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Ordering kinetics in the q-state clock model: Scaling properties and growth laws
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We present a comprehensive Monte Carlo study of the ordering kinetics in the d = 2 ferromagnetic q-state
clock model with nonconserved Glauber dynamics. In agreement with previous studies we find that q � 5 is
characterized by two phase transitions occurring at temperatures T 1

c and T 2
c (T 2

c < T 1
c ). Phase-ordering kinetics

is then investigated by rapidly quenching the system in two phases, in the quasi-long-range ordered phase
(QLRO), where T 2

c < T < T 1
c , and in the long-range ordered phase (LRO), where T < T 2

c , T being the quench
temperature. Our numerical data for equal time spatial correlation function C(r, t ) and structure factor S(k, t )
support dynamical scaling. Quench in the LRO regime is characterized by a crossover from a preasymptotic
growth driven by the annealing of both vortices and interfaces to an interface driven growth at the asymptotic
regime with growth exponent n � 0.5. In the QLRO quench regime, domains coarsen mainly via annihilation of
point defects and our length-scale data for q = 9, 12, and 20 suggests a R(t ) ∼ (t/ ln t )1/2 growth law for the
q-state clock model in the QLRO phase.

DOI: 10.1103/PhysRevE.98.032109

I. INTRODUCTION

In statistical physics, the q-state clock model is considered
the discrete version of the generalized XY model. Theoretical
interest in clock model was stimulated after Kosterlitz and
Thouless (KT) in their pioneering works [1,2] showed that
the XY model possessed a novel type of critical behavior
with essential singularities and topological ordering. The q-
state clock model ground state is q-fold degenerate where the
clock spins can take only discrete angles of the continuous
XY spins from a set of values governed by the q value and
the continuous U (1) symmetry is replaced by the discrete
Zq symmetry. This is essentially equivalent to probing the
q-fold symmetry-breaking fields, and the effect of this q-fold
symmetry-breaking fields on the d = 2 XY model has been
the subject of attention for many years [3–9].

The q-state clock model shows Ising-like phase transitions
for q � 4 and two distinct phase transitions at finite tempera-
tures T 1

c and T 2
c (< T 1

c ) for q � 5 [3–9]. The phase between
these temperatures are quasi-long-range ordered (QLRO) like
the XY model below the KT temperature; the phase above
T 1

c is a high-temperature disordered phase and the phase
below T 2

c is long-range ordered (LRO) [10]. There are studies
[11,12] which suggest that for q = 5, the number of phase
transitions are inconclusive, but it has been shown extensively
in the literature that for a planer five-state clock model, there
are two transitions where the upper transition is KT like
[5,6,13]. For q = 6, there exists some controversies regarding
the KT-like nature of the transition at T 1

c [14,15], but it
has been comprehensively established over the years that the
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transitions occurring at T 1
c and T 2

c for q > 4 are indeed of
KT type [3,9,16–25]. The overall effect of state q on T 1

c and
T 2

c suggests that while T 1
c does not change appreciably for

large q and tends to merge with the KT transition temperature
TKT ∼ 0.89, T 2

c keeps decreasing with the increasing q [9,14].
Systematic characterization of the phase transition points

of the q-state clock model and ordering kinetics for an
extended set of q in both QLRO and LRO regimes is the
primary focus of this study. Phase-ordering kinetics of various
systems quenched from a high-temperature disordered phase
to a low-temperature ordered phase has been studied widely
to investigate the domain growth law and the dynamical scal-
ing behavior of the correlation function and structure factor
[26]. The characteristic length scale R(t ) typically grows as
R(t ) ∼ tn, where n is the “growth exponent.” The domain
growth law varies depending on whether the order parameter
is conserved. For the q-state clock model with conserved
order parameter it has been shown that a slow domain growth
in the early time-regime consistent with the growth law for
the corresponding XY model crosses over to a faster growth
at the asymptotic limit consistent with the Lifshitz-Slyozov
growth law R(t ) ∼ t1/3 [27]. In this study, we consider a
clock model with nonconserved order parameter, which in
the asymptotic limit follows the Lifshitz-Cahn-Allen (LCA)
growth law: R(t ) ∼ t

1
2 [26,28]. The clock model is highly

significant as it interposes between the Ising model (q = 2)
and the XY model (q = ∞). Coarsening in the Ising model is
driven by the merging of interfaces, whereas annihilations of
vortices and antivortices govern the domain growth in the XY

model. Interestingly, in the q-state clock model, coarsening
occurs via the elimination of both interfaces and vortices. The
literature suggests that nonequilibrium kinetics and scaling of
the correlation function of the q-state clock model [29–35]
and Potts model [36] in the LRO regime is marked by the LCA
growth law. Analytical studies on these systems also confirm
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dynamical scaling of the correlation function and structure
factor and suggest that the latter is a function of q [37–39].
Coarsening dynamics of the q-state clock model following a
quench in the QLRO phase has not found much attention as
the literature points to the study by Corberi et al. [35] where
the authors have briefly mentioned the QLRO domain growth
process for six-state clock model.

Here we present a study of transition temperatures T 1
c and

T 2
c for various q values via the Wolff single-cluster update

algorithm [40]. This enables us to figure out the regime for
temperature quench in both the LRO and QLRO phases.
Subsequently, we study the ordering kinetics in the q-state
clock model using the Metropolis algorithm [41] following
a temperature quench in both LRO and QLRO regime. The
main results of our study are summarized below:

(a) For q � 5, T 1
c remains almost independent of q,

whereas T 2
c decreases with q.

(b) Coarsening dynamics following a quench from T = ∞
to T < T 2

c (LRO regime) is characterized by the curvature-
driven domain growth law R(t ) ∼ t1/2 at the asymptotic limit.

(c) Interpenetrating domains with rough domain interfaces
are typical of the quench from T = ∞ to T 2

c < T < T 1
c

(QLRO regime). The system exhibits slow domain growth and
the growth law we extract over our simulation time scales is
R(t ) ∼ (t/ ln t )1/2 for higher values of q.

The paper is organized as follows. In Sec. II, we discuss
the model and present a detailed description of a numerical
simulations scheme. In Sec. III, we present detailed numer-
ical simulation results for the d = 2 clock model. Finally,
in Sec. IV, we conclude this paper with a summary and
discussion of the results.

II. MODELING AND SIMULATION DETAILS

A. q-State clock model

The Hamiltonian for the q-state clock model is defined as

H = −J
∑
〈ij〉

�σi · �σj = −J
∑
〈ij〉

cos(θi − θj ), (1)

where 〈ij 〉 denotes nearest-neighbor sites. In Eq. (1), �σi

denotes a two-component unit vector spin; e.g., in the xy plane
�σi = x̂ cos θi + ŷ sin θi . The unit vector �σi is described by an
angle θi ∈ (0, 2π ), where

θi = 2πni

q
, (2)

and ni = 0, 1, 2, . . ., (q − 1) denote discrete orientations of
the spin. J is the coupling between neighboring sites and is
taken as 1.

B. Simulation details for study of transition temperatures

In our study, we first revisit the well-known problem
of equilibrium phase transition in the q-state clock model
to precisely identify the regime for temperature quench. In
our simulations, the canonical sampling Monte Carlo (MC)
method with Wolff single cluster flipping algorithm [40] is
applied to equilibrate the system during the characterization
of equilibrium thermodynamic parameters. A single Monte
Carlo step (MCS) update is described as follows:

(a) A random reflection with a normal vector �r =
(cos δi, sin δi ) and a random spin �σi = (cos θi, sin θi ) are cho-
sen as starting points for the cluster C.

(b) The spin is given a reflection R(�r ) �σi = �σi − 2( �σi · �r )�r
about the line; i.e., θi → θ ′

i = π − θi + 2δi , where θi is the
primary angle of the site i and θ ′

i is the angle after reflection
and δi = i( π

q
) for even q and δi = (i + 1

2 )( π
q

) for odd q with
i = 0, 1, 2,. . . , (2q − 1) [25].

(c) The reflected position of the spin is again marked and
nearest neighbors of the spin are visited and if the spins do not
belong to the cluster, then they are added to the cluster accord-
ing to a probability P ( �σi, �σj ) = 1 − exp(min[0, 2βJij (�r ·
�σi )(�r · �σj )]) or P (θ, δ) = cos(θi − δ) cos(θj − δ) [40].

Finally, the cluster is updated by reflecting all the spins
about the line perpendicular to the normal vector �r . If N

denotes total number of sites, then one MCS corresponds to
N such updates.

Measurements of the thermodynamic parameters is carried
out after the system has reached thermal equilibrium. We
measure the magnetic order parameter m, defined by the
equation

m = 1

N

√√√√(
N∑

i=1

cos θi

)2

+
(

N∑
i=1

sin θi

)2

, (3)

and per spin specific heat Cv defined as

Cv = 1

NkBT 2
[〈E2〉 − 〈E〉2], (4)

where T is the temperature, kB is the Boltzmann constant
(kB = 1), and E is the total energy per spin defined in Eq. (1).

The Binder cumulant U4(T ,L) [42–45] expressed as

U4 = 1 − 〈m4〉
3〈m2〉2

, (5)

and, plotted against T , can precisely quantify the transition
temperature from the intersection of the curves for various L.
This mechanism has been implemented to determine the upper
critical temperature T 1

c . Nevertheless, U4 could not detect
the transition between the QLRO and LRO phase due to m

constructed using square of the sum of the spin components
which cannot distinguish between the orientations of the spin
vectors in these two phases. Following Ref. [46], we define
the resultant angular direction of the spins, φ = tan−1 ( σy

σx
),

where σx = ∑N
i=1 cos θi and σy = ∑N

i=1 sin θi . We now de-
fine an effective order parameter mφ = 〈cos(qφ)〉 and a
cumulant Um :

Um = 1 −
〈
m4

φ

〉
2
〈
m2

φ

〉2 , (6)

In the same spirit as U4, Um plotted against T can quantify
T 2

c ; Um, however, is not a suitable cumulant to measure T 1
c as

in the high-temperature homogeneous phase φ might become
undefined.

