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Nonequilibrium uncertainty principle from information geometry
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With a statistical measure of distance, we derive a classical uncertainty relation for processes traversing
nonequilibrium states both transiently and irreversibly. The geometric uncertainty associated with dynamical
histories that we define is an upper bound for the entropy production and flow rates, but it does not necessarily
correlate with the shortest distance to equilibrium. For slowly driven systems, we show that our uncertainty
lower bounds the rate of energy fluctuations. For a model one-bit memory device, we find that expediting the
erasure protocol increases the maximum dissipated heat and geometric uncertainty. A driven version of Onsager’s
three-state model shows that a set of dissipative, high-uncertainty initial conditions, some of which are near
equilibrium, scar the state space.
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I. INTRODUCTION

Myriad phenomena generate structures and patterns that
are unique outside of thermodynamic equilibrium. Efforts to
understand these processes stretch back to the very beginnings
of thermodynamics, a pinnacle of physics that encapsulates
the quantitative understanding of energy transfer and trans-
formations [1]. A powerful approach to studying thermo-
dynamic processes focuses on uncertainty principles [2–4].
Thermal uncertainty relations have strong resemblances to
their quantum counterparts and rest on the foundations of
equilibrium statistical mechanics. The recent introduction of
nonequilibrium uncertainty relations [5,6] has generated a
flurry of activity [7–13], but these results are largely restricted
to nonequilibrium steady states. They leave open the question
of whether there are uncertainty relations for processes that are
transient and nonstationary. We address this question here.

There are growing links between thermodynamics and
information [14–17], some of which place bounds [18–20]
on entropy changes [21]. One important example in this
context is the erasure of physically stored information, which
dissipates heat and limits the computational power of physical
devices [22]. There is still much to be done to disentangle
physical and logical irreversibility in order to clarify the
processing of information and thermodynamic function [23].
Of particular interest are extending predictions into practically
important regimes where erasure is fast and devices are small,
when dynamics and statistical fluctuations rule. Progress in
this direction requires a firm grasp on the information in
the distributions [24] sampled by processes driven transiently
away from equilibrium.

For nonstationary processes, it is natural to treat the dis-
tributions evolving under certain control parameters through
ideas formalized in information geometry [25–29]. There
the focus is on the structure of the manifold of probability
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distributions, along with the distance and velocity paths tra-
versed by the dynamics of the system. Though often presented
in a general setting [25], information geometry has connections
to thermodynamics [30–34]. For nonstationary irreversible
processes, results are scarce, however, and our understanding
of connections between thermodynamics and information
geometry remains incomplete. A significant challenge to the
development of a statistical-mechanical theory for nonstation-
ary processes is that there are few restrictions on the possible
nonequilibrium distributions over paths or states. Here we
establish a fundamental connection between the acceleration of
the Shannon entropy and the Fisher information that enables us
to bring the mathematical machinery of information geometry
to bear on the problem.

II. THEORY

A. Notation and setting

At the ensemble level, a path is the set of probability
distributions a system samples as it evolves over a finite time
interval. We define the set of probability distributions P(�) =
{p : � → R | px (t ) > 0 ∀ x ∈ �,

∑
x px (t ) = 1}. A subset of

these distributions belongs to the manifold � = {p(x|θ (t )) :
θ (t ) = {θ1(t ), θ2(t ), . . . , θN (t )}}, where θ (t ) represents the
time-dependent control parameters [25] determining the path
across the manifold. Empirically, one could sample trajectories
through the system state space and construct a distribution at
each moment in time from the ensemble of realizations (each
distribution being a point on � in the large sample limit).
Together, these distributions are the path in probability space
between the initial distribution p(t0) and the final distribution
p(tf ) over the time interval τ = tf − t0. Here our main results
are independent of the form of the distributions. We only
assume the dynamics is governed by the master equation

ṗx (t ) =
∑

y

Wxy (θ (t ))py (t ), (1)
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where ṗx (t ) = dpx (t )/dt and Wxy (t ) is the transition rate from
state y → x. The occupation probability px (t ) = p(x|θ (t ))
for state x is conditional on the control parameters θ (t ). The
rate matrix W(t ) also depends on θ (t ) and follows the usual
conventions: For Wxy (t ) ∈ W(t ), Wxy (t ) > 0 when x �= y and
Wyy (t ) = − ∑

x �=y Wxy (t ) so that
∑

x Wxy (t ) = 0.
A system satisfies detailed balance if the currents or

thermodynamic fluxes Cxy (t ) = Wxy (t )py (t ) − Wyx (t )px (t )
are zero for all x, y. Otherwise, the existence of current
implies the system is undergoing an irreversible process [35].
The current is related to the dynamics through the master
equations ṗx (t ) = ∑

y Cxy (t ); however, it does not satisfy the
requirements of a metric and so cannot be used to quantify
the distance from equilibrium. However, it is well known
that the Fisher information is a metric [36], providing a
notion of distinguishability between neighboring distributions
related here by the time evolution of the dynamics. Here we
arrive at the Fisher information and the geometric uncertainty
accumulated along a path across � through the matrix,

