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Meandering particle bunches and a link between averages of time series of particle counts
and higher-order moments
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Time-averaged spatially resolved measurements are used in many fields of physics to determine spatial
distributions of a physical quantity. Although one could think that time averaging suppresses all information
on time variation, there are some situations in which a link can be established between time averaging and
time variability. In this paper, we consider a simple system composed of a particle bunch that moves in space
without deforming, and a detector placed at a point in space. The detector continuously counts the number of
particles in its neighborhood. Upon sampling, the detector signal gives rise to a time series with, in general,
nonvanishing variance. Time series obtained by placing the detector at different locations can then be used to
obtain a time-average distribution of the number of particles by computing the time average of all the time
series. We show that there is a close relationship between this average profile and higher-order statistics of the
time series, including the variance and skewness. We also show a simple procedure by which individual time
series can be used to determine features of the shape of the particle bunch.
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I. INTRODUCTION

Spatially resolved measurements of time-varying quan-
tities are ubiquitous in all fields of physics, from astro-
physics [1,2] to plasmas [3], condensed matter [4], and atomic
physics [5]. These types of measurements are often carried out
using time-averaging methods which can be a consequence
of the detection process itself [6], or a requirement in cases
when the signal of interest is weak and, consequently, the
signal-to-noise ratio (SNR) is low. Then, techniques such
as lock-in amplification [7] must be used to raise the SNR,
effectively yielding a time-averaged result.

The ability to determine time variations is nevertheless
essential in a wide range of studies and applications. For
example, real-time measurements of light distortion are rou-
tinely used to correct blurring in astronomical observations
from Earth-bound telescopes [8]. Measurements of wander-
ing of a laser beam that propagates through the atmosphere
can be used to determine the strength of atmospheric turbu-
lence [9,10]. In tokamaks, the location of mm-wave power
deposition depends on wave scattering by intermittent struc-
tures in the turbulent plasma [11,12]. In all these cases, time
variations associated to time-changing spatial distributions
reveal information that, naively, one could think would be
washed away by time averaging.

In this paper, we show that this need not be the case. We
develop a model to study time variations of detection signals
in the particular case where the spatial distribution moves
as a whole within a bounded region and without significant
deformation (see Fig. 1). The idealized system is composed
of a finite-sized bunch of particles and a detector placed in a
particular location that counts the number of particles in its
neighborhood. Due to the motion of the bunch, the detector
measures a time-changing signal, which upon sampling, con-
stitutes a time series [13] of the number of detected particles

(TSN). We call the average of the TSN the average particle
count (AC). If we then place the detector in other locations, we
obtain a collection of TSNs with location-varying properties,
among them the AC. The AC as a function of all possible
locations of the detector is referred to as average profile (AP),
and is a proxy for general time-averaged spatially resolved
measurements.

We show that the AP is closely related to TSN statistics of
higher order at each possible detector location. In other words,
knowledge of a time-averaged spatially resolved quantity can
be used to obtain local time-variability information. This
is different from recent studies [14,15], where a theoretical
framework is developed to obtain APs from more general
models of individual bunches (including time decay) but no

general relationship of the AP to higher-order TSN statistics
is established. It is also different from the model developed by
Taylor in his studies of turbulence in a streaming fluid [16],
where it is shown that the frequency spectrum of fluctuation
measurements at a fixed point in space can be related to the
correlation of measurements performed simultaneously at two
different locations joined by a streamline. Key to this result
is the assumption that there are turbulent structures that are
frozen into the flow [17] so that they move at the fixed stream
velocity. In our model, we have a single particle bunch whose
motion cannot be characterized by a constant velocity.

Conversely, we show that spatial information can be ob-
tained from local time-variability information. Indeed, under
certain conditions, features of the shape of the particle bunch
can be obtained from the moments of individual TSNs.

Our study starts in one dimension (1D). We develop a
model for the simple 1D idealized system (Sec. II A) and use
it to obtain some important relations as well as expressions
for the statistics of TSNs, such as the variance and skewness.
We then apply the theory to a particular case that yields exact
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FIG. 1. One-dimensional case. A rigid particle bunch, of density
n(x ), moves along x such that at time tk its center is at x = χk

(dashed lines). A detector located at x = X counts the number of
particles within a small region of effective length Leff (gray shade),
leading to a TSN with K samples. The mean of the TSN, 〈N (X)〉,
converges to the AC at X for sufficiently large K .

solutions and use them to compare predictions with results
from numerically generated time series. In Sec. III A, we find
a way to compute TSN statistics only from knowledge of a
few global parameters and more general APs. We establish
conditions of validity for these results and study the effect
of relaxing some of the hypotheses. We then study how the
results change for different bunch shapes and, conversely,
explore a procedure that allows determining shape features
from single-TSN statistics.

In Sec. IV, we extend the formalism to 2D. We demonstrate
the applicability of the theory to a realistic situation using as
an example the propagation of fast ions in a turbulent plasma
in the TORPEX [18–20] device (Sec. V). After discussing
the results, we conclude with a summary and an outlook on
possible future studies (Sec. VI).

Although we deal with particle counts and particle density
profiles, the formalism developed in the paper can be straight-
forwardly used to model any system where a quantity is
measured and we expect a rigid motion of the corresponding
spatial density profile. The results may therefore find use in
different fields of physics and engineering.

II. 1D MODEL

A. Description of model

Figure 1 shows a description of our 1D model. A bunch of
N � 1 particles with density profile n(x) moves rigidly along
x. Without loss of generality, we assume that

∫
x n(x) dx = 0

[this integral, as well as all other integrals in this work, are
understood to be performed over all space, i.e., the interval
(−∞, ∞)]. The evolution of the system is observed at K

instants t1 < t2 < · · · < tk < · · · < tK and, for the kth sam-
ple, the center of the bunch is located at x = χk . The overall
particle density distribution at time tk is then n(x − χk ) and∫

n(x − χk ) dx = N for all k.
A detector is placed at a location x = X to instantaneously

count the number of particles near it. The probability that a
particle at x will be counted, given that the detector is at X, is
given by the response efficiency L(x,X), which is assumed to
be a function only of location relative to X. Then L(x,X) =
L(x − X), and 0 � L(x − X) � 1, with zero equivalent to no
response and 1 to full efficiency. We assume that

∫
L(x) dx ≡

Leff is finite. The number of particles counted by the detector

in sample k (time tk) is then

Nk (X) =
∫

n(x − χk ) L(x − X) dx

=
∫

n(X + u − χk ) L(u) du, (1)

where u is just a dummy integration variable. The collection
{Nk (X)} ≡ {N1(X), N2(X), . . . , NK (X)} of all K samples
of Nk (X) is a TSN at detector location X.

From Eq. (1) one can see that
∫

Nk (x) dx = Leff N for all
k. We define the normalized detected bunch profile nL(x) as

nL(x) ≡ 1

Leff N

∫
n(x + u) L(u) du, (2)

such that
∫

nL(x) dx = 1 and Nk (X) = N Leff nL(X − χk ),
and use this definition to find the average number of particles
detected at X, 〈N (X)〉. This is accomplished by computing
the mean of all samples of {Nk (X)}:

〈N (X)〉 ≡ 1

K

K∑
k=1

Nk (X)

= Leff N

K

K∑
k=1

nL(X − χk ). (3)

When regarded as a function of all x, 〈N (x)〉 is the AP in 1D.
In Eq. (3) one can consider {χk} as a collection of K

instances of a random variable χ that follows some probability
density function (PDF) f (x). Given that [21–23]

1

K

K∑
k=1

nL(X − χk )
K→∞= E[nL(X − χ )],

where E[χ ] is the expected value of χ and, therefore [24],
E[nL(X − χ )] = ∫

nL(X − x) f (x) dx, we obtain

〈N (X)〉 K→∞= Leff N

∫
nL(X − x) f (x) dx. (4)

The PDF f (x) can then be understood as the number of
times that the center of the bunch visits the interval (x, x +
dx), compared to all other locations, when sufficiently many
observations are considered. As such, f (x) encapsulates the
information of the motion of the bunch.

We now define the function

m(X) ≡ 〈N (X)〉
Leff N

, (5)

noticing that m(X) � 0 for all detector locations X and that∫
m(x) dx = 1. Then, in the limit of very large K , Eq. (4) can

be written as

m(X) =
∫

nL(X − x) f (x) dx. (6)

Equation (6) is an interesting relation, as it links a temporal
average of the local quantity m(X) to a spatial average of
nL(x) [through f (x)]. It will be shown, in Secs. II B and III A,
that Eq. (6) provides a way to determine f from knowledge of
nL and the AP.
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One can find expressions for other moments of the TSN in
a similar way. For any real q � 1,

〈Nq (X)〉 = 1

K

K∑
k=1

[Nk (X)]q

K→∞= (Leff N )q
∫

[nL(X − x)]qf (x) dx.

The PDF f (x) is the same as in Eq. (6), as it is related to the
same random variable χ . Then, defining

mq (X) ≡ 〈Nq (X)〉
(Leff N )q

, (7)

we have

mq (X) =
∫

[nL(X − x)]qf (x) dx. (8)

Notice that m1(x) ≡ m(x). Notice also that the integral of
mq (x) can in general be different from 1 for q > 1. The choice
q = 2 allows one to find an expression for the variance of
{Nk (X)} which, for large K , needs no bias correction [21]:

Var[{Nk (X)}] = 〈N2(X)〉 − 〈N (X)〉2

= (Leff N )2(m2(X) − (m(X))2). (9)

The cases q = 3 and q = 2 allow us to obtain an expression
for the skewness [25] S of {Nk (X)}, again assuming large K:

S[{Nk (X)}] = m3(X) − 3 m(X) m2(X) + 2(m(X))3

(m2(X) − (m(X))2)3/2
. (10)

A similar procedure can be followed to find expressions relat-
ing other statistics of the TSN to the functions mq in the limit
of large K . As shown in Sec. III A, it is sometimes possible
to find approximations of the mq and compute the right-hand
side (RHS) of Eqs. (4), (9), and (10) using known parameters
to find predictions of the TSN statistics on the left-hand side
(LHS). Under certain conditions, it is even possible to find the
mq in closed form. The latter case is explored in Sec. II B.

We can also find the covariance [21,24] of TSNs obtained
simultaneously using two identical detectors at locations X1

and X2:

Cov[{Nk (X1)}, {Nk (X2)}]

= 1

K

K∑
k=1

(Nk (X1) − 〈N (X1)〉)(Nk (X2) − 〈N (X2)〉)

= (Leff N )2

K

(
K∑

k=1

nL(X1 − χk ) nL(X2 − χk )

)

−〈N (X1)〉〈N (X2)〉.
We then get, for large K ,

Cov[{Nk (X1)}, {Nk (X2)}]
(Leff N )2

=
∫

nL(X1 − x) nL(X2 − x) f (x) dx − m(X1) m(X2).

(11)

B. Results using Gaussian profiles

The formalism developed in Sec. II A can be applied to a
situation in which exact analytical solutions can be obtained.
We consider a particle bunch with a Gaussian-shaped density
profile of width wn:

n(x) = N√
2π w2

n

e
− x2

2 w2
n .

Then
∫

x n(x) dx = 0 and
∫

n(x) dx = N as required in
Sec. II A. Next, we assume that the detector has a Gaussian-
shaped response of width wL and peak efficiency (equal to 1)
at x = 0:

L(x) = e
− x2

2 w2
L .

We choose wL = Leff/
√

2π so that
∫

L(x) dx = Leff.
Defining the following notation for the Gaussian (normal-

ized) function,

G(x; c, w2) ≡ 1√
2π w2

e
− (x−c)2

2 w2 , (12)

we can write n(x)/N = G(x; 0, w2
n) and L(x)/Leff =

G(x; 0, w2
L). Replacing these expressions in Eq. (2) we obtain

a Gaussian nL(x):

nL(x) =
∫

G
(
x + u; 0, w2

n

)
G

(
u; 0, w2

L

)
du

= G
(
x; 0, w2

n + w2
L

)
.

The width of nL(x) is wnL =
√

w2
n + w2

L =√
w2

n + L2
eff/(2π ). As one would expect, the detector widens

the observed bunch profile. At this point, it is worthwhile
stressing that nL is not a PDF as it is not associated with any
random variable on its own. It is rather just a Gaussian-shaped
function.

We assume now that the AP [i.e., 〈N (x)〉 in all x] has been
determined, possibly from experiments, to also be Gaussian
shaped with width wm and mean location cm. From Eq. (5),

〈N (X)〉 = Leff N m(X), (13)

so m(X) = G(X; cm, w2
m). According to Eq. (6) we must then

have

G
(
X; cm, w2

m

) =
∫

G
(
X − x; 0, w2

nL

)
f (x) dx.

This equation is satisfied with f (x) = G(x; cm, w2
m −

w2
nL ). Since f (x) is a PDF, this result shows that the χk are in-

stances of a Normal random variable with mean μf = cm and
standard deviation σf =

√
w2

m − w2
nL , which is well defined

since the width of the average profile cannot be smaller than
the width of the bunch profile. This procedure exemplifies
how, as discussed in Sec. II A, knowledge of nL and the AP
can be used to determine f .

The preceding result is, in fact, very convenient as we can
now replace nL and f in Eq. (8) and, after some algebra (see
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FIG. 2. Comparison of simulated values of TSN statistics (cir-
cles) to predictions (lines) of the mean (a), standard deviation (b),
and skewness (c) at different detector locations X. We use cm = 0,
wm = 1 [apparent from the width of the Gaussian profile in (a)],
wn = 0.7, and wL = 0.2. Notice the large range of values of the
skewness, which includes negative numbers close to X = 0.

Appendix), express the mq in terms of m as

mq (X) =
√√√√ sq

(
2π w2

m

)sq−1

q
(
2π w2

nL

)q−1 (m(X))sq , (14)

where we have defined

sq ≡
(

1 − w2
nL

w2
m

(
1 − 1

q

))−1

. (15)

From Eqs. (9) and (14), the TSN variance satisfies

Var[{Nk (X)}]
(Leff N )2

=

√√√√ s2
(
2π w2

m

)s2−1

4π w2
nL

(m(X))s2 − (m(X))2.

(16)

From Eq. (10), an analytic expression for the skewness can be
obtained in a similar way.

For given parameters N, wm, wn, and wL, we can predict
the values of the time-series statistics on the LHS of Eqs. (13)
and (16) from the expressions on the RHS. Figure 2 shows
an example of predictions compared to numerical results ob-
tained with a simulation in MATLAB [26]. This simple code
generates time series {Nk (X)} with 105 samples using Eq. (3),
the definitions of n(x), L(x), and 〈N (x)〉 in this section,
and random numbers χk distributed f (x). It then computes
the mean, standard deviation, and skewness of {Nk (X)} for
different detector locations X. Figure 3 shows a comparison of
predictions and numerical results for a wide range of detected
bunch widths wnL. The good agreement in all cases shows that
the formalism developed in Sec. II A can accurately describe
statistical features of the TSNs.

Equation (11) and the Gaussian-shaped n(x), L(x), and
m(X) also allow us to find an analytic expression for the

FIG. 3. Using wm = 1, we compute the variance and the skew-
ness of numerically generated TSNs {Nk (X)} for different values of
wnL . (a) Simulated standard deviation plotted against the simulated
mean (circles). Both the standard deviation and the mean have been
normalized by Leff N . This makes it simple to compare the results
against predictions (lines) and highlights the fact that TSN moments
can be determined at a particular detector location X from knowledge
of 〈N (X)〉 and Leff N . (b) Skewness versus normalized mean. No
normalization is performed for the skewness as its value is not
affected by rescalings of the Nk (X).

covariance with two identical detectors at locations X1 and
X2:

Cov[{Nk (X1)}, {Nk (X2)}]
(Leff N )2

= −m(X1) m(X2)

+

√√√√ s2
(
2π w2

m

)s2−1

4π w2
nL

[
m

(
X1+X2

2

)]s2

e
− (X1−X2 )2

4 w2
nL . (17)

FIG. 4. Numerically generated covariance (circles) of the time
series at two locations X1 and X2. The different colors correspond to
different values of X1 as shown in the legend. We use here cm = 0,
wm = 1, and wnL = 0.5. The predicted covariances (lines) precisely
follow the numerical results.
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Figure 4 shows results of numerical simulations of the covari-
ance that corroborate the predictions obtained with the model.

C. Effect of independent (uncorrelated) noise

Real detector systems are subject to noise [6,27]. Assum-
ing noise to be additive and independent (in the statistical
sense) of the actual signal, we model the noisy particle-
number samples as being affected by independent instances
ηk (X) of the random variable η(X), with mean μη(X), vari-
ance σ 2

η (X), and skewness γη(X):

Nk (X) ≡ Nk (X) + ηk (X). (18)

Notice that we allow for noise to change with the detector
location X. The noisy detected time series is {Nk (X)}. Then

〈N (X)〉 = 〈N (X)〉 + μη(X)

= (Leff N )m(X) + μη(X). (19)

Statistical independence of the noise allows one to drop
terms in summations that involve products of the Nk (X) and
ηk (X), leading to the following expressions for the variance,

Var[{Nk (X)}] = Var[{Nk (X)}] + σ 2
η (X)

= (Leff N )2(m2(X) − (m(X))2) + σ 2
η (X),

(20)

and the skewness,

S[{Nk (X)}](Var[{Nk (X)}])3/2

= 1

K

K∑
k=1

((Nk (X) − 〈N (X)〉) + (ηk (X) − μη(X)))3

= S[{Nk (X)}](Var[{Nk (X)}])3/2 + γη(X) σ 3
η (X).

Equation (10) allows us to write the skewness in terms of the
mq :

S[{Nk (X)}]

=
m3(X) − 3 m(X) m2(X) + 2(m(X))3 + γη (X) σ 3

η (X)

(Leff N )3(
m2(X) − (m(X))2 + σ 2

η (X)

(Leff N )2

)3/2 .

(21)

This last expression shows that noise can greatly affect the
value of skewness. Indeed, if σ 2

η (X) � Var[{Nk (X)}], then
S[{Nk (X)}] → γη(X), so the true skewness can be completely
obscured. An example of the effect of varying levels of noise
on the value of the variance and skewness is shown in Fig. 5.

The covariance of the noisy TSN at X1 and X2 is

Cov[{Nk (X1)}, {Nk (X2)}]
= Cov[{Nk (X1)}, {Nk (X2)}] + Cov[{ηk (X1)}, {ηk (X2)}],

(22)

where we have further assumed that noise is independent
of the signal irrespective of location. As one would expect,

FIG. 5. Normalized standard deviation (a) and skewness (b) of
the noisy TSN {Nk (X)}, plotted against the normalized mean, for
varying levels of noise (as indicated in the legend). We assume
Gaussian-shaped n(x ), L(x ), and 〈N (x )〉, as in Fig. 2, with param-
eters cm = 0, wm = 1, wn = 0.7, and wL = 0.2, and Gaussian noise
with μη, ση independent of the detector location X (clearly γη = 0).
These predictions are obtained from Eqs. (19), (20), and (21). Notice
that even small values of noise force the skewness to fall to zero in
regions of weak signal, i.e., where 〈N (X)〉 − μη(X) = 0.

the covariance is affected by noise that exhibits a correlation
between locations X1 and X2.

III. APPROXIMATIONS FOR MORE GENERAL 1D
AVERAGE PARTICLE COUNT PROFILES

A. Approximations

In Sec. II B we solved Eq. (6) for Gaussian m and nL. We
found a solution f of similar shape (a Normal PDF) and width
σ 2

f = w2
m − w2

nL = w2
m(1 − w2

nL/w2
m). If wnL < wm, this sug-

gests that the functional forms of f and m may differ only
by small corrections in wnL/wm. We now show that this is
indeed the case, even when m has a non-Gaussian (but anyway
integrable) profile.

For simplicity, we still assume nL(x) = G(x; 0, w2
nL ), al-

though other shapes can be explored in a similar way (see
Sec. III B). We perform an expansion of f (x) around the de-
tector location X such that f (x) ≈ f (X) + f ′(X) (x − X) +
(1/2) f ′′(X) (x − X)2 + O[(x − X)3] and, up until third or-
der (due to symmetry of nL),

m(X) =
∫

nL(X − x) f (x) dx ≈ f (X) + w2
nL

2
f ′′(X)

≈ f (X)
(
if w2

nL |f ′′(X)| � f (X)
)
. (23)

In this expression, one can think of |f ′′(x)| ∼ f (x)/L2
typ,

where Ltyp is some typical variation length of f (x). Then
f (x) ≈ m(x) if w2

nL/L2
typ � 1, in a way similar to the dis-

cussion of a Gaussian m above.
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FIG. 6. (a) Relative error between the predicted variance [RHS
in Eq. (9)] using approximations [i.e., using Eq. (25)] and using
exact expressions of mq [Eq. (14)], for the case with no noise and
Gaussian m(X). The error is computed as Erel(Var) = [Varappr(X) −
Varexact(X)]/Varexact(X) and analogously for the skewness. (b) Rel-
ative error between predicted skewness using approximations and
using exact expressions. Notice that these results are valid for any
wm > 0. Indeed, the expressions for the errors can be cast in a form
that only depends on wnL/wm and

√
2π wm m(X).

The functions mq can be computed in a similar way:

mq (X) ≈ f (X)
∫

[nL(x)]qdx + f ′′(X)

2

∫
x2[nL(x)]qdx

≈ f (X)
∫

[nL(x)]qdx
(
if w2

nL |f ′′(X)| � f (X)
)
,

(24)

where the last line follows from
∫

x2[nL(x)]qdx =
(w2

nL/q )
∫

[nL(x)]qdx for the Gaussian nL(x) with zero
mean and q � 1. Then, combining this result with Eq. (23),
we obtain

mq (X) ≈ m(X)
∫

[nL(x)]qdx

= 1√
q

(
nmax

L

)q−1
m(X) (25)

valid for w2
nL |m′′(X)| � m(X) and q � 1. In this expres-

sion nmax
L is the maximum of nL(x), i.e., nmax

L = nL(0) =
1/

√
2π w2

nL.
The mq (X) obtained in Eq. (25) can be replaced in Eqs. (9)

and (10) [or, in the noisy case, Eqs. (20) and (21)] to find
approximate values of variance and skewness of TSNs in the
case of small wnL/wm considered here. Figure 6 shows a com-
parison between predictions that use the exact expressions for
Gaussian m(X) in Secs. II B and II C, with predictions using
the approximations. The agreement is good to within 10%
in variance and 2% in skewness in all X for wnL/wm � 0.2.
Since these two statistics depend only on the value of m(X)

FIG. 7. Error in the covariance when using the approximation
[Eq. (26)] compared to the exact result [Eq. (17)] for Gaussian-
shaped m (cm = 0, wm = 1) and nL (wnL = 0.2). Each marker
represents one choice of X1, X2, where X1 = 0, 0.4, 1.2, 2,
or 3 and X2 ∈ [−5, 5]. To better compare values near zero
crossings, we use the symmetric absolute error Esae(Cov) =
2 |Covappr − Covexact|/(|Covappr| + |Covexact|) instead of the more
common relative error. An Esae � 0.1 = 10% is observed for all val-
ues of the approximate covariance Covappr except very close to zero,
where small denominators make the error estimation impractical.

and not explicitly on X [exemplified by the fact that Fig. 6
is plotted against m(X)], we expect other more general m(X)
profiles to show a similar behavior. Simulations may however
be required in non-Gaussian cases where higher accuracy is
desired.

Under the same conditions as in Eq. (25), the covariance
can be approximated by

Cov[{Nk (X1)}, {Nk (X2)}]
(Leff N )2

≈ −m(X1) m(X2)

+m

(
X1 + X2

2

)
G

(
X1 − X2; 0, 2 w2

nL

)
. (26)

Figure 7 shows expected errors in the covariance by compar-
ing results from Eq. (26) and Eq. (17) in the case wm = 1,
wnL = 0.2. The agreement is good to within 10% except
near zero covariance, where the computation of the error
is problematic due to small denominators. The agreement
becomes better for smaller values of wnL, as in the case of
the variance and skewness above.

B. Other bunch shapes

Equation (24) is valid for arbitrary nL and q �
1, provided

∫
x[nL(x)]qdx = 0 and

∫
x2[nL(x)]qdx �

w2
nL

∫
[nL(x)]qdx, where in this more general case w2

nL ≡∫
x2 nL(x) dx. Figure 8(a) shows some examples of nL that

fulfill these requirements.
If w2

nL|m′′(X)| � m(X), we then similarly have mq (X) ≈
m(X)

∫
[nL(x)]qdx. In this case, however, the value of the

integral
∫

[nL(x)]qdx will change for different choices of nL.
A direct computation shows that∫

[nL(x)]qdx = (
nmax

L

)q−1
b(q ), (27)
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FIG. 8. (a) Some possible shapes for nL that fulfill the require-
ments for the approximations in Sec. III A. All shapes are correctly
normalized to integrate to 1 and have wnL = 0.15. (b) Application of
Eq. (31) to numerically generated TSNs using the nL(x ) shown in
(a), f (x ) = G(x; 0, 1 − w2

nL ), and K = 105 gives the results shown
with circles [same color labeling as in (a)]. The detector location is
X = 0 in all cases. Gaussian noise is added with μη = 0 and ση =
0.2 × Nmax, and Nmax is determined from the known parameters (it
is not estimated from the TSNs). The agreement with the expressions
for b(q ) in Eq. (28) (dashed lines) allows one to distinguish shapes
based on information gathered from a single TSN.

where, remembering that q � 1,

b(q ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if nL is uniform,
1√
q

if nL is Gaussian,
2

q+1 if nL is triangular,
1
q

if nL is Laplacian [23].

(28)

The different shapes considered here are depicted in Fig. 8(a).
Equations (27) and (28) can be regarded as a link between

bunch shapes and the function b(q ). They are useful whenever
one wants to find approximate expressions for the variance
and skewness of TSNs in the case when the bunch is not
Gaussian shaped [see Eqs. (9), (10), (20), and (21)]. This link
also provides a way to explore the inverse problem, i.e., the
determination of features of bunches from TSNs.

Using the definitions of m(X) and the mq (X) in Eqs. (5)
and (7), together with Eq. (27), we can rewrite the relation
mq (X) ≈ m(X)

∫
[nL(x)]qdx as

〈Nq (X)〉
(Leff N )q

≈ 〈N (X)〉
Leff N

(
nmax

L

)q−1
b(q ). (29)

Upon noticing [see discussion after Eq. (2)] that Nmax ≡
Leff N nmax

L = max[{Nk (X)}], the maximum value of the time
series detected at X, Eq. (29) leads to

b(q ) ≈ 〈Nq (X)〉
(Nmax)q−1〈N (X)〉 . (30)

Here, of course, we assume that K is sufficiently large for
statistical (sample-size related) errors to be negligible.

From only knowledge of the TSN at the single detector
location X, Eq. (30) provides a way to determine b(q ) for
all q � 1. Since b(q ) only depends on integrals of nL [recall
Eq. (27)], comparison of an experimental b(q ) with plots of
Eq. (28) gives an idea of the compatibility of the experimental
bunch shape with any one of the four theoretical cases consid-
ered for nL.

In practice, though, there are two problems with the appli-
cation of Eq. (30). The first one is noise. As seen in Sec. II C,
noise may greatly affect the values of TSN statistics and must
therefore be taken into account. The second problem is the
estimation of Nmax. This can be a difficult task, especially in
detector locations with low 〈N (X)〉 as, then, it is expected
that the bunch visits be infrequent and few instances of the
maximum (if any at all) be observed in a finite amount of time.

Assuming anyway that Nmax can be determined with neg-
ligible error even in the presence of noise, we now consider
the case of the noisy TSN {Nk (X)} as in Eq. (18). We notice
that some TSN samples Nk (X) may be negative due to noise,
so we restrict the analysis to integer values of q � 1 to
avoid complications with fractional powers. Since noise is
statistically independent from the signal,

〈N q (X)〉 = 1

K

K∑
k=1

[Nk (X) + ηk (X)]q

=
q∑

j=0

(
q

j

)
〈Nj (X)〉〈ηq−j (X)〉,

where 〈ηq (X)〉 ≡ (1/K )
∑K

k=1 [ηk (X)]q . Keeping in mind
that 〈N (X)〉 = 〈N (X)〉 + 〈η(X)〉, we can use this expression
together with Eq. (30) to find

b(q ) +
q−1∑
j=1

(
q

j

) 〈ηq−j (X)〉
(Nmax)q−j

b(j )

= 1

(Nmax)q−1

〈N q (X)〉 − 〈ηq (X)〉
〈N (X)〉 − 〈η(X)〉 , (31)

valid for q � 2, and b(1) = 1. Thus, if we are able to de-
termine a time series {ηk (X)} of only the noise, we can use
Eq. (31) to solve for b(q ) in ascending order q = 1, 2, . . . , Q

to find b(2), b(3), . . . , b(Q) up to any integer Q � 2.
Figure 8(b) shows results of b(q ) obtained using Eq. (31)

from numerical simulations of noisy TSNs and different
choices of nL. The compatibility of the simulations with the
curves for the different shapes is an example of the practical
applicability of this procedure.

C. Bunch density profile variations

So far, it has been assumed that n(x) does not change over
time. We now study small variations of n(x).

We assume that the density profile n(x) depends on an
additional parameter λ which is related to its shape but does
not alter the mean. For example, if n(x) is Gaussian-like, then
λ could be the width. This is made explicit by renaming the
particle density n(x, λ) and having

∫
n(x, λ) dx = N for all

λ, i.e., the total number of particles in the bunch is the same
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independent of any changes in shape. Also, we require that∫
x n(x, λ) dx = 0.
We then allow λ to change over time, so that at time tk (kth

sample) it has the value λk . Nk (X) in Eq. (1) is redefined as

Nk (X) =
∫

n(X + u − χk, λk ) L(u) du

and Nk (X) = N Leff nL(X − χk, λk ). The mean particle num-
ber detected at X then becomes

〈N (X)〉 = Leff N

K

K∑
k=1

nL(X − χk, λk )

K→∞= Leff N

∫∫
nL(X − x, l) h(x, l) dx dl

in a similar way as argued in the derivation of Eq. (4). This
time, however, the χk and λk come from a joint PDF h(x, l)
which, in general, allows the motion of the bunch to be
correlated with changes in shape.

For what follows, however, we assume that mo-
tion and shape are statistically independent, so h(x, l) =
f (x) g(l), where f and g are PDFs of a single variable.
Then,

∫∫
nL(X − x, l) h(x, l) dx dl = ∫

[
∫

nL(X − x, l) g(l)
dl]f (x) dx. The function

nL(x) ≡
∫

nL(x, l) g(l) dl (32)

can be understood as an average profile in terms of shape.
Notice that

∫
nL(x) dx = 1 and

∫
x nL(x) dx = 0. With this

definition, we can write

m(X) ≡ 〈N (X)〉
Leff N

K→∞=
∫

nL(X − x) f (x) dx (33)

in a very similar way to Eqs. (4), (5), and (6), except that in
this case we use the average bunch profile [Eq. (32)].

In order to compute the mq , we make first the following
definition:

δn
j

L(x) ≡
∫

[nL(x, l) − nL(x)]j g(l) dl.

We observe that, for fixed x, δnj

L(x) is just the j th central mo-
ment of the random quantity nL(x, λ), where λ is distributed
g(l).

For any integer q � 1,

mq (X) =
∫

[nL(X − x)]qf (x) dx + �mq (X), (34)

where we have introduced

�mq (X)=
q∑

j=2

(
q

j

) ∫
δn

j

L(X − x) [nL(X − x)]q−j f (x) dx.

Notice that the summation does not include the case j = 1 as,
by definition, δn1

L(x) = 0.
The �mq can be seen as corrections to the mq due to ad-

ditional variability from bunch shape changes. It is in general
difficult to evaluate them explicitly for arbitrary g(l) and, in
most cases, we have to resort to simulations (see, for example,
Sec. V). However, there is a particular case that can be very
illuminating, specifically in the cases q = 2, 3 of importance
in our TSN studies.

For fixed x, we assume that nL(x, λ) is distributed Gamma.
This is a very general PDF for nonnegative random variables
that includes other common distributions as special cases [24].

If δn2
L(x) � [nL(x)]2, which corresponds to Gamma

distributions with shape parameter [24] α(x) = [nL(x)]2/

δn2
L(x) � 1, we obtain a value of �m2 and �m3 that is

small compared to the first term on the RHS of Eq. (34) for
q = 2, 3, respectively. We have, to order δn2

L(x)/[nL(x)]2,

�m2(X) =
∫

δn2
L(X − x) f (x) dx,

(35)

�m3(X) ≈ 3
∫

δn2
L(X − x) nL(X − x) f (x) dx.

As in Sec. III A, we focus on the case of a Gaussian nL

of width wnL. Using Eq. (33) and similar arguments as before
[see discussion leading to Eq. (23)], we have f (X) ≈ m(X)
for w2

nL
|m′′(X)| � m(X).

For this narrow Gaussian nL, the first term on the RHS of
Eq. (34) gives results similar to Eq. (25). Since α(x) > 1 for
all x, ∫

x2 δn2
L(x) dx =

∫
x2 [nL(x)]2

α(x)
dx

<

∫
x2 [nL(x)]2 dx = w2

nL
,

therefore narrow nL (i.e., small wnL) implies narrow δn2
L(x),

this time in terms of variation along x. This motivates
performing approximations of Eq. (35) similar to those of
Eq. (33). Collecting results, we get

m2(X) ≈
(

nL
max

√
2

+
∫

δn2
L(x) dx

)
m(X),

m3(X) ≈
((

nL
max )2

√
3

+ 3
∫

δn2
L(x) nL(x) dx

)
m(X),

where nL
max = (2π w2

nL
)
−1/2

is the maximum of nL(x).
These expressions may have conditions of validity that are

more stringent compared to Eq. (25), as the approximations
depend on the exact profile of bunch shape variances δn2

L(x).
Nevertheless, they show that, given α(x) � 1, m2(X) and
m3(X) are very nearly the expressions for no shape change,
provided one uses the average bunch profile nL(x).

The calculation of the covariance can also be shown to
involve only the average bunch profile in leading terms. How-
ever, establishing the order of magnitude of the corrections
involves determining a model for correlations of deformations
at different points of nL. This will depend strongly on the
particularities of the shape changes and, therefore, simulations
are needed to establish their impact on the statistic.

IV. 2D MODEL AND APPROXIMATIONS

We can use the same concepts of previous sections to find a
link between time-series statistics and the 2D average detected
particle number.

Figure 9 illustrates the situation in 2D. Similarly as in
Sec. II A, the bunch density profile n is assumed to be
rigid and contain a total of N � 1 particles. However, it
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FIG. 9. Two-dimensional case. A rigid particle bunch (black) of
density n(r) moves on the xy plane such that its center at time tk is
located at r = νk = (χk, ψk ). A detector at r = R = (X, Y ) counts
the number of particles within a region of effective area Aeff (shaded
light gray) near R. At large K , the detector will have recorded an AC
〈N (R)〉.

now depends on two dimensions (x, y) ≡ r, so
∫

n(r) dr ≡∫
n(x, y) dx dy = N . For simplicity, and without loss of gen-

erality, we assume again a zero mean, i.e.,
∫

r n(r) dr =
(0, 0).

As before, we observe the evolution of the system at K dif-
ferent instants. At sample time tk , the overall particle density
distribution is n(r − νk ), where νk ≡ (χk, ψk ) is the location
of the bunch center. The particles are instantaneously counted
by a homogeneous detector located at r = R ≡ (X, Y ), which
has a 2D response efficiency A(r − R).

Defining

nA(r) ≡ 1

Aeff N

∫
n(r + u) A(u) du , (36)

where u is just a dummy integration variable and Aeff ≡∫
A(r) dr is the finite effective area of the detector, we obtain

an expression for the number of particles detected at location
R and time tk ,

Nk (R) = N Aeff nA(R − νk ),

where nA satisfies
∫

nA(r) dr = 1. The ordered collection
{Nk (R)} ≡ {N1(R), . . . , NK (R)} is the corresponding TSN.
If

〈N (R)〉 = 1

K

K∑
k=1

Nk (R),

we follow a similar procedure as in Eqs. (3), (4), and (6) to
obtain

m(R)
K→∞=

∫
nA(R − r) f (r) dr, (37)

where m(r) ≡ 〈N (r)〉/(Aeff N ) is the normalized AP in 2D.
The function f (r) is the PDF of the νk and, as such, encloses
the information of the motion of the bunch.

The equivalent of Eq. (8) for 2D is

mq (R) ≡ 〈Nq (R)〉
(Aeff N )q

=
∫

[nA(R − r)]q f (r) dr, (38)

valid for large K and q � 1.
Following the same procedure of Sec. III A, we can find

an approximate solution for f (r) in Eq. (37). In 2D, the
normalized Gaussian [23] function is

G(r; c, W) ≡ 1

2π
√

det(W)
e− 1

2 (r−c)T W−1(r−c), (39)

where W is the matrix

W =
(

w2
x ρ wxwy

ρ wxwy w2
y

)
.

Here −1 < ρ < 1 can be understood as a parameter de-
termining the orientation of the possibly elliptic shape and
wx , wy the widths along the x and y directions. Then,
for a Gaussian centered at the origin, nA(r) = nA(x, y) =
G(r; 0, WnA), we have

f (R) ≈ m(R)

provided

m(R) �
∣∣∣∣ ρnA wnA,x wnA,y

∂2m(R)

∂x ∂y

+ 1

2
w2

nA,x

∂2m(R)

∂x2
+ 1

2
w2

nA,y

∂2m(R)

∂y2

∣∣∣∣. (40)

This is a condition on the widths of nA similar to the
condition obtained for Eq. (25). From similar arguments, it
is approximately second order in the ratio of the widths of nA

and m. This condition is also sufficient for

mq (R) ≈ m(R)
∫

[nA(r)]qdr

= 1

q

(
nmax

A

)q−1
m(R) (41)

to be valid for all q � 1. Here nmax
A = nA(0, 0) =

(2π wnA,x wnA,y

√
1 − ρ2

nA )
−1

, which has units of inverse
length squared, different from Eq. (25). This expression also
has a factor 1/q instead of 1/

√
q, as in Sec. III A.

The expressions for the variance and skewness of the TSN
in 2D can be obtained in a way similar to Eqs. (9) and (10). If
noise is included as Nk (R) ≡ Nk (R) + ηk (R), as in Sec. II C,
then Eqs. (19)–(21) together with Eq. (41) yield

〈N (R)〉 = Aeff N m(R) + μη(R), (42)

where μη(R) is the noise mean at detector location R,

Var[{Nk (R)}]
(Aeff N )2 ≈ nmax

A

2
m(R) − (m(R))2 + σ 2

η (R)

(Aeff N )2 , (43)

where σ 2
η (R) is the noise variance at R, and

S[{Nk (R)}]

≈
(nmax

A )2
m(R)

3 − 3 nmax
A (m(R))2

2 + 2(m(R))3 + γη (R) σ 3
η (R)

(Aeff N )3(
nmax

A

2 m(R) − (m(R))2 + σ 2
η (R)

(Aeff N )2

)3/2 ,

(44)

where γη(R) is the skewness of the noise at R.
Equations (43) and (44) have been obtained for very large

K and a narrow Gaussian nA which fulfills Eq. (40) and does
not change shape over time. From Sec. III C, we expect these
results to be reasonably robust to small shape changes, an
important aspect for their usefulness in more realistic appli-
cations. Nevertheless, performing a similar analysis in 2D
is cumbersome and more difficult to interpret. We therefore
rely on simulations (see Sec. V) to demonstrate the predictive
power of the equations.
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Similarly as in Eqs. (22) and (26), the covariance can be
expressed as

Cov[{Nk (R1)}, {Nk (R2)}]
(Aeff N )2

≈ −m(R1) m(R2)

+m

(
R1 + R2

2

)
G(R1 − R2; 0, 2 WnA)

+Cov[{ηk (R1)}, {ηk (R2)}]
(Aeff N )2

(45)

for very large K . Here we use Eq. (39) for the definition of the
2D Gaussian function. This expression is a good approxima-
tion whenever Eqs. (41), (43), and (44) are valid.

Given the similarity of Eq. (41) and Eq. (25), bunch shapes
different than Gaussian can be treated in a way very similar
to Sec. III B. Indeed, the function b(q ) that relates bunch
shapes and TSN moments can be defined as in Eq. (27).
Then, some possible 2D generalizations of the symmetric,
zero-mean, shapes considered earlier yield

b(q ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if nA is uniform,
1
q

if nA is Gaussian,
6

q2+3q+2 if nA is conical,
1
q2 if nA is Laplacian.

(46)

To avoid confusion with other conventional definitions,
the functional form of the 2D Laplacian function considered
here is

nA(x, y) = 3 e
−

√
3x2

w2
nA,x

+ 3y2

w2
nA,y

2π wnA,xwnA,y

.

Equation (46) can be used for the inverse problem as well,
that is, to check the compatibility of a given TSN with an
assumed bunch shape. The procedure would use an expression
similar to Eq. (31) to create a plot of b(q ) against q. Compar-
ison with the aforementioned theoretical values would then
give an idea of the shape of nA.

V. SIMULATIONS OF A FAST ION BEAM IN TORPEX
AND COMPARISON WITH 2D MODEL

A. Description of simulations

As an example of the applicability of the formalism
developed in previous sections, we analyze the results of
simulations of fast ion trajectories in the TORoidal Plasma
EXperiment (TORPEX) under the light of Sec. IV.

TORPEX [18] is a toroidal plasma device of major and
minor radii 1 m and 20 cm, respectively, where plasmas [28]
of hydrogen (or possibly other gases) are produced by absorp-
tion of 2.45 GHz microwaves at the electron-cyclotron and
upper-hybrid resonances [29]. Typically, TORPEX plasmas
have densities 1015–1017 m−3, electron temperatures �10 eV,
and plasma potentials Vp = 10–20 V.

In experiments dealing with fast ions [19,20], a simple
magnetized torus (SMT) configuration [18] is used where a
small vertical field Bz ≈ 2 mT is superposed on a dominant
toroidal field Bφ ≈ 74 mT (on axis). Magnetic field lines are
therefore open and helical in shape, as shown in Fig. 10. In
this particular configuration, plasma structures are elongated

FIG. 10. Fast ion propagation in TORPEX. The toroidal vessel
contains a hydrogen plasma in an SMT configuration with open heli-
cal magnetic field lines. A Li-6+ source injects fast lithium ions into
the plasma. These ions then propagate towards a detector positioned
at a different toroidal location. Interaction with the turbulent plasma
potential (depicted at two toroidal locations, one near the source and
the other near the detector) affects the ion trajectories and introduces
variations in the number of ions that reach the detector. The detector
can be moved in the x and y directions (indicated in white) to perform
measurements at different locations on the same xy (poloidal) plane.

along the B-field lines [30–32] and, therefore, plasma parame-
ters exhibit an approximately 2D spatial variation (perpendic-
ular to the B field). Some field-aligned structures can detach
intermittently [33] from the plasma and propagate radially
outward [34] (in the direction of increasing x), giving rise to
so-called blobs [35–37].

We use the Boris algorithm [38] to simulate the propaga-
tion of Li-6 ions in a volume with the prescribed SMT mag-
netic field and a time-varying electric field (Fig. 10) associated
to the presence of the plasma. This E field, in fact, is just the
gradient of the plasma potential Vp. We use, as a proxy for Vp,
2D-resolved floating potential measurements [39,40] rescaled
such that the magnitude of the gradients agrees with E-field
fluctuation profiles obtained with a triple probe [41]. The fast
ions act as tracers and do not affect the fields.

Li-6 ions are generated in bunches of N = 1.6 × 105 par-
ticles on the poloidal plane of the source. They initially have
a 2D Gaussian density profile of widths wx = wy = 1 mm,
centered at (x, y) = (−1, −13.5) cm. The initial ion speed
is random and distributed 1D Normal such that the kinetic
energy is (30 ± 0.3) eV. As the average energy is much higher
than typical ion temperatures (<1 eV), the Li-6 ions are
suprathermal, or fast. The initial direction is almost parallel
to the B field, with a 2D Normal distribution with width 4.3◦
and a mean angle of 5.6 ◦ above the toroidal direction (see
Fig. 10).

The ion motion is integrated until ions reach the toroidal
location of the detector, 171.3 cm apart. Ions can only be
lost to the wall, since collisions with neutrals and plasma
constituents are negligible [20]. Although ions may spread
toroidally, due for example to the differences in initial condi-
tions, we include all ions in the same bunch as contributing to
the same detection signal. The detector is modeled as having
efficiency 1 within a circle of radius 4 mm and zero outside.
Thus any ions that arrive within the collection circle centered
at R = (X, Y ) are counted and generate one sample of number
of detected particles, for example, N1(R). We model the
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FIG. 11. Some fast ion bunches as they arrive at the xy (poloidal)
plane of the detector. Different bunches (shaded structures) arrive at
different locations after propagating through the turbulent plasma.
Darker parts correspond to higher density of ions, as per the color bar.
Comparison with the shape and location of the bunches as injected
at the source (indicated in the figure) shows that fast ions experience
drifts as well as shear. Once the effects of the detector are added,
〈N (r)〉 can be computed. Contour lines of the result (blue dashed
lines) show a time-averaged profile that is much wider than the
individual bunches.

situation of a continuous ion beam by injecting bunches every
4 μs. Then, the TSN at detector location R will consist of the
collection of detected samples for all K = 1.1 × 104 bunches
{Nk (R)}. Formally, this situation is different from Sec. IV
as now many similar bunches arrive (one at a time) on a
plane instead of having a single bunch that moves on the
plane. However, the conditions are analogous in the two cases
(see Fig. 11). Finally, by displacing the detector, we obtain a
collection of TSNs as a function of location, in the xy plane,
whose average 〈N (r)〉 is the AP of Li-6 ions.

Since the floating potential profiles evolve in time, the
arrival location of the Li-6 ions changes with time. Figure 11
shows simulation results of ions as they reach the poloidal
plane of the detector. Interestingly, the ions are still bunched
in xy and are small compared to the AP. They wander around
in xy as illustrated in Fig. 9. They, however, are somewhat
deformed, which can be understood by remembering that
local variations of the turbulent plasma potential have a direct
effect on fast ion displacement across magnetic field lines
through E × B drifts [28,42]. In our simulations, the spatial
variation �|E| of the E field over a distance of 1 cm (in
the order of the beam cross section; see Fig. 11) is typically
<17 V/m. This value is an average computed over the region
in the xy plane in which the ion beam propagates, taking
into account both the x and the y components of the E

field. However, �|E| can reach values as high as 250 V/m
over 1 cm, which can lead to significant particle divergence
even for short interaction times. For example, if two particles
≈1 cm apart within the same bunch are subject to this field
gradient for 1 μs (the typical propagation time is 56 μs), their
final separation will increase by ≈1 μs �|E|/Bφ = 3.4 mm.
In that case we expect significant changes in shape. This
estimate does not include gyro averaging [19,20,42] from the

FIG. 12. Fast-ion simulation results. TSNs are determined for
≈100 choices of detector location (“+” markers) and the mean,
variance, and skewness are computed. The results are then linearly
interpolated between the markers and the outcome is plotted follow-
ing the color map in each column. TSNs are dimensionless, as they
hold data in units of number of particles. (a) Mean, (b) variance, and
(c) skewness for the case of no noise. (d), (e), (f) Same statistics when
Gaussian noise with zero mean and ση = 103 is added to all TSNs.
Even though the mean and variance remain similar, a comparison of
(c) and (f) confirms that low levels of noise can have a big impact on
the skewness.

≈5 mm radius gyro orbits, nor drift averaging [19,20], whose
effect is included in the simulations but is difficult to quantify
in a simple way.

In Sec. V B we show that the theory of Sec. IV describes
well the relationship between TSN statistics, despite the beam
deformations and the slightly altered response efficiency func-
tion used for the detector.

B. Simulation results for 30 eV ions

Figure 12 shows the mean, variance, and skewness of
simulated TSNs as a function of detector location. The plot
of the mean is then the AP of the fast ions. To illustrate the
impact of noise on the profiles of the different statistics, we
make a comparison with the case of added Gaussian noise
(zero skewness).

From Sec. V A, we know that N = 1.6 × 105 and Aeff =
π (4 mm)2 = 50.2 mm2. We use these numbers to normalize
the variance and plot it against the normalized mean, similarly
as in Fig. 5. The result [Fig. 13(a)] shows an approximately
linear relationship, with a quadratic correction, as expected
from Eq. (43). In fact, a least-squares fit of the data gives
a value nmax

A = 7348 m−2, which is in reasonable agreement
with simulated bunch widths corrected to account for the
finite detector width. Indeed, assuming a Gaussian-shaped
bunch, the discussion following Eq. (41) allows us to estimate
wnA ≈ 1/

√
2π nmax

A = 4.7 mm.
Figure 13(b) shows TSN skewness versus normalized

mean. Using the value of nmax
A determined above, we plot the

predicted skewness [Eq. (44)] and find good agreement with
the simulations. Some discrepancies are observed, but they
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FIG. 13. Normalized variance (a) and skewness (b) of the simu-
lated fast ion TSNs, plotted against the mean. Gaussian noise with
zero mean and ση = 103 has been added to all TSNs. Each black
dot corresponds to statistics computed for a single TSN from one
particular detector location (“+” markers in Fig. 12). The error
bars are 1σ uncertainties estimated using simple bootstrapping with
nonoverlapping blocks of 500 samples from the corresponding TSN
(changing the block size does not appreciably alter the outcome). The
red dashed curve in (a) is a fit of the data using Eq. (43) as a model.
The fit allows us to determine the parameter nmax

A , which can then
be replaced in Eq. (44) to produce a predicted skewness curve [red
dotted line in (b)] for an assumed Gaussian-shaped bunch. There is
good agreement between the model and the simulations.

are reasonably expected from the fact that fast ions exhibit
behavior that is more complex than the simple assumptions
used in the model of Sec. IV.

VI. CONCLUSIONS

We have developed a simple model to study the rela-
tionship between the average profile (AP) and higher-order
statistics of time series of number of detected particles (TSNs)
in systems where a detector counts particles of a moving
density profile.

We started with the 1D case and showed that the PDF of
the particle bunch center locations is closely related to the AP.
This result was deemed fundamental, since the computation
of the variance, skewness, kurtosis, and higher-order moments
of TSNs, as well as the covariance, were shown to rely on the
knowledge of this PDF.

Using all Gaussian shapes, we then obtained exact results
in 1D. This allowed us to make a detailed comparison of theo-
retical predictions with statistics computed from numerically
generated TSNs. The notable level of agreement between
them showed that the theory gives a correct description of the
problem.

An important observation is that many different values of
skewness are possible in a single AP. Care must therefore be

taken when drawing conclusions from the skewness of distinct
time series, as any difference may be related to differences in
the detector location (within a single AP) and not necessar-
ily to changes of APs. This consideration may be specially
important in transport studies, where one is interested in de-
termining changes of APs to establish, for example, diffusion
properties [20] of the system.

The exact results also allowed us to benchmark a series of
approximations carried out to extend the applicability of the
formalism to the case of non-Gaussian APs. These approxi-
mations show that, under certain conditions, knowledge of the
AP and a few other parameters is enough to determine the
value of the variance, skewness, and covariances of the TSNs
in all possible locations of the detector. The procedure can
easily be extended for higher-order moments such as the
kurtosis.

Bunch shapes different than Gaussian can easily be consid-
ered and lead to slight modifications of the expressions for the
approximated statistics. Conversely, it was shown that single
TSNs can be used to gain knowledge into the shape of the
particle bunch, an observation that may be useful in situations
where detectors cannot be displaced and there is interest
in establishing spatial features of the instantaneous bunch
profile.

Incorporation of noise was shown to have potentially sig-
nificant effects on the TSN statistics, most notably on the
value of the skewness. Indeed, problems seem to arise at
locations visited only scarcely by the bunch (low values in the
AP), as the detection signal variance tends to vanish and noise
starts dominating. Since the variance enters in the calculation
of the skewness through the denominator, even small values
of noise may have a big impact. This observation motivates
exploring the use of alternatives to the skewness which do not
require normalization by the variance.

The theory was extended to 2D and applied to studies of
fast ion propagation in TORPEX. The results show that the
formalism is robust and may be used in realistic situations.
Future experiments with fast ions are envisioned in TORPEX
to further test these ideas.

We showed that simulations using a large number of sam-
ples K lead to results that are consistent with the theory
developed in the paper. However, one outstanding question
is how robust TSN statistics are for different sample sizes.
Further dedicated numerical studies with larger K may be
required.

The formalism can be straightforwardly used to model
other systems. For example, one can replace N by I and
n(r) by J (r) in studies dealing with samples of current and
(moving) current density profiles.
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APPENDIX: COMPUTATION OF mq FOR 1D
GAUSSIAN PROFILES

This Appendix refers to the discussion and results of
Sec. II B.

In the case of 1D Gaussian profiles, nL(x) = G(x; 0, w2
nL ),

we can express [nL(x)]q as

[nL(x)]q =
⎛
⎝ 1√

2π w2
nL

e
− x2

2 w2
nL

⎞
⎠

q

= 1√
q

⎛
⎝ 1√

2π w2
nL

⎞
⎠

q−1

G
(
x; 0, w2

nL

/
q
)
. (A1)

Since f (x) = G(x; cm, σ 2
f ) with σf =

√
w2

m − w2
nL for the

case when m(X) = G(X; cm, w2
m), we have

mq (X) =
∫

[nL(X − x)]qf (x) dx

= 1
√

q
(
2π w2

nL

) q−1
2

∫
G

(
X − x; 0, w2

nL

/
q
)

× G
(
x; cm, σ 2

f

)
dx

= 1
√

q
(
2π w2

nL

) q−1
2

G

(
X; cm,

w2
nL

q
+ σ 2

f

)
. (A2)

The last line comes from the fact that the convolution of
two normalized Gaussians is a normalized Gaussian. Notice
that mq need not be normalized, as it is preceded by a factor
that is in general different from 1 for q > 1. The width of the
Gaussian in the last line is

w2
nL

q
+ σ 2

f = w2
nL

q
+ (

w2
m − w2

nL

)

= w2
m

(
1 − w2

nL

w2
m

(
1 − 1

q

))

= w2
ms−1

q ,

where sq is defined as in Eq. (15). Then, an argument similar
to Eq. (A1) can be used to show that

G

(
x; cm,

w2
m

sq

)
= √

sq

(
2π w2

m

) sq −1
2

(
G

(
x; cm, w2

m

))sq

= √
sq

(
2π w2

m

) sq −1
2 (m(x))sq .

Replacing this result back in Eq. (A2) we get

mq (X) =
√

sq

(
2π w2

m

) sq −1
2

√
q

(
2π w2

nL

) q−1
2

(m(X))sq .

This expression is equivalent to Eq. (14).

[1] D. Perrone, R. O. Dendy, I. Furno, R. Sanchez, G. Zimbardo,
A. Bovet, A. Fasoli, K. Gustafson, S. Perri, P. Ricci and F.
Valentini, Nonclassical transport and particle-field coupling:
from laboratory plasmas to the solar wind, Space Sci. Rev. 178,
233 (2013).

[2] H. Tananbaum, M. C. Weisskopf, W. Tucker, B. Wilkes, and P.
Edmonds, Highlights and discoveries from the Chandra X-ray
Observatory, Rep. Prog. Phys. 77, 066902 (2014).

[3] A. M. Keesee and E. E. Scime, Neutral argon density profile
determination by comparison of spectroscopic measurements
and a collisional-radiative model, Rev. Sci. Instrum. 77, 10F304
(2006).

[4] V. V. Deshpande, S. Hsieh, A. W. Bushmaker, M. Bockrath, and
S. B. Cronin, Spatially Resolved Temperature Measurements of
Electrically Heated Carbon Nanotubes, Phys. Rev. Lett. 102,
105501 (2009).

[5] S. D. Hogan and F. Merkt, Demonstration of Three-
Dimensional Electrostatic Trapping of State-Selected Rydberg
Atoms, Phys. Rev. Lett. 100, 043001 (2008).

[6] J. Fraden, Handbook of Modern Sensors, 4th ed. (Springer, New
York, 2010).

[7] P. A. Probst and B. Collet, Low-frequency digital lock-in am-
plifier, Rev. Sci. Instrum. 56, 466 (1985)

[8] P. Wizinowich et al., First light adaptive optics images from
the Keck II telescope: A new era of high angular resolution
imagery, Publ. Astron. Soc. Pac. 112, 315 (2000).

[9] J. A. Dowling and P. M. Livingston, Behavior of focused beams
in atmospheric turbulence: Measurements and comments on the
theory, J. Opt. Soc. Am. 63, 846 (1973).

[10] L. C. Andrews and R. L. Phillips, Laser Beam Propagation
Through Random Media, 2nd ed. (SPIE Press, Bellingham, WA,
2005), pp. 201–206.

[11] O. Chellai, S. Alberti, M. Baquero-Ruiz, I. Furno, T. Goodman,
F. Manke, G. Plyushchev, L. Guidi, A. Koehn, O. Maj, E.
Poli, K. Hizanidis, L. Figini, and D. Ricci, Millimeter-Wave
Beam Scattering by Field-Aligned Blobs in Simple Magnetized
Toroidal Plasmas, Phys. Rev. Lett. 120, 105001 (2018).

[12] A. Köhn, E. Holzhauer, J. Leddy, M. B. Thomas, and R. G. L.
Vann, Influence of plasma turbulence on microwave propaga-
tion, Plasma Phys. Control. Fusion 58, 105008 (2016).

[13] G. Janacek, Practical Time Series (Arnold, London, 2001).
[14] F. Militello, T. Farley, K. Mukhi, N. Walkden, and J. T.

Omotani, A two-dimensional statistical framework connecting
thermodynamic profiles with filaments in the scrape off layer
and application to experiments, Phys. Plasmas 25, 056112
(2018).

[15] F. Militello and J. T. Omotani, Scrape off layer profiles inter-
preted with filament dynamics, Nucl. Fusion 56, 104004 (2016).

[16] G. I. Taylor, The spectrum of turbulence, Proc. R. Soc. A 164,
476 (1938).

[17] S. Perri and A. Balogh, Stationarity in solar wind flows,
Astrophys. J. 714, 937 (2010).

[18] I. Furno, F. Avino, A. Bovet, A. Diallo, A. Fasoli, K. Gustafson,
D. Iraji, B. Labit, J. Loizu, S. H. Müller, G. Plyushchev, M.
Podesta, F. M. Poli, P. Ricci, and C. Theiler, Plasma turbu-
lence, suprathermal ion dynamics and code validation on the
basic plasma physics device TORPEX, J. Plasma Phys. 81,
345810301 (2015).

032111-13

https://doi.org/10.1007/s11214-013-9966-9
https://doi.org/10.1007/s11214-013-9966-9
https://doi.org/10.1007/s11214-013-9966-9
https://doi.org/10.1007/s11214-013-9966-9
https://doi.org/10.1088/0034-4885/77/6/066902
https://doi.org/10.1088/0034-4885/77/6/066902
https://doi.org/10.1088/0034-4885/77/6/066902
https://doi.org/10.1088/0034-4885/77/6/066902
https://doi.org/10.1063/1.2219440
https://doi.org/10.1063/1.2219440
https://doi.org/10.1063/1.2219440
https://doi.org/10.1063/1.2219440
https://doi.org/10.1103/PhysRevLett.102.105501
https://doi.org/10.1103/PhysRevLett.102.105501
https://doi.org/10.1103/PhysRevLett.102.105501
https://doi.org/10.1103/PhysRevLett.102.105501
https://doi.org/10.1103/PhysRevLett.100.043001
https://doi.org/10.1103/PhysRevLett.100.043001
https://doi.org/10.1103/PhysRevLett.100.043001
https://doi.org/10.1103/PhysRevLett.100.043001
https://doi.org/10.1063/1.1138324
https://doi.org/10.1063/1.1138324
https://doi.org/10.1063/1.1138324
https://doi.org/10.1063/1.1138324
https://doi.org/10.1086/316543
https://doi.org/10.1086/316543
https://doi.org/10.1086/316543
https://doi.org/10.1086/316543
https://doi.org/10.1364/JOSA.63.000846
https://doi.org/10.1364/JOSA.63.000846
https://doi.org/10.1364/JOSA.63.000846
https://doi.org/10.1364/JOSA.63.000846
https://doi.org/10.1103/PhysRevLett.120.105001
https://doi.org/10.1103/PhysRevLett.120.105001
https://doi.org/10.1103/PhysRevLett.120.105001
https://doi.org/10.1103/PhysRevLett.120.105001
https://doi.org/10.1088/0741-3335/58/10/105008
https://doi.org/10.1088/0741-3335/58/10/105008
https://doi.org/10.1088/0741-3335/58/10/105008
https://doi.org/10.1088/0741-3335/58/10/105008
https://doi.org/10.1063/1.5017919
https://doi.org/10.1063/1.5017919
https://doi.org/10.1063/1.5017919
https://doi.org/10.1063/1.5017919
https://doi.org/10.1088/0029-5515/56/10/104004
https://doi.org/10.1088/0029-5515/56/10/104004
https://doi.org/10.1088/0029-5515/56/10/104004
https://doi.org/10.1088/0029-5515/56/10/104004
https://doi.org/10.1098/rspa.1938.0032
https://doi.org/10.1098/rspa.1938.0032
https://doi.org/10.1098/rspa.1938.0032
https://doi.org/10.1098/rspa.1938.0032
https://doi.org/10.1088/0004-637X/714/1/937
https://doi.org/10.1088/0004-637X/714/1/937
https://doi.org/10.1088/0004-637X/714/1/937
https://doi.org/10.1088/0004-637X/714/1/937
https://doi.org/10.1017/S0022377815000161
https://doi.org/10.1017/S0022377815000161
https://doi.org/10.1017/S0022377815000161
https://doi.org/10.1017/S0022377815000161


BAQUERO-RUIZ, MANKE, FURNO, FASOLI, AND RICCI PHYSICAL REVIEW E 98, 032111 (2018)

[19] A. Bovet, Suprathermal ion transport in turbulent magnetized
plasmas, Ph.D. dissertation, Ecole Polytechnique Fédérale de
Lausanne, Switzerland, 2015.

[20] A. Bovet, A. Fasoli, P. Ricci, I. Furno, and K. Gustafson, Non-
diffusive transport regimes for suprathermal ions in turbulent
plasmas, Phys. Rev. E 91, 041101 (2015).

[21] R. D. Yates and D. J. Goodman, Probability and Stochastic
Processes: A Friendly Introduction for Electrical and Computer
Engineers, 3rd ed. (John Wiley and Sons, Hoboken, NJ, 2014).

[22] W. B. Davenport and W. L. Root, An Introduction to the Theory
of Random Signals and Noise (IEEE Press, New York, 1987).

[23] A. Gut, An Intermediate Course in Probability, 2nd ed.
(Springer, New York, 2009).

[24] G. Schay, Introduction to Probability with Statistical Applica-
tions (Birkhauser, Boston, MA, 2007).

[25] D. N. Joanes and C. A. Gill, Comparing measures of sample
skewness and kurtosis, J. R. Stat. Soc. (Ser. D) 47, 183 (1998).

[26] See https://www.mathworks.com/products/matlab.html for a
description of the MATLAB software, v. R2015a.

[27] G. Vasilescu, Electronic Noise and Interfering Signals
(Springer, Berlin, 2005).

[28] P. M. Bellan, Fundamentals of Plasma Physics (Cambridge
University Press, Cambridge, UK, 2006).

[29] M. Podesta, A. Fasoli, B. Labit, M. McGrath, S. H. Müller,
and F. M. Poli, Plasma production by low-field side injection of
electron cyclotron waves in a simple magnetized torus, Plasma
Phys. Control. Fusion 47, 1989 (2005).

[30] F. M. Poli, P. Ricci, A. Fasoli, and M. Podesta, Transition from
drift to interchange instabilities in an open magnetic field line
configuration, Phys. Plasmas 15, 032104 (2008).

[31] P. Ricci, F. D. Halpern, S. Jolliet, J. Loizu, A. Mosetto, A.
Fasoli, I. Furno, and C. Theiler, Simulation of plasma turbu-
lence in scrape-off layer conditions: The GBS code, simulation
results and code validation, Plasma Phys. Control. Fusion 54,
124047 (2012).

[32] S. H. Müller, C. Theiler, A. Fasoli, I. Furno, B. Labit, G. R.
Tynan, M. Xu, Z. Yan, and J. H. Yu, Studies of blob formation,
propagation and transport mechanisms in basic experimental

plasmas (TORPEX and CSDX), Plasma Phys. Control. Fusion
51, 055020 (2009).

[33] B. Labit, A. Diallo, A. Fasoli, I. Furno, D. Iraji, S. H. Müller,
G. Plyushchev, M. Podesta, F. M. Poli, and P. Ricci, Statistical
properties of electrostatic turbulence in toroidal magnetized
plasmas, Plasma Phys. Control. Fusion 49, B281 (2007).

[34] C. Theiler, I. Furno, A. Fasoli, P. Ricci, B. Labit, and D. Iraji,
Blob motion and control in simple magnetized plasmas, Phys.
Plasmas 18, 055901 (2011).

[35] I. Furno, B. Labit, M. Podesta, A. Fasoli, S. H. Müller, F. M.
Poli, P. Ricci, C. Theiler, S. Brunner, A. Diallo, and J. Graves,
Experimental Observation of the Blob-Generation Mechanism
from Interchange Waves in a Plasma, Phys. Rev. Lett. 100,
055004 (2008).

[36] I. Furno, M. Spolaore, C. Theiler, N. Vianello, R. Cavazzana,
and A. Fasoli, Direct Two-Dimensional Measurements of the
Field-Aligned Current Associated with Plasma Blobs, Phys.
Rev. Lett. 106, 245001 (2011).

[37] I. Furno, C. Theiler, D. Lançon, A. Fasoli, D. Iraji, P. Ricci, M.
Spolaore, and N. Vianello, Blob current structures in TORPEX
plasmas: Experimental measurements and numerical simula-
tions, Plasma Phys. Control. Fusion 53, 124016 (2011).

[38] H. Qin, S. Zhang, J. Xiao, J. Liu, Y. Sun, and W. M. Tang, Why
is Boris algorithm so good?, Phys. Plasmas 20, 084503 (2013).

[39] M. Baquero-Ruiz, F. Avino, O. Chellai, A. Fasoli, I. Furno,
R. Jacquier, F. Manke, and S. Patrick, Dual Langmuir-probe
array for 3D plasma studies in TORPEX, Rev. Sci. Instrum. 87,
113504 (2016).

[40] S. H. Müller, A. Diallo, A. Fasoli, I. Furno, B. Labit, G.
Plyushchev, M. Podesta, and F. M. Poli, Probabilistic analysis
of turbulent structures from two-dimensional plasma imaging,
Phys. Plasmas 13, 100701 (2006).

[41] C. Theiler, I. Furno, A. Kuenlin, Ph. Marmillod, and A. Fasoli,
Practical solutions for reliable triple probe measurements in
magnetized plasmas, Rev. Sci. Instrum. 82, 013504 (2011).

[42] K. Gustafson, P. Ricci, I. Furno, and A. Fasoli, Nondiffusive
Suprathermal Ion Transport in Simple Magnetized Toroidal
Plasmas, Phys. Rev. Lett. 108, 035006 (2012).

032111-14

https://doi.org/10.1103/PhysRevE.91.041101
https://doi.org/10.1103/PhysRevE.91.041101
https://doi.org/10.1103/PhysRevE.91.041101
https://doi.org/10.1103/PhysRevE.91.041101
https://doi.org/10.1111/1467-9884.00122
https://doi.org/10.1111/1467-9884.00122
https://doi.org/10.1111/1467-9884.00122
https://doi.org/10.1111/1467-9884.00122
https://www.mathworks.com/products/matlab.html
https://doi.org/10.1088/0741-3335/47/11/008
https://doi.org/10.1088/0741-3335/47/11/008
https://doi.org/10.1088/0741-3335/47/11/008
https://doi.org/10.1088/0741-3335/47/11/008
https://doi.org/10.1063/1.2899303
https://doi.org/10.1063/1.2899303
https://doi.org/10.1063/1.2899303
https://doi.org/10.1063/1.2899303
https://doi.org/10.1088/0741-3335/54/12/124047
https://doi.org/10.1088/0741-3335/54/12/124047
https://doi.org/10.1088/0741-3335/54/12/124047
https://doi.org/10.1088/0741-3335/54/12/124047
https://doi.org/10.1088/0741-3335/51/5/055020
https://doi.org/10.1088/0741-3335/51/5/055020
https://doi.org/10.1088/0741-3335/51/5/055020
https://doi.org/10.1088/0741-3335/51/5/055020
https://doi.org/10.1088/0741-3335/49/12B/S26
https://doi.org/10.1088/0741-3335/49/12B/S26
https://doi.org/10.1088/0741-3335/49/12B/S26
https://doi.org/10.1088/0741-3335/49/12B/S26
https://doi.org/10.1063/1.3562944
https://doi.org/10.1063/1.3562944
https://doi.org/10.1063/1.3562944
https://doi.org/10.1063/1.3562944
https://doi.org/10.1103/PhysRevLett.100.055004
https://doi.org/10.1103/PhysRevLett.100.055004
https://doi.org/10.1103/PhysRevLett.100.055004
https://doi.org/10.1103/PhysRevLett.100.055004
https://doi.org/10.1103/PhysRevLett.106.245001
https://doi.org/10.1103/PhysRevLett.106.245001
https://doi.org/10.1103/PhysRevLett.106.245001
https://doi.org/10.1103/PhysRevLett.106.245001
https://doi.org/10.1088/0741-3335/53/12/124016
https://doi.org/10.1088/0741-3335/53/12/124016
https://doi.org/10.1088/0741-3335/53/12/124016
https://doi.org/10.1088/0741-3335/53/12/124016
https://doi.org/10.1063/1.4818428
https://doi.org/10.1063/1.4818428
https://doi.org/10.1063/1.4818428
https://doi.org/10.1063/1.4818428
https://doi.org/10.1063/1.4968024
https://doi.org/10.1063/1.4968024
https://doi.org/10.1063/1.4968024
https://doi.org/10.1063/1.4968024
https://doi.org/10.1063/1.2351960
https://doi.org/10.1063/1.2351960
https://doi.org/10.1063/1.2351960
https://doi.org/10.1063/1.2351960
https://doi.org/10.1063/1.3516045
https://doi.org/10.1063/1.3516045
https://doi.org/10.1063/1.3516045
https://doi.org/10.1063/1.3516045
https://doi.org/10.1103/PhysRevLett.108.035006
https://doi.org/10.1103/PhysRevLett.108.035006
https://doi.org/10.1103/PhysRevLett.108.035006
https://doi.org/10.1103/PhysRevLett.108.035006