C. Simulation details for study of ordering kinetics

At the outset for studying ordering kinetics in the q-state
clock model, we assign random initial orientation to each
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spin θi , defined in Eq. (2), to mimic the high-temperature
disordered phase. Next, we rapidly quench the system inde-
pendently at temperature T into two regimes, (1) Tc2 < T <

Tc1 and (2) T < Tc2 at t = 0, and let the system evolve via
nonconserved Glauber kinetics up to t = 106 MCS using the
Metropolis algorithm [41]. The algorithm is as follows:

(a) A random spin �σi is chosen and θi is given a
small rotation δi ∈ 2πsi

q
, si = 1, . . . , q − 1. (b) The new

spin state θ ′
i = θi + δi is accepted with the probability P =

min[1, exp(−β�H)], where �H is the change in energy
resulting from spin change θi → θ ′

i and can be expressed as:

�H =
∑

k

Jik{cos(θi − θk ) − cos(θ ′
i − θk )}, (7)

where k refers to the nearest neighbors of site i.
The segregation kinetics of the q-state clock model can be

investigated by studying the time dependence of the correla-
tion function C(r, t ) expressed as [28]:

C(�r, t ) = 1

N

N∑
i=1

[〈 �σi (t ) · �σi+r(t )〉 − 〈 �σi (t )〉 · 〈 �σi+r(t )〉]av

= 1

N

N∑
i=1

[〈cos{θi (t ) − θi+r(t )}〉]av, (8)

where [〈. . .〉]av indicates an average over different initial real-
izations. Another commonly used probe for domain growth is
the structure factor, which is defined as the Fourier transform
of the correlation function [28],

S(�k, t ) =
∫

d�rei�k·�rC(�r, t ), (9)

where �k is the wave vector of the scattered beam. Scattering
experiments measure the structure factor S(�k, t ). Isotropically,
C(�r, t ) and S(�k, t ) depend on the absolute value of the vec-
tors, r = |�r| and k = |�k|, respectively.

If the system is isotropic and characterized by a single
length scale R(t ), then domain morphologies do not change
with time t apart from a scale factor. The correlation function
and structure factor exhibit the following dynamical scaling
forms [28]:

C(�r, t ) = f
( r

R

)
, (10)

S(�k, t ) = R(t )dg[kR(t )], (11)

where d = 2 refers to the dimensionality. The scaling func-
tions f (x) and g(y) are related as

g(y) =
∫

d �xei �x·�yf (x), (12)

The characteristic length scale R(t ) is defined as the distance
over which the correlation function C(�r, t ) decays to an
arbitrary fraction (e.g., 0.3) of its maximum value. Asymp-
totically, the only existing characteristic length scale is R(t )
[26], which could be extracted either from the decay of C(�r, t )
or from the number density of defects. In this paper, R(t ) is
determined from the decay of C(�r, t ). The morphology of
domain structure and the coarsening dynamics can also be
viewed from the analysis of structure factor S(�k, t ). Bray and

Puri [47], and Toyoki [48] have independently proposed that
for an n-component vector field, the scaling function g(y) has
a large-y behavior:

g(y) ∼ y−(d+n), for kR → ∞. (13)

Equation (13) is known as the generalized Porod law. For
scalar order parameter field (n = 1), this equation converts to
the famous Porod’s law [49,50], recognized as emerging from
configurations with sharp domain interfaces.

III. NUMERICAL RESULTS

In this section, we present numerical results from our sim-
ulations of the two-dimensional q-state clock model. Initially,
we have estimated the transition temperatures (T 1

c and T 2
c )

for various spin states q marking the phase diagram relevant
to the interest of this paper. Subsequently, we study the
coarsening dynamics in the q-state clock model following two
independent temperature quench in the LRO regime (T < T 2

c )
and QLRO regime (T 2

c < T < T 1
c ).

A. Estimation of T 1
c and T 2

c

Let us first present the results which quantify T 1
c and T 2

c .
We study the q-state clock model on a square lattice (L2) of
linear sizes L = 32, 64, 96, 128, and 256. Starting from a
random initial configuration, the system has been equilibrated
using a Wolff cluster update algorithm [40]. After equilibrat-
ing the system for ∼106 MCS, we thermally average m, Cv ,
m2, m4, and mφ up to 6 × 105 MCS. One MCS corresponds
to an attempted sweep across the whole lattice (L2). The
results are further averaged over 100 independent runs of
initial configurations. Our results confirm that for q � 5, two
phase transitions occur: one at a low temperature (T 2

c ) and
the other at a relatively higher temperature (T 1

c ) which concur
with earlier findings [3–9].

Although existence of these transitions can be visualized
from the magnetization m and the peaks of the specific heat
Cv plotted against T , precise quantification of the transition
temperatures would require extensive simulation with system
size L → ∞. Thus, a fourth-order cumulant of the relevant
order parameter [42–45] U4 is used as a preferred method of
estimating the upper transition temperature T 1

c ; nevertheless,
U4 failed to capture the lower transition temperature T 2

c for
q > 4. Therefore, T 2

c for different q’s have been measured
from the temperature dependency of the cumulant Um defined
in Eq. (6).

Figure 1 shows data for the equilibrium properties of the
nine-state clock model for L = 32, 64, 96, 128, and 256. In
the figure the linear lattice lengths are respectively represented
by a blue star, green solid circle, red solid square, black
open circle, and magenta open square (color online). Two
distinct regions of inflection in Fig. 1(a) correspond to two
different transitions: one from a disordered to a quasi-long-
range ordered phase via T 1

c and another from quasi-long-range
ordered phase to the ordered phase via T 2

c . Two distinct peaks
in Cv versus T plot in Fig. 1(b) confirm this scenario, where
the right peak signifies a phase transition from the disordered
homogeneous phase to the QLRO phase and the left peak
defines the phase transition from QLRO to LRO (ordered)
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FIG. 1. Equilibrium parameters of the 9-state clock model for
L = 32 (blue star), 64 (green solid circle), 96 (red solid square),
128 (black open circle), and 256 (magenta open square). (a) Mag-
netization m versus T for the 9-state clock model. Two inflections
observed in the profile of m correspond to the phase transitions. (b)
Two peaks in the Cv-versus-T plot confirms the fact of two different
phase transitions; right peak denotes transition from disordered to
the QLRO phase occurring at higher temperature T 1

c and transition
from the QLRO to the ordered phase is denoted by the left peak at a
lower temperature T 2

c . The shaded region in (b) implies the spread of
the peak for which an accurate measure of T 1

c is not possible. A more
precise quantification of T 2

c and T 1
c from the temperature dependence

of Um and U4 are shown in (c) and (d), respectively.

phase. Note that the right peak, which corresponds to the
upper critical temperature T 1

c , decreases as L increases, but
the change is not significant for the left peak corresponding
to the lower critical temperature T 2

c . In Fig. 1(c), T 2
c has been

extracted from the intersection of Um curves for various L,
and in Fig. 1(d), T 1

c is quantified from the intersection of U4.
T 1

c and T 2
c for the nine-state clock model are ∼0.9 and 0.33,

respectively.
The q-state clock model phase diagram in Fig. 2 essentially

spotlights the quantitative change of T 1
c and T 2

c with q. The
plot clearly demonstrates that the phase transition for q � 4
is characterized by one transition temperature Tc, represented
by maroon star (color online). It also comprehensively shows
that T 1

c , represented by the blue solid diamond (color online),
approaches �0.9 for q � 6, while T 2

c , represented by the
red solid circle (color online), is a decreasing function of q

and for large-enough q this transition eventually vanishes.
Clearly, with increasing number of spin states the discrete
clock model becomes identical with d = 2 XY model (q →
∞) with only one phase transition occurring at the Kosterlitz-
Thouless transition point TKT � 0.892. The dashed line fitted
with T 2

c is the analytical prediction of the lower transition
temperature T 2

c /J � 4π2/1.7q2 [3,14,51]. T 2
c as a function of

q is tabulated in Table I. We have also explicitly marked the
three different phases, disordered (light pink, color online),

FIG. 2. Phase diagram of the q-state clock model. Simulation
data shows that T 2

c (red solid circle) is a decreasing function of
q (∀ q � 5), whereas T 1

c (blue solid rhombus) remain constant
at �0.9. Figure also shows single phase transition for q � 4 at Tc

(maroon star). The errors (black error bars) are smaller than the
corresponding symbol sizes. The two dashed lines fitted with T 1

c and
T 2

c are the theoretical prediction of Berezinskii-Kosterlitz-Thouless
transition temperature, TBKT � 0.892 and second transition temper-
atures of the q-state clock model, T 2

c (q ) = 4π 2/1.7q2, respectively.

QLRO (pale yellow, color online), and LRO (light sky blue,
color online) in order to have a more clear understanding
of the phase diagram. Our results agrees with the previously
estimated values of T 2

c obtained using different approaches
[9,14]. We utilize this universal phase diagram for the q-state
clock model to characterize the kinetics of domain growth fol-
lowing temperature quenches in the LRO and QLRO regimes.

B. Ordering dynamics in the q-state clock model

In this section, we present numerical results of phase-
ordering kinetics in the q-state clock model for q = 6, 9,

TABLE I. Lower critical temperatures T 2
c (q ) for the d = 2 q-

state clock model.

q T 2
c

5 0.897 ± 0.001
6 0.681 ± 0.001
7 0.531 ± 0.006
8 0.418 ± 0.001
9 0.334 ± 0.001
12 0.189 ± 0.002
20 0.0695 ± 0.0003
25 0.0448 ± 0.0002
35 0.0235 ± 0.0006
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t = 104

0

π/3

2π/3

π

4π/3

5π/3LRO

t = 105

0

π/3

2π/3

π

4π/3

5π/3LRO

t = 104

0

π/3

2π/3

π

4π/3

5π/3QLRO

t = 105

0

π/3

2π/3

π

4π/3

5π/3QLRO

FIG. 3. Time evolution snapshots of the 6-state clock model at
t = 104 MCS and t = 105 MCS for a quench to the LRO (upper
panel) and QLRO (lower panel) regimes are shown on square lattices
of size 10242. Upper panel shows domain evolution morphologies for
a quench from T = ∞ to T = 0.1 (LRO, T < T 2

c ), whereas domain
morphologies for a quench to T = 0.8 (QLRO, T 2

c < T < T 1
c ) are

shown in the lower panel. Gray color shades indicates different
angles possible for the orientations of the clock spins according to
Eq. (2). The data clearly show that quench to the LRO regime is
characterized via well-defined compact domains, whereas interpene-
trating rough domain morphology is the salient feature of the QLRO
regime.

12, and 20. The simulations are carried out on a square
lattice of size 10242 having periodic boundary conditions in
all directions. To emulate the homogeneous phase at high T ,
we assign random initial orientations to each spin according
to Eq. (2) and rapidly quench the system from T = ∞ to
(a) T = 0.1 in the LRO regime (T < T 2

c , see Table I) and
(b) T = 0.8 for 6-state clock model and T = 0.5 or 0.6 for
the 9-, 12-, and 20-state clock models which are within the
QLRO regime for the respective q states (T 2

c < T < T 1
c ).

Using the Metropolis algorithm, the system is updated up to
t = 106 MCS. All statistical results presented in this section
are averaged over 20 independent initial realizations.

Time evolution snapshots of domains for the six-state clock
model at t = 104 MCS and 105 MCS on a 10242 lattice are
shown in Fig. 3. The upper panel represents domain evolution
for a quench to the LRO regime at T = 0.1 and in the lower
panel quench is done to the QLRO regime at T = 0.8. We
see well-defined domains grow significantly at later times
for the quench to the LRO regime, whereas interpenetrating
domains with rough interfaces is typically the signature in
the QLRO regime. In the latter regime, no sharp domain
boundaries between neighboring domains could be observed.
The colorbar consists of six different shades of gray (color
online) corresponding to the six possible orientations for the
spin vectors of a six-state clock model as per Eq. (2).

LRO

0

4π/9

8π/9

4π/3

16π/9(a) q = 9

QLRO

0

4π/9

8π/9

4π/3

16π/9(c) q = 9

LRO

0

π/3

2π/3

π

4π/3

5π/3(b) q = 12

QLRO

0

π/3

2π/3

π

4π/3

5π/3(d) q = 12

FIG. 4. [(a) and (b)] Domain evolution snapshots of the (a) 9-
state clock model and (b) 12-state clock model at t = 105 MCS after
a quench from T = ∞ to the LRO regime (T = 0.1, T < T 2

c ). The
lattice size is 10242. [(c) and (d)] Analogous to (a) and (b) but for
a quench to the QLRO regime (T = 0.5, T 2

c < T < T 1
c ). Orientation

of the clock spins according to state q are represented by the different
gray colors. Due to higher degeneracy of the ground state, average
domain size for q = 12 is less than q = 9. A similar comparison is
not very obvious from the snapshots presented in (b) and (d).

Figure 4 shows domain evolution snapshots for the 9-
and 12-state clock models at t = 105 MCS. Figures 4(a) and
4(b), respectively, show domain configurations for q = 9 and
12 after a quench from T = ∞ to T = 0.1 (LRO, T < T 2

c ).
QLRO domain configurations after a rapid quench to T = 0.5
for the above-mentioned q states are shown in Figs. 4(c)
and 4(d), respectively. Lattice size is 10242. As we see in
the upper panel of Fig. 3, Figs. 4(a) and 4(b) show distinct
domain structures, whereas in Figs. 4(c) and 4(d), domains
are interpenetrating and lack compactness. Gray shades (color
online) in the colorbars represent different possible angles of
the spin vectors at each lattice point.

A q-state clock model can have q possible ground states
and the interface between two neighboring domains eventu-
ally lead to qC2 = q(q−1)

2 different choices. Moreover, in d =
2 and q � 3, three or more different domains would meet at a
point [see Figs. 4(a) and 4(b)] and for such a system both inter-
faces and point defects (vortices and antivortices) are present
as topological disorders [26]. Vortex and antivortex are iden-
tified by the net change in spin orientations surrounding the
point defects: If the change is 2π , then it is a vortex, and if the
change is −2π , then the defect is an antivortex. Initially the
system coarsens via merging of domain walls and annihilation
of vortices by oppositely charged antivortices; nevertheless, a
close observation at Fig. 3 snapshots in the LRO regime reveal
that asymptotically merging of the domain interfaces becomes
a dominant mechanism in the growth process. As the system
approaches the equilibrium, energetically expensive interfaces
and point defects are rapidly eliminated and at a later stage,
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FIG. 5. Dynamical scaling of the nine-state clock model for
a quench to the LRO regime. (a) Scaling plot of the correlation
function C(r, t ) versus r/R(t ) after a quench from T = ∞ to
T = 0.1 (T < T 2

c ). The inset shows the unscaled data. (b) Scaled
structure factor (on a log-log scale), S(k, t )R(t )−2 versus kR(t ).
The Bray-Puri-Toyoki (BPT) function in Eq. (14) for n = 2 and
its Fourier transform are shown as the (green) solid curves in (a)
and (b), respectively. Slope of the large-k tail of the structure factor
scaling function found to lie between −3 and −4 (−3.27 precisely).
A −3 slope of the structure factor tail signifies the Porod’s decay,
S(k, t ) ∼ k−(d+1), whereas −4 slope denotes the generalized Porod’s
law: S(k, t ) ∼ k−(d+n) for d = n = 2.

a few thermally exited interfaces and defects remain in the
system. The colormaps in Figs. 4(a) and 4(b) also indicate
that when the average angular difference between the adjacent
domains is small, the energy cost to create an interface is
minimum and such configurations is easy to find. Vortices
are clearly observed in the domain morphologies when the
quench is done in the LRO regime. There one can notice
points encircling a number of different phases or domains and
the phases are arranged in such a way that the average angular
difference of spin orientations of the two adjacent domains
are always minimum. We have also noticed that at very late
time of the growth process, the system is completely free of
point defects, whereas interfaces are still present. Domains
in Fig. 4(b) are more crowded (single spin domains) than of
Fig. 4(a) as the ground state of q = 12 is more degenerate than
q = 9.

Our data, in Fig. 5 present the dynamical scaling of the cor-
relation function and structure factor for the nine-state clock
model when the system is quenched to T = 0.1 (T < T 2

c )
in the LRO regime. Note that a similar dynamical scaling in
correlation function and structure factor holds good for q = 6
and 12 as well (data not shown here). Data collapse in Fig. 5(a)
confirms the dynamical scaling of the correlation function
C(r, t ) with r/R; whereas the structure factor S(k, t ) suggests
a scaling form S(k, t )R(t )−2 with kR(t ) as shown in Fig. 5(b).
The structure factor S(k, t ) is essentially as the Fourier trans-
form of the equal time correlation function C(r, t ). Physically,
dynamical scaling of the correlation function signifies that
the domain morphologies are equivalent and independent of
time when characteristic lengths are scaled by average domain
size R(t ) at time t . The solid curve in Fig. 4(a) is the Bray-
Puri-Toyoki (BPT) scaling function [47,48] for n = 2. The
BPT scaling function f (x) is the generalization of the Ohta-
Jasnow-Kawasaki function [52] for the n-component time-
dependent Ginzburg-Landau (TDGL) equation (with n � d)

FIG. 6. (a) Scaled correlation function, C(r, t ) versus r/R, for
the nine-state clock model after a quench from T = ∞ to the QLRO
regime (T 2

c < T < T 1
c ) along with the unscaled data (inset) at t =

104, 105, and 106 MCS. (b) Scaled structure factor in log-log plot.
Data show that dynamical scaling is valid for a quench between T 1

c

and T 2
c but the same is not validated by the BPT function (not shown)

as in Fig. 5.

and has the following form:

f (r/R) = nγ

2π

[
B

(
n + 1

2
,

1

2

)]2

F

(
1

2
,

1

2
;
n + 2

2
; γ 2

)
,

(14)
where γ = exp(−r2/R2), B(x, y) ≡ �(x)�(y)/�(x + y) is
the Euler’s β function, and F (a, b; c; z) is the hypergeometric
function 2F1. In Fig. 5(b), the solid curve is the Fourier
transform of the BPT function and the large-k behavior of
the structure factor tail generate a slope −3.27 (in log-log
plot) lying between −4 and −3. A −4 slope of the struc-
ture factor tail corresponds to the “generalized Porod’s law”:
S(k, t ) ∼ k−(d+n) for d = 2, n = 2 and a growth process typi-
cally driven by point defects, such as vortices and antivortices
(this is because the defect core of an n-component model in
d dimensions will have a surface of dimension d − n [26]
and for d = n = 2, these defects are points), whereas slope
−3 denotes “Porod’s decay”: S(k, t ) ∼ k−(d+1) for compact
domains surrounded by sharp domain interfaces. A structure
factor tail with a slope between −4 and −3 physically implies
a growth process involving both types of topological defects
which could be explained from the corresponding length-scale
data in Fig. 7.

Next we examine the scaling properties of the correlation
function and structure factor for a quench in the QLRO
regime, T 2

c < T < T 1
c . Data shown here are for a nine-state

clock model; the qualitative nature of the data for q = 12
and 20 is similar (not shown). We plot C(r, t ) versus r/R

along with the unscaled data in the inset for t = 104 MCS,
105 MCS, and 106 MCS in Fig. 6(a) and observe nice data
collapse on a single master curve implying that the domain
morphologies are time invariant. Figure 6(b) shows the scaled
structure factor. The asymptotic regime of the structure factor
scaling function or the large-k tail of the scaled structure factor
in Fig. 6(b) is characterized by S(k, t ) ∼ k−1.9, where the non-
integer slope −1.9 is indicative of the interpenetrating fractal
architecture of domains or systems with rough morphologies
[see Figs. 4(b)–4(d)] where scattering happens from fractal
interfaces. These data clearly indicate a non-Porod behavior
for a quench in the QLRO regime [35]. A noninteger decay
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exponent of the structure factor tail has also been reported
for other systems representing ground-state morphologies of a
dilute antiferromagnets, droplet-in-droplet morphologies of a
double-phase-separating mixtures, ground-state morphologies
of the d = 2, 3 random-field Ising Model [53–55], etc., where
the respective noninteger exponents are found to exhibit non-
Porod behavior associated with scattering from the rough
domain morphologies.

Subsequently, we investigate the time dependence of the
average domain length R(t ).

A rapid quench from a high-temperature homogeneous
phase to a temperature below the critical temperature makes
a system thermodynamically unstable and subsequent evo-
lution toward the new equilibrium state emerges a length-
scale R(t ) corresponding to the preferred phase. R(t ) is the
characteristic length scale of domains that grow with t . In
systems with sharp domain interfaces, the driving force for
late stage domain growth is the domain wall curvature, as the
system dissipates energy by contracting the total surface area.
The relation between interface motion and local curvature
as per the Allan-Cahn [56] equation is v = −K , where v ∼
dR/dt is the interface velocity and K ∼ 1/R is the domain
wall curvature. For a nonconserved system, the equation for
curvature-driven growth reads [26,28]:

dR

dt
= a(R, T )

R
, (15)

where a(R, T ) is the diffusion constant and depends on length
scale R and temperature T . For pure systems, a(R, T ) is
invariant of domain scale and temperature, i.e., a(R, T ) =
constant. Now, equating and integrating (15) we get the do-
main growth law for curvature-driven growth as R(t ) ∼ t

1
2 ,

the LCA growth law. The LCA growth law has also been
widely reported as the governing domain growth law for the
q-state clock model in the literature [26,28]. Nevertheless,
as we see in the domain evolution snapshots presented in
Figs. 4(a) and 4(c), sharp domain walls can only be seen
when the temperature quench is done in the LRO regime, i.e.,
T < T 2

c . Quench in the QLRO regime, where T 2
c < T < T 1

c ,
led to a coarsening via interaction of rough domain interfaces.
Thus, we argue that for domain coarsening in the q-state clock
model, the LCA growth law is only valid for a quench into the
LRO regime. Figure 7 shows the plots of R(t ) versus t on a
log-log scale for the q = 2-, 6-, 9-, and 12-state clock models
and the d = 2 XY model with quench temperature T = 0.1.
R(t ) is measured from the correlation function C(r, t ) when
it falls to 0.3 of its maximum value. Fitting a straight line
with the simulation data we have extracted the asymptotic
growth exponent n � 0.5 for q = 2, 6, 9, and 12, indicated
by the dashed line placed as a guide to the eye. The exponent
is less than 0.5 for the XY model as ordering kinetics in
d = 2 XY model follows R(t ) ∼ (t/ log t )

1
2 growth law. A

close observation of the R(t ) versus t plot for q = 6, 9, and
12 reveals a crossover from a preasymptotic domain growth
with growth exponent < 0.5 to an asymptotic growth with
growth exponent �0.5. This behavior is possibly related to
a relatively slow growth process in the preasymptotic regime
driven by merging domain walls and annihilating point defects
that switches to a faster growth regime driven majorly by
merging domain interfaces leading to a t1/2 growth law in

101

102

103 104 105 106

LRO (T = 0.1)

t1
/2

R
(t

)

t

q = 2
q = 6
q = 9

q = 12
XY (q →∞)

FIG. 7. R(t ) versus t (on a log-log scale) for various values of q

following a quench from T = ∞ to the LRO regime (T = 0.1). The
dashed line indicates the growth law R(t ) ∼ t1/2 and is included as a
guide to the eye. The length-scale data of the q-state clock model are
further compared with the length-scale data of the d = 2 XY model
for which the extracted slope is <0.5 as the XY model exhibits a
growth law: R(t ) ∼ (t/ ln t )1/2.

the asymptotic limit. This signature can further be seen in
Fig. 5(b) where the tail of the structure factor scaling function
decays with an effective exponent −3.17 signifying contri-
bution from both types of defects (domain walls and point
defects) in the growth process in the initial stage and the
late time behavior is mainly controlled by the sharp domain
interfaces.

In Fig. 8, we demonstrate the possible growth law for
the q-state clock model for a quench in the QLRO regime.
R(t ) versus t plots for q-state clock model with quenched
temperatures between T 1

c and T 2
c yield power-law growth with

exponents much less than 0.5 for q = 6, 9, 12, and 20 (data
not shown). For q = 6, the growth law reads R(t ) ∼ t0.38 at
quenched T = 0.8 is in good agreement with an earlier study
[35] where R(t ) ∼ t0.35 for a quench to T = 0.76. This slow
domain growth law is a natural consequence of interpenetrat-
ing domains or, in other words, the growth process is governed
by fractal interfaces. It is imperative to understand the domain
growth kinetics in clock model from our existing knowledge
of coarsening dynamics in the d = 2 XY model. Pure XY

model (n = 2) in d = 2 (q → ∞) has two phases, a high-
temperature disordered phase and a low-temperature QLRO
phase (below Kosterlitz-Thouless transition temperature) and
is completely devoid of any LRO phase. Domain growth
kinetics for a temperature quench to the QLRO phase in
d = 2 XY model, or in general a model with d = n = 2, is
characterized by the R(t ) ∼ (t/ ln t )

1
2 [26,57]. Now for d =

n = 2, by definition of defect dimension, this growth should
be controlled by dimensionless point defects which are vor-
tices and antivortices. The QLRO phase of the q-state clock
model is almost devoid of well-defined domain interfaces
and coarsening can be explained only via the annihilation
of vortex-antivortex pairs. In our data in Figs. 8(a)–8(c), we
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(b)

q = 12

QLRO

(t/l
n t)

1/2

R
(t
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t/ln t
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(t/l
n t)

1/2

R
(t

)

t/ln t

FIG. 8. Length-scale data for the q-state clock model for a quench from T = ∞ to the QLRO regime (T = 0.5, T 2
c < T < T 1

c ) of the
respective q-state clock models. Plots of R(t ) versus t/ ln t (on a log-log scale) are shown for (a) q = 9, (b) q = 12, and (c) q = 20 state
clock models. The d = 2 XY growth law R(t ) ∼ (t/ ln t )1/2 is indicated by the dashed line which is of slope 0.5. Extracted exponents for the
9-state, 12-state, and 20-state clock models are 0.501 ± 0.002, 0.504 ± 0.008, and 0.495 ± 0.009, respectively.

have shown that a logarithmic correction of t yields growth
exponents n � 0.5 for q = 9, 12, and 20 in the asymptotic
time limit. The respective growth exponents which we mea-
sure during t ∈ [104 − 105] for q = 9, 12, and 20 by fitting
a straight line with the simulation data are 0.501 ± 0.002,
0.504 ± 0.008, and 0.495 ± 0.009. For a quench to the QLRO
regime, our numerical results demonstrate that coarsening
dynamics in this regime is driven by the elimination of
vortex-antivortex pairs and R(t ) ∼ (t/ ln t )

1
2 is the asymptotic

growth. Since T 2
c is a decreasing function of q, at large q (as

well as q → ∞, XY model) the same growth law persists
across the temperatures below T 1

c dominated by a QLRO
phase.

IV. SUMMARY AND DISCUSSION

In this paper we have undertaken a numerical investigation
of the nonequilibrium domain growth kinetics of the q-state
clock model for a quench to the LRO and QLRO phase via
comprehensive Monte Carlo simulation. We first confirm the
existence of two distinct transition temperatures for a finite
q-state clock model with q � 5 [3–9] and then quantified
the transition temperatures. Transition from the disordered
to QLRO phase at T 1

c is quantified from the temperature
dependence of the Binder cumulant U4 [see Eq. (5)], and
the lower transition temperature T 2

c which characterizes the
transition from the QLRO phase to the LRO phase is measured
from the temperature dependence of another cumulant, Um

[see Eq. (6)].
We have investigated the coarsening dynamics of the q-

state clock model by quenching an initially prepared homo-
geneous system at T → ∞ to T < T 2

c , where the equilibrium
phase is LRO and T 2

c < T < T 1
c , where the equilibrium phase

is QLRO. The domain morphologies for the corresponding
quenches are investigated from the behavior of the equal time
spatial correlation function C(r, t ) and its Fourier transform,
the structure factor S(k, t ).

The quench to the LRO phase (T < T 2
c ) is characterized by

well-defined domain boundary with vortices or antivortices at
the meeting point of three or more sharp domain interfaces.

The scaling form of C(r, t ) and S(k, t ) are time-invariant
and the large-k tail of the structure factor scaling function
yields a slope falling between the slope of Porod decay and
generalized Porod law. The growth law in this regime exhibit a
crossover from a slow power-law growth in the preasymptotic
regime where coarsening is governed by the annealing of both
vortices and interfaces to a LCA power-law growth at the
asymptotic limit where growth is characterized mainly by the
merging of sharp domain interfaces.

The characteristic of domains for a quench to the QLRO
phase (T 2

c < T < T 1
c ) can be well described by the inter-

penetrating, rough domain morphology with well-defined
point defects. Although the domain growth in this regime
satisfies the power law R(t ) ∼ tn, n turns out to be < 0.5.
This slow nonequilibrium dynamics is a consequence of
fractal interfaces between neighboring domains. Our length-
scale data for q = 9, 12, and 20 convincingly establish that
coarsening in the QLRO phase is related to the growth
law for d = n = 2 systems akin to the XY model, where
the growth law is R(t ) ∼ (t/ ln t )

1
2 . Since the QLRO phase

of the q-state clock model does not possess well-defined
sharp domains, coarsening dynamics in this regime is driven
via the annihilation of point defects, viz., vortices and
antivortices.

In conclusion, our study provides a detail analysis of
domain growth kinetics of finite q-state clock models in
both LRO and QLRO regimes of the phase diagram. The
asymptotic growth kinetics in these regimes is driven by
two different mechanisms, which are entangled in the early
time regimes. Thus, an interesting extension of this study
would be to explore the phase-ordering kinetics in presence of
disorder.
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