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Free energy of grain boundaries from atomistic computer simulation
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A thermodynamic integration (TI) scheme is presented that allows us to compute the free energy of grain
boundaries (GBs) in crystals from an atomistic computer simulation. Unlike previous approaches, the method
can be applied at arbitrary temperatures and allows for a systematic extrapolation to the thermodynamic limit. It
is applied to a �11 GB in a face-centered-cubic Lennard-Jones crystal. At a constant density, the GB free energy
shows a nonmonotonic temperature dependence with a maximum at about half the melting temperature, and the
GB changes from a rigid to a rough interface with distinct finite-size scaling above this temperature.
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Most solid materials exhibit a polycrystalline structure
where crystallites of different orientation are separated from
each other by grain boundaries (GBs). The properties of GBs
in these materials determine, to a large extent, their mechanical
response and are thus of great technological importance [1–6].

Many aspects of the thermodynamics and kinetics of GBs
are only poorly understood [7–18]. In particular, there is a
dearth of systematic approaches, providing a direct calculation
or measurement of the free energy for GB formation γ . The
knowledge of γ would clarify the prevalence of specific GB
orientations [19,20] and is essential for the understanding of
the temperature dependence of the GB’s structure and phase
behavior. While at low temperatures GBs appear to be rigid,
at high temperatures GBs tend to be rough, which is linked
to capillary wave fluctuations [21–24]. This change in the
nature of GBs is also associated with changes in other materials
properties such as the GB stiffness, the GB mobility, and the
electrical resistance [25–42]. While the roughening transition
in simple model systems such as the Ising model has been
shown to belong to the Kosterlitz-Thouless universality class
[21–23,43], it remains a challenge to understand the nature of
this transition in GBs of metallic or colloidal systems. The GB
free energy is a central quantity to reveal this issue.

GBs in metallic alloys can be analyzed down to the atomistic
scale (see, e.g., Ref. [44]), using high-resolution transmission
electron microscopy [45]. In colloidal systems, optical mi-
croscopy provides a particle-level view of the structure and
dynamics in GBs [6,46–49]. However, up to now, it has not
been possible to determine GB free energies from microscopy
techniques. Thus it makes it all the more important to obtain
GB free energies via particle-based computer simulations. In
this Rapid Communication, we present a method to achieve
this goal.

There have been different attempts to determine GB (free)
energies for atomistic systems. Interfacial energy calculations
[11,12,16,17,50] neglect entropic contributions which are es-
sential at finite temperatures. Estimates in the framework of
the harmonic approximation [51,52] are expected to work
only at very low temperatures. However, low-temperature
structures can be used as reference states for thermodynamic
integration with respect to temperature, and in fact this

approach has been used in simulation studies [30,38,53–55].
As these methods require the interfacial free energy at a
reference point, they always involve separate harmonic or
quasiharmonic calculations. Although these methods can be
used for defect-free crystals [52,56] or low-temperature GBs,
it is not clear how to provide a reversible thermodynamic path
around the roughening transition, and the applicability of these
methods to rough GBs is at least problematic. Another possi-
bility to estimate the GB free energy is to use an Einstein crystal
with a GB as a reference [51]. However, the lack of discrete
translational invariance of an Einstein crystal [57–59] leads
to spurious errors when transforming to a system with rough
GB, and so it is also questionable whether methods using an
Einstein crystal as a reference can be employed for rough GBs.

The method, proposed here to calculate GB free energies
from molecular dynamics (MD) simulations, is applicable at
arbitrary temperatures below melting, as long as the crys-
talline order is maintained. It uses thermodynamic integration
(TI) [59], transforming a defect-free crystal into a GB structure,
with translationally invariant Hamiltonians throughout the TI
path. It does not require a low-temperature structure as a refer-
ence state, and thus both low-temperature rigid GB boundaries
as well as rough interfaces above the roughening transition
can be considered. Moreover, as we shall demonstrate below,
our TI method allows for a systematic finite-size scaling
analysis and thus the extrapolation of the finite-size GB free
energies to the thermodynamic limit. We apply our method to
a Lennard-Jones (LJ) system, computing the free energy γ of
a symmetric tilt �11 GB at a constant density. As a function
of temperature, γ (T ) first increases nonlinearly, followed by
a monotonic decrease for temperatures above about half the
melting temperature. At high temperature, the scaling of γ

with system size indicates that the GB is rough, as reflected by
pronounced lateral thermal undulations.

The aim is to compute the free-energy cost due to the
formation of a planar GB in a LJ face-centered-cubic (fcc)
crystal. We consider the symmetric tilt GB �11(11̄3)[110],
placed in a simulation box with its orthogonal directions
along the vectors [33̄2̄], [110], and [11̄3]. Periodic boundary
conditions are applied in all three spatial directions and thus
there are two parallel GBs, separated in the z direction by
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Lz/2 and each having a total interfacial area A = LxLy .
For all the systems, the box dimensions Lx , Ly , and Lz are
given in units of lx = 3

√
11/2 l, ly = 5

√
2 l, and lz = 2

√
11 l,

respectively, with l = (4/ρ)1/3 being the lattice parameter of
the fcc crystal of density ρ. The interactions between pairs
of particles, separated by a distance r , are modeled by the
potential uLJ(r ) = 4ε[( σ

r
)12 − ( σ

r
)6], with the parameters σ

and ε setting respectively the microscopic length and energy
scales of the system. We have truncated and shifted the
potential to zero at a cutoff distance rcut = 2.5σ . Reduced units
are used for all the quantities, in particular, temperature and
time are given respectively in units of ε/kB (with kB = 1.0
the Boltzmann constant) and τ =

√
mσ 2/ε (with m = 1.0 the

mass of a particle).
The TI scheme that we propose consists of a smooth and

reversible path from a pure fcc crystal to a fcc state with two
parallel GBs. From a TI over this path, one directly obtains the
GB free energy γ = [F (GB) − F (fcc)]/(2A), where F (fcc)
corresponds to the free energy of the initial fcc crystal and
F (GB) to that of the final state with two GBs.

The total transformation from the pure fcc crystal to the
system with GBs consists of five steps. In each of these steps,
the system’s Hamiltonian is coupled to a parameter λ that varies
from 0 to 1. The free-energy difference between the initial state
at λ = 0 and the final state at λ = 1 in the ith step is then given
by

�Fi =
∫ 1

0

〈
∂Hi (λ)

∂λ

〉
λ

dλ, (1)

with Hi (λ) the λ-dependent Hamiltonian of the ith step
and 〈· · · 〉 an ensemble or time average with respect to the
Hamiltonian Hi (λ). MD simulations are performed at various
values of λ for 0 � λ � 1 to obtain the integrand 〈 ∂Hi (λ)

∂λ
〉 for

numerically evaluating the integral in Eq. (1).
The central idea of our TI scheme is to first transform

the fcc crystal with LJ interactions into a harmonic bond
network (HBN) with the same fcc structure, then transform
this fcc crystal to a harmonic bond system with GBs by
introducing anisotropic equilibrium bond lengths (cf. Figs. 1
and 2). Finally, the harmonic bond interactions are switched off
and replaced by LJ interactions between the particles, resulting
in a fcc system with GBs (see Fig. 1). The harmonic bond
interaction potential for the fcc crystal is defined as U fcc

H =
1
2k

∑
〈i,j〉 (rij − r

(eq)
ij )

2
, with rij the instantaneous distance and

r
(eq)
ij the equilibrium bond lengths between the bonded nearest

neighbors i and j , and k = 50 the spring constant. The total
potential energy due to the LJ is denoted by ULJ.

The five steps and the corresponding Hamiltonians of our
TI scheme are as follows (cf. Fig. 1):

Step 1. Starting with a LJ-fcc crystal, a fcc harmonic
network template (fcc HBN) is slowly turned on: H1 = Ekin +
ULJ + λ2U fcc

H , with Ekin the kinetic energy of the system. Here,
the equilibrium bond length is set to r

(eq)
ij = l/

√
2.

Step 2. Starting with a fcc HBN, the LJ interactions are
switched on: H2 = Ekin + U fcc

H + λ2ULJ.
Step 3. The GB structure with harmonic interactions

(GB HBN) is transformed to a fcc HBN with the Hamilto-

nian H3 = Ekin + 1
2k

∑
〈i,j〉 (rij − r

(eq)
ij )

2
with a λ-dependent

ΔF1

FCC LJ GB LJ

−ΔF3

−ΔF5

−ΔF2 ΔF4

−ΔF1

−ΔF4

ΔF5

ΔF2

ΔF3

Step 1

Step 2

Step 3

Step 4

Step 5

FCC HBN GB HBN

GB LJ+HBNFCC LJ+HBN

FIG. 1. The five steps involved in the TI path. Each of the
individual steps is reversible, �F (a → b) = −�F (b → a), with
a, b denoting the states connected by a reversible TI.

r
(eq)
ij = l/

√
2 + (1 − λ)8cij . Depending on the identity of the

bonded particles i and j , cij can take up values −0.1041l,
0.0l, 0.2222l, 0.2929l, and 0.5176l, color coded respectively
as blue, gray, red, yellow, and green bonds in Figs. 1 and 2
(or five shades of gray in the black-and-white version). The
r

(eq)
ij of the gray bonds (cij = 0) in the GB are identical to

the r
(eq)
ij of the fcc and hence they remain unchanged as λ is

changed during the transformation of the GB to the pure fcc
structure (see Fig. 2 and step 3 in Fig. 1). The other bonds in the
GB structure with nonzero cij represent bonds for which the
corresponding values of r

(eq)
ij as a function of λ are tuned such

that at λ = 1, they form isotropic nearest-neighbor bonds in
the fcc structure while the GB structure is stabilized for λ = 0
(step 3 in Fig. 1).

FIG. 2. Snapshot of the HBN structure in the GB region, as
obtained at the end of step 3. The different colors (grayscales) of
the bonds correspond to different bond lengths (see text).
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FIG. 3. The integrands 〈 ∂Hi (λ)
∂λ

〉 for the five TI steps as a function
of λ [see Eq. (1)], corresponding to a system of N = 47 520 particles
at T = 2.0.

Step 4. The GB HBN is transformed to a GB structure with
harmonic and LJ interactions: H4 = Ekin + UGB

H + λ2ULJ with

UGB
H = 1

2k
∑

〈i,j〉 (rij − l√
2

+ cij )
2
.

Step 5. A GB structure with LJ interactions is transformed to
a GB with harmonic and LJ interactions: H5 = Ekin + ULJ +
λ2UGB

H .
For the TI steps 1, 2, 4, and 5, MD simulations have been

performed to obtain the integrands in Eq. (1) at 50 values of
λ ranging from 0 to 1. In the third step, the λ axis has been
divided into 150 equidistant intervals. As an example, the λ

dependence of the integrands for the temperature T = 2.0 and
N = 47 520 is shown in Fig. 3. This figure indicates that the
chosen thermodynamic path leads to smooth functions for the
integrands that allow for an accurate calculation of the GB
free energy γ . The integration over these functions gives the
free-energy differences �Fi (i = 1, . . . , 5), corresponding to
the five steps, and thus one obtains the GB free energy as
γ = 1

2A
(�F1 − �F2 − �F3 + �F4 − �F5).

MD simulations in theNV T ensemble have been performed
at density ρ = 1.179. The systems were equilibrated for 5 ×
106 MD steps, using a time step of 0.0001τ . The integrands
were computed from the data collected at intervals of 200 MD
steps over the subsequent 5 × 106 MD steps. The system size
analysis was done at two temperatures T = 1.0 and T = 2.0
below the melting temperature TM = 2.74 [60]. To study
the effect of orthogonal distance between the GBs, system
sizes N = n × 5280 with n = 1, 2, . . . , 6 were considered.
For these systems the area of the GB was kept constant with
(Lx,Ly ) = (2lx, 2ly ), while varying Lz = lz, 2lz, . . . , 6lz. To
observe the effect of changing A on γ , three system sizes, N =
5280, 4 × 5280, and 9 × 5280, were simulated. In these cases,
we used Lz = 4lz and A was changed with the dimensions
(Lx,Ly ) corresponding to the system sizes (lx, ly ), (2lx, 2ly ),
and (3lx, 3ly ), respectively.

For a system of N = 47 520 with system dimensions
(Lx,Ly, Lz) = (3lx, 3ly, 4lz), γ has been determined at the
temperatures T = 0.0, 0.50, 0.75, 1.00, . . . , 2.25.

T = 2.00

T = 1.00

0.000 0.002 0.004 0.006 0.008
1/A

1.50

1.52

1.54

1.56

γ

T = 1.0
T = 2.0

0 10 20 30 40 50 60

1.55

1.60

1.65

T = 1.0
T = 2.0

Lz

γ

FIG. 4. GB free energy γ at T = 1.0 and T = 2.0 as a function of
1/A at fixed Lz ≈ 40.0 (marked by an arrow in the inset). At T = 2.0,
a linear fit (solid line through red squares) yields an estimate of γ in
the thermodynamic limit (solid red square). At T = 1.0, γ saturates
to a constant value (solid line through blue circles) for 1/A � 0.003.
The inset displays γ as a function of Lz, keