 + v3v4)(v5v6 + v7v8) + v2
1v

2
4 + v2

2v
2
3 + v2

5v
2
7 + v2

6v
2
8, (B45)

B = 2v5v6v7v8 − v2
1v

2
4 − v2

2v
2
3, (B46)

C = 2v1v2v3v4 − v2
5v

2
7 − v2

6v
2
8, (B47)

D = (v1v2 − v7v8)(v5v6 − v3v4), (B48)

E = (v1v2 − v5v6)(v7v8 − v3v4). (B49)
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