Exy (t ) = Wxy (t ) − Cxy (t )

2py (t )
. (2)

The results that follow are built on the foundation set by the
properties of this matrix (Appendix). Even when the current
is nonzero, this matrix satisfies a detailed balance condition
Exy (t )py (t ) = Eyx (t )px (t ). It is similar to a symmetric matrix
and thus has a complete set of eigenvectors and real eigenval-
ues [37]. Matrices with a similar form and function are known
for discrete-time, discrete-state Markov chains [38,39] but not
for continuous-time Markovian dynamics.

B. Fisher information and thermodynamics

The matrix E allows us to connect the Fisher information
(from information geometry) to the entropic acceleration (from
thermodynamics). A more common approach uses the Fisher
matrix [25]

gij =
∑

x

px (t )
∂ ln px (t )

∂θi

∂ ln px (t )

∂θj

, (3)

which is a metric tensor that gives a statistical measure of
distance over a manifold of probability distributions ds2 =∑

i,j gij dθidθj .
The Fisher information IF (t ) reflects a change in a probabil-

ity distribution with respect to a set of control parameters [40].
When parametrized by time it is

IF (t ) =
∑
i,j

dθi

dt
gij

dθj

dt
=

∑
x

px (t )

[
d ln px (t )

dt

]2

. (4)

Thus far, the Fisher information is purely a mathematical
construction. However, we can relate it to the acceleration of
the entropy through the entropy production and flow and make
a connection between information and thermodynamics.

Shannon [41] showed that Iy (t ) = − ln py (t ) is the in-
formation associated with state y. The difference Ixy (t ) =
− ln py (t )/px (t ) is then the local difference in information
or relative surprise about states y and x. With this context,

consider the Shannon entropy rate

Ṡ(t ) ≡ −
∑

x

ṗx (t ) ln px (t ) = −〈〈I (t )〉〉, (5)

which we express as an average 〈〈·〉〉 ≡ ∑
x,y Wxy (t )py (t )[·]

that is equivalent to an average over the current (up to a factor of
1/2) [42]. The connection to nonequilibrium thermodynamics
comes from decomposing the entropy rate at any instant
in time Ṡ = Ṡi + Ṡe into the entropy production rate from
sources in the system Ṡi and the rate of entropy exchange with
the environment Ṡe = − ∑

x,y Wxy (t )py (t ) ln Wxy (t )/Wyx (t )
[43]. The entropy production Ṡi = 〈〈F 〉〉 is an average of
the generalized forces Fxy = ln Wxy (t )py (t ) − ln Wyx (t )px (t )
[42], which multiplied by Boltzmann’s constant kB are the
thermodynamic affinities [35]. Here we set kB = 1.

The second derivative of the Shannon entropy is the entropic
acceleration

S̈(t ) = − d

dt
〈〈I (t )〉〉 = −

∑
x

p̈x (t ) ln px (t ) − 〈〈İ (t )〉〉. (6)

Our first main result is that this acceleration relates to the Fisher
information, which for nonstationary irreversible Markovian
processes is an average over the rate of information change in
the system

IF (t ) = −
∑
x,y

Wxy (t )py (t )
d

dt
ln

[
Eyx (t )

Exy (t )

]
= 〈〈İ (t )〉〉. (7)

The combination of Eqs. (6) and (7) shows that the Fisher
information and the entropic acceleration are related:

S̈(t ) = −
∑

x

p̈x (t ) ln px (t ) − IF (t ) = S̈i + S̈e. (8)

This result can be cast in matrix form with E(t ) (Appendix),
which can also be expressed in terms of the thermodynamic
forces. The entropic acceleration measures the rate at which
the bulk information changes in time, the Fisher information
is the local rate of information change on average, and the re-
mainder is their sum C = − ∑

x p̈x (t ) ln px (t ) = d〈〈I 〉〉/dt +
〈〈dI/dt〉〉.

C. Uncertainty and deviations from the geodesic

Now, by introducing a measure of uncertainty over a path
across �, these results enable us to show that for any initial
and final distributions, the entropy rate is bounded from above
by the contributions from the local and bulk information rates
and the geometric uncertainty about the path. Rao showed that
the Fisher information matrix satisfies the requirements of a
metric [36] and so the Fisher information relates to the line
element between two distributions infinitesimally displaced
from one another, ds2 = IF (t ) dt2. The length L of a path on
the manifold � can then be measured with the statistical dis-
tance [44]L = ∫ tf

t0
dt

√
IF (t ). The Cauchy-Schwarz inequality

yields the statistical divergence

J ≡ τ

∫ tf

t0

dt IF (t ) � L2. (9)

Previous work has shown that J − L2 � 0 is a temporal
variance [27,28] and that in one representation can measure
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cumulative fluctuations in the rate coefficients for irreversible
decay processes [45].

In the current context, the difference between the two
terms of the Cauchy-Schwarz inequality equals the variance or
geometric uncertainty of the path connecting p(t0) and p(tf )
that measures the cumulative deviations from the geodesic.
To illustrate this interpretation, we define the time average for
a function A(t ) as E[A(t )] = τ−1

∫ tf
t0

dt A(t ). The difference
between the time average of IF and the squared time average
of

√
IF over the path is the time-averaged variance

σ 2 = J − L2

τ 2
= E[IF ] − E[

√
IF ]2 � 0. (10)

This geometric uncertainty is the cumulative deviation from
the geodesic connecting the initial and final distributions. It
depends on the path and the initial and final distributions. We
expect it to be nonzero for most irreversible processes. Notable
exceptions are paths following the geodesic connecting two
distributions. These paths correspond to the condition J =
L2 [44] and a variance of zero. These certain paths are irre-
versible nonstationary paths with zero geometric uncertainty.

It has previously been shown that measuring cumulative
deviations from the geodesic amounts to measuring the cu-
mulative fluctuations in nonequilibrium observables [33,45].
Past work has also used statistical distances (though with other
metrics) to measure the dissipation associated with quasistatic
transformations [46]. These results, however, do not connect
thermodynamic quantities such as the entropic acceleration to
the Fisher information for general nonstationary irreversible
processes as we do here.

Our second main result is a bound on the entropy rate by
the geometric uncertainty. It follows from recognizing that the
variance satisfies the inequality

σ 2 � 1

τ

∫ tf

t0

dt (IF + E[
√

IF ]2) � 2J
τ 2

, (11)

where we use J − L2 � 0 and the non-negativity of the
variance. Defining I ≡ τ−1

∫ tf
t0

dt〈〈İ 〉〉, this relation becomes

Iσ−2 � 1
2 . (12)

The intuition behind this uncertainty relation is that different
paths across the manifold of probability distributions � can
lower the time-averaged rate of information change I, but only
at the expense of a corresponding decrease in uncertainty (a
smaller excursion from the geodesic). Simply put, the uncer-
tainty places a bound on the cumulative rate of information
change. It is worth noting that this information-uncertainty
ratio is valid for nonstationary irreversible paths over any finite
time interval between arbitrary probability distributions. To
test this inequality, one only needs the basic ingredients of
a Markov state model, models that have proven useful for
discovering collective variables and analyzing rare events in
diverse areas, including protein (un)folding [47,48].

Another way to write the uncertainty relation is in terms of
the entropic acceleration (8). Upon integrating, it becomes a
bound on the entropy rate

�Ṡ � C − σ 2τ

2
, (13)

where again C = − ∫ tf
t0

dt
∑

x p̈x (t ) ln px (t ) and �Ṡ =
Ṡ(tf ) − Ṡ(t0). The quantities C and σ 2τ/2 can both be zero
only in a stationary state, that is, this uncertainty relation
applies specifically to the nonstationary regime, and are mea-
surable from occupation and transition probabilities. A direct
connection to previous stationary uncertainty relations appears
to be a subtle question. However, the present result has a clear
physical meaning: The entropy rate (from thermodynamics) is
bounded by contributions from the local and bulk information
dynamics and cumulative deviations from the geodesic (from
information geometry). When no heat is exchanged, these
information dynamics bound the entropy production; when
there are no internal sources of entropy production, they bound
the entropy (heat) flow.

The geometric uncertainty measures deviations from the
geodesic. Along the geodesic, the average local rate of infor-
mation change is constant and the path is certain:

I = 〈〈İ 〉〉 = 〈〈S̈i〉〉 + 〈〈S̈e〉〉 (geodesic). (14)

In other words, the average local entropic acceleration is
constant, independent of time and distance from the final
distribution.

D. Special cases

The results so far avoid any assumptions about the probabil-
ity distributions, rate of driving, or closeness to equilibrium. If
the system is undergoing a process at (nonequilibrium) steady
state ṗx = 0, the Fisher information is IF = 0. As a result,
there is zero path uncertainty σ 2 = I = 0 and the local entropy
production rate and entropy flow rate are exactly in balance:
〈〈S̈i〉〉 = 〈〈Ḟ 〉〉 = −〈〈S̈e〉〉.

While the results in the preceding section are independent of
the form of the probability distributions, the special case of an
exponential energy distribution gives further physical insight.
Of particular interest is a single-component, homogeneous,
closed system at thermal equilibrium with a reservoir at inverse
temperature β = 1/kBT ,

px (t ) = Z−1e−βεx (t ), (15)

in which the energy of each state of the system is driven
slowly. Under similar conditions, Crooks [49] showed that for
the canonical ensemble, the Fisher information is equal to the
infinitesimal change in energy with respect to a change in the
control parameter,

IF (θ ) = β2

〈(
∂ε

∂θ
−

〈
∂ε

∂θ

〉)2
〉
. (16)

If θ = β is the control parameter, this expression becomes the
variance measuring energy fluctuations around equilibrium.
Here we derive a similar result. The key differences is that we
fix β and explicitly incorporate time. In this case, IF measures
the fluctuations in the energy rates.

Given the time-dependent probability distribution above,
the rate of change is

ṗx (t ) = −βε̇x (t )px (t ) + βpx (t )
∑

x

ε̇x (t )px (t ). (17)
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FIG. 1. (a) Kinetic scheme for an asymmetric three-state model. The time-dependent transition rates are k+(t ) = 4 arctan(ω1t ) and
k(t )− = 4 arctan(ω2t ) with ω1 = 4 and ω2 = 6. Using arctan(ωit ) ensures that all initial conditions evolve to the stationary distribution
p∞

x = (1/3, 1/3, 1/3). Each initial condition in (b) and (c) is marked by a circle in (d), which shows the positive octant of a sphere colored
by Ṡ(t = tf ). Here tf is the initial time for each path to reach the stationary distribution (white square). At t = 0, Ṡ(t0) = 0. The scar on the
state space in (d) emerges over time from initial conditions that ultimately dissipate and have higher path uncertainties. One initial condition
is highlighted with a circle and corresponds to the dashed lines in (b) and (c). (c) Upper bound for Ṡ(t ), C − σ 2τ/2, for the five select initial
conditions as a function of the time interval τ = t − t0.

Writing the ensemble average as
∑

x px (t )[·] = 〈·〉 gives

d ln px (t )

dt
= β〈ε̇(t )〉 − βε̇x (t ) (18)

and

IF (t ) =
∑

x

px (t )

(
d ln px (t )

dt

)2

= β2Var[ε̇(t )]. (19)

Here the energy is playing the role of our control parameter
and β is held fixed, so the Fisher information measures
the fluctuations in the energy rate. In this special case, the
uncertainty relation (12) becomes

β2

τ

∫ tf

t0

dt Var[ε̇(t )] � σ 2

2
. (20)

The geometric uncertainty over the path lower bounds time-
averaged fluctuations of the energy rates. The geodesic is a
path traversed when systems have no fluctuations in the energy
rate. All other paths will have a positive variance. During a
nonstationary process operating near this bound, lowering the
time-average fluctuations in energy flux will mean smaller
excursions from the geodesic where these fluctuations and
IF (t ) are constant: IF (t ) = β2Var[ε̇(t )] � 0.

III. APPLICATIONS

A. Uncertainty scarring in a single-cycle chemical reaction

To illustrate these results, we adapt the kinetic scheme
in Fig. 1(a), used by Onsager to demonstrate the reciprocal
relations of irreversible thermodynamics [50]. The model
consists of three states and a kinetics driven by the time-
dependent rate coefficients k+(t ) = 4 arctan(ω1t ) and k−(t ) =
4 arctan(ω2t ), with ω1 = 4 and ω2 = 6. The inverse tangent
function ensures that for large t , every path reaches the same
stationary distribution p∞

x = (1/3, 1/3, 1/3). Our criterion for
a path to reach the stationary distribution is that each initial
condition must evolve to be within ‖px (t ) − p∞

x ‖2 � 5 ×
10−3 of the stationary distribution. Under the transformation
γx (t ) ≡ √

px (t ), the system travels across the positive octant
of a sphere [Fig. 1(d)].

This system and driving protocol localize the effects of
the initial condition on the geometric uncertainty about the
nonequilibrium path. What we find is that the distance from
the stationary state says little about the uncertainty or the
entropy rate (dissipation rate). Figure 1(d) shows �Ṡ = Ṡ(t )
for all physically relevant initial conditions (color indicates
final Ṡ). Five initial conditions are marked (open circles),
each point equidistant from the equilibrium state p∞

x (white
square). While these initial conditions are all equally far from
equilibrium, their entropy rates exhibit different behavior over
time. The color in Fig. 1(b) corresponds to the initial conditions
highlighted in Fig. 1(d). The dashed line represents the initial
condition originating from the scar. This initial condition, like
all others originating from the scar, has a larger maximum
value of Ṡ(t ) than those equidistant from p∞

x , but launched
from off it. These scar-initial conditions are also unique in
that they all dissipate for a period of time. Initial conditions
off the scar do not dissipate. Regardless of the dissipative
nature of these paths, the uncertainty relation holds. The time
dependence of the upper bound is shown in Fig. 1(c) for the
same five initial conditions. Again, those initial conditions
originating in the scar have a larger uncertainty and upper
bound the entropy rate. Overall, these results are evidence that
the distance from the stationary state can be a poor predictor
of transient nonequilibrium behavior.

B. Landauer’s principle and information erasure

Perhaps nowhere is the connection between information
and thermodynamics more apparent than in Landauer’s prin-
ciple [51]. According to this principle, erasing one bit of
information requires the dissipation of at least kBT ln 2 thermal
energy as heat. Since the bound on �Ṡ(t ) in Eq. (13) holds
for any Markovian evolution between any two distributions,
we can explore the connection between the entropy (heat)
dissipation and the uncertainty about the erasure path. To
examine correlation between erasure paths and the heat release,
we consider the erasure of one bit of information in a model
memory device.

The model one-bit memory device initially consists of two
states x = {1, 0} that are equally probable, p(t0) = [0.5, 0.5].
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FIG. 2. Accelerating the erasure of information (destroying state
x = 0), by increasing ω, generates more (a) uncertainty (σ 2τ/2,
dashed lines) about the erasure path and maximum heat dissipated
[〈〈q(t )〉〉, solid lines]. (b) Heat dissipated 〈〈q(t )〉〉 follows the geodesic
(σ 2 ≈ 0) up until the maximum amount of heat is being released.
Beyond that point, the system undergoes entropic deceleration. The
time series are from p(t0) = [0.5, 0.5] to p(tf ) = [1, 0] for ω =
[0.05, 0.2, 0.3] shown in blue, black, and red lines, respectively.

To measure the heat release, we choose W (t ) such that every
distribution is of the form px (t ) = Z(t )−1e−βεx (t ), where Z(t )
is the partition function, β is the inverse temperature set to one,
and εx (t ) is the energy at state x.

To ensure that our dynamics generates the prescribed
sequence of distributions, we work backward. Given px (t )
for t0 � t � tf , we estimate ṗx (t ) = [px (t + δt ) − px (t )]/δt ,
where δt = 1 × 10−4 was used for all simulations. To find the
W (t ) that satisfies W (t )|p(t )〉 = |ṗ(t )〉, we solve the system
of linear equations using conservation of probability, W11(t ) =
−W21(t ) and W22(t ) = −W12(t ). There is an infinite family of
W (t ) that satisfies these conditions given by

W (t ) =
[−A

ṗ1(t )+Ap1(t )
p2(t )

A − ṗ1(t )+Ap1(t )
p2(t )

]
. (21)

We set A, which is arbitrary, to one. To calculate the second
inequality (13), we need to evaluate −∑

x p̈x (t ) ln px (t ),
given px (t ) = Z(t )−1e−βεx (t ). For the energies, we hold
ε1(t ) = ε2(t0) constant, making our initial distribution
px (t0) = [0.5, 0.5], and vary ε2(t ) = c1 + c2π

−1arctan(ωt ),
where we use c1 = 0.2 and c2 = 20. The first derivative of
ε2(t ) is ε̇2(t ) = 20ωπ−1(1 + ω2t2)−1.

The parameter ω controls the rate at kBT ln 2 of energy
that is dissipated. This restriction on px (t ) means that the
entropy rate Ṡ(t ) = − ∑

x,y Wxypy[εx (t ) − εy (t )] = 〈〈q(t )〉〉
is the average heat exchange between the system and sur-
roundings at an instant in time. From Eq. (13) we know that
〈〈q(t )〉〉 � C − σ 2τ/2. For this system, both C and σ 2τ/2 are
positive and 〈〈q(t )〉〉 � 0, as expected. The higher the rate at
which heat is dissipated, the larger the erasure path uncertainty
[Fig. 2(a)]. The uncertainty does not increase at a constant rate
during the erasure protocol. As energy is initially dissipated,
up to the maximum value, the system approximately follows
the geodesic across � and σ 2 ≈ 0. Figure 2(b) shows that
σ 2τ/2 is near zero until the system reaches a state of maximal
dissipation, after which the path moves off the geodesic. The
faster physically stored information is erased, the faster energy
is dissipated and the greater the resulting uncertainty about the
path to equilibrium.

IV. CONCLUSION

For processes arbitrarily far from equilibrium, we have
established a bound on the entropy production and flow rates
via the uncertainty in the path connecting any two arbitrary
distributions. This uncertainty relation holds when the system
evolves under a time-inhomogeneous Markovian dynamics,
making it applicable to a broad class of nonequilibrium
processes. It is clear that even for the classical single-cycle
system, the proximity to the stationary state is a poor indi-
cator of uncertainty: Initial conditions that are statistically
equidistant from the stationary state can have dramatically
different geometric uncertainties, uncertainties that we showed
are linked to the entropy rate. When erasing information in
a model one-bit memory device, we find that increasing the
speed of erasure comes at the expense of increasing the rate
of energy dissipation and the geometric uncertainty about
the path to equilibrium. For the special case of exponential
distributions, the fluctuations in the energy rate are bounded
by the geometric uncertainty of the path. This result suggests
that information geometry and stochastic thermodynamics
are intimately linked. We expect these results to be usefully
applied to other kinetic phenomena, such as (bio)chemical
reactions [52,53], and to further expand the understanding of
processes away from equilibrium, both near and far.
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APPENDIX: PROPERTIES OF THE MATRIX E

In this Appendix we will derive important properties of the
matrix

Exy (t ) = Wxy (t ) − Cxy (t )

2py (t )
(A1)

that underlie our results. We will use bra and ket notation 〈·||·〉,
so given the N × N matrix E we have [E|p〉]x = ∑

y Exypy

and [〈p|E]y = ∑
x pxExy .

1. Master equation

The master equation can be recast in terms of the matrix
E(t ). Multiplying E(t ) by the probability py (t ) and summing
gives∑

y

Exy (t )py (t ) =
∑

y

(
Wxy (t ) − Cxy (t )

2py (t )

)
py (t ),

∑
y

Exy (t )py (t ) = ṗx (t ) − ṗx (t )

2
,

2
∑

y

Exy (t )py (t ) = ṗx (t ) =
∑

y

Wxy (t )py (t ).

(A2)
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The final line shows that E(t ) is an alternative representation
of the dynamics governed by the master equation.

We should note that E(t ) is not a trivial transformation of
W (t ). For example, 2E(t ) �= W (t ). Instead, multiplying E(t )
by 2 shows that if Cxy (t ) = 0 ∀ x, y, then E(t ) = W (t ). In
general, however, 2Exy (t ) = Wxy (t ) + Ŵxy (t ), where Ŵxy (t )
is the time-reversed rates defined [54] by

Ŵxy (t )py (t ) = Wyx (t )px (t ),

Ŵxy (t ) = 1

py (t )
Wyx (t )px (t ).

(A3)

The matrix Ŵ (t ) defines the microscopically reversible dy-
namics of Wxy (t ), which does not satisfy detailed balance in
general. In fact, only when W (t ) satisfies detailed balance does
Wxy (t )py (t ) = Ŵxy (t )py (t ).

2. Detailed-balance condition

The rate matrix has the properties that Wxy (t ) ∈ W(t ) and
Wxy (t ) > 0 for x �= y and Wyy (t ) = − ∑

x �=y Wxy (t ) so that∑
x Wxy (t ) = 0. Using the last property, the master equation

becomes

ṗx (t ) =
∑
y �=x

[
Wxy (t )py (t ) − Wyx (t )px (t )

] =
∑

y

Cxy (t ).

(A4)

The master equation exhibits detailed balance if each of the
currents vanishes, that is, when the currents or thermodynamic
fluxes Cxy (t ) = Wxy (t )py (t ) − Wyx (t )px (t ) are zero for all
x and y. Otherwise, the existence of current implies that the
system is undergoing an irreversible process [35].

Even for processes that are driven or transiently away from
equilibrium Cxy (t ) �= 0, the matrix E(t ) satisfies a similar
detailed balance condition. Since the master equation can be
recast in terms of E(t ), it also has an analogous form with
source and sink terms. Applying the definition of E(t ) to the
master equation gives

ṗx (t ) =
∑
y �=x

[Exy (t )py (t ) − Eyx (t )px (t ) + Cxy (t )]

=
∑

y

[
CE

xy (t ) + Cxy (t )
]
. (A5)

In the final line, we define the current [for E(t )] between
states x and y, CE

xy (t ). A comparison of this result to Eq. (A4)
suggests CE

xy (t ) = 0, akin to detailed balance, but valid when
Cxy (t ) �= 0. To prove this detailed balance condition, we can
expand the current for E(t ):

CE
xy (t ) ≡ Exy (t )py (t ) − Eyx (t )px (t )

= Wxy (t )py (t ) − Cxy (t )

2
− Wyx (t )px (t ) + Cyx (t )

2

= Cxy (t )

2
+ Cyx (t )

2

= 0. (A6)

The last equality follows from the antisymmetry of the current
Cxy (t ) = −Cyx (t ). When detailed balance is satisfied for

Cxy (t ) it is also satisfied for CE
xy (t ): The condition for both

is Wxy (t )py (t ) = Wyx (t )px (t ).

3. Symmetrization

As is done at equilibrium with W (t ), we can show that E(t )
is similar to a symmetric matrix S(t ): E(t ) � S(t ). First, we
define

Sxy (t ) = 1√
px (t )

Exy (t )
√

py (t ). (A7)

To show that S(t ) is symmetric, we use S(t ) and the detailed
balance of E(t ):

Exy (t )py (t ) = Eyx (t )px (t ),√
px (t )Sxy (t )

√
py (t ) = √

py (t )Syx (t )
√

px (t ),

Syx (t ) = Sxy (t ).

(A8)

Since S(t ) is a real, symmetric (Hermitian) matrix, it has a
complete set of eigenvectors and real eigenvalues [37]. Since
E(t ) is similar to S(t ), it also has a complete set of eigenvec-
tors and real eigenvalues. We note that the eigenvectors and
eigenvalues of both matrices are time dependent.

The E representation of the master equation (A2) does not
imply that W (t ) is similar to S(t ). From the definitions of E(t )
and S(t ) [Eqs. (A1) and (A7), respectively] we know

Exy (t ) =
√

px (t )Sxy (t )
1√

py (t )
.

Rewriting in terms of S(t ) gives

Sxy (t ) = 1√
px (t )

Wxy (t )
√

py (t ) − Cxy (t )

2
√

px (t )py (t )
.

By inspection, W (t ) is only similar to S(t ) when Cxy (t ) =
0 ∀ x, y and E(t ) = W (t ). It can be further shown that just
because E(t ) � S(t ) through px (t ), this does not imply
∃ S ′(t ) � W (t ), where S ′

xy (t ) = S ′
yx (t ). Defining S ′(t ) as

S ′
xy (t ) = 1√

px (t )
Wxy (t )

√
py (t )

and using the expression for the current

Cxy (t ) = Wxy (t )py (t ) − Wyx (t )px (t )

=
√

px (t )S ′
xy (t )

√
px (t ) − √

py (t )S ′
yx (t )

√
px (t )

yields

S ′
xy (t ) = Cxy (t )√

px (t )py (t )
+ S ′

yx (t ).

Thus, S ′(t ) cannot be symmetric unless detailed balance is sat-
isfied, C(t ) = 0, or S ′ is the zero matrix. It is the nonstationary
irreversibility of the system that prevents W (t ) from satisfying
a similarity transform; irreversibility is built into E(t ).

4. Surprisal rate

Shannon [41] identified the information gained or surprise
in observing the state y as − ln py (t ) [24]. Using

∑
x Exy (t ) =

[〈1|E(t )]y , where 〈1| is a row vector of ones, the surprisal rate
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is related to E by

[〈1|E(t )]y =
∑

x

[
Wxy (t ) − Cxy (t )

2py (t )

]
= ṗy (t )

2py (t )

= 1

2

d ln py (t )

dt
. (A9)

This relationship also implies, through conservation of proba-
bility, that 〈2|E(t )|p(t )〉 = ∑

y ṗy (t ) = 0.

5. Fisher information

Underlying the principal results of the main text is
that E(t ) is related to the Fisher information IF (t )
through IF (t ) = −〈2|Ė(t )|p(t )〉 = 〈2|E(t )|ṗ(t )〉. Differenti-
ating 〈2|E(t )|p(t )〉 with respect to time gives

d

dt
〈2|E(t )|p(t )〉 = 〈2|E(t )|ṗ(t )〉 + 〈2|Ė(t )|p(t )〉. (A10)

The first term on the right-hand side is the Fisher information

〈2|E(t )|ṗ(t )〉 = 2
∑
x,y

(
Wxy (t )ṗy (t ) − Cxy (t )ṗy (t )

2py (t )

)

=
∑
x,y

1

py (t )
Cyx (t )ṗy (t )

=
∑

y

ṗy (t )2

py (t )

= IF (t ). (A11)

The second term is the negative of the Fisher information

〈2|Ė(t )|p(t )〉

= 2
∑
xy

(
Ẇxy (t )py (t ) + Cxy (t )ṗy (t )

2py (t )
− Ċxy (t )

2

)

=
∑
x,y

Cxy (t )ṗy (t )

py (t )

= −
∑
x,y

Cyx (t )ṗy (t )

py (t )

= −IF (t ). (A12)

From the first line, we use conservation of proba-
bility d

dt

∑
x Wxy (t ) = 0 and d

dt

∑
xy Cxy (t ) = 0. Plugging

Eqs. (A11) and (A12) into Eq. (A10), we see that the con-
servation of probability leads to d

dt
〈2|E(t )|p(t )〉 = IF (t ) −

IF (t ) = 0.

6. Fisher information as entropic acceleration

With the properties discussed so far, we can arrive at the
first main result: For systems with dynamics that are governed
by continuous-time master equations, the Fisher information
is part of the entropic acceleration. To show this, we recognize
that the matrix E(t ) in the property (A1) can be expressed in

terms of the generalized thermodynamic forces

[〈2|E(t )]y = 1

py (t )

∑
x

Cyx (t )

= 1

py (t )

∑
x

Wyx (t )px (t ) − Wxy (t )py (t )

= 1

py (t )

∑
x

Wxy (t )py (t )

(
Wyx (t )px (t )

Wxy (t )py (t )
− 1

)

=
∑

x

Wxy (t )e−Fxy (t ), (A13)

where Fxy (t ) = ln Wxy (t )py (t ) − ln Wyx (t )px (t ). In the prop-
erty (A12) we proved that IF = −〈2|Ė(t )|p(t )〉. Using this
relation, together with the definition of the thermodynamic
forces, shows the Fisher information is given by

IF (t ) = −〈2|Ė(t )|p(t )〉

= −
∑
x,y

[
d

dt
(Wxy (t )e−Fxy (t ) )

]
py (t )

= −
∑
x,y

[Ẇxy (t )e−Fxy (t )py (t )

− Wxy (t )Ḟxy (t )e−Fxy (t )py (t )]

= −
∑
x,y

Wxy (t )py (t )
d

dt
ln

(
py (t )

px (t )

)

= 〈〈İ (t )〉〉. (A14)

Since − ln py (t ) is the surprisal of state y at time t , the quantity
〈〈İ (t )〉〉 is the time rate of change in the surprisal difference
(between y and x).

To connect IF (t ) to the entropic acceleration, we differen-
tiate the entropy rate

Ṡ(t ) =
∑
x,y

Wxy (t )py (t ) ln

[
py (t )

px (t )

]
(A15)

with respect to time

S̈(t ) = −
∑
x,y

d

dt
[Wxy (t )py (t )]Ixy −

∑
x,y

Wxy (t )py (t )İxy (t )

=
∑
x,y

d

dt
[Wxy (t )py (t )]Ixy (t ) − IF (t )

= −
∑

x

p̈x (t ) ln px (t ) − IF (t ), (A16)

where Ixy = − ln py (t ) + ln px (t ). From Eq. (A14), the sec-
ond term in the entropic acceleration is minus the Fisher
information. The entropy rate Ṡ(t ) is an average over the
change in information I (t ), so S̈(t ) can be thought of as the
rate of change of the bulk, or average information, S̈(t ) =
d〈〈I (t )〉〉/dt . The Fisher information, though, is an average
over the rate of change in information between each set of
states x and y, IF = 〈〈İ (t )〉〉. Therefore, the first term on the
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right-hand side of Eq. (A16) is the sum of the bulk information rate and the average local information rate

−
∑

x

p̈x (t ) ln px (t ) = S̈ + IF = d〈〈I (t )〉〉
dt

+
〈〈

dI (t )

dt

〉〉
. (A17)
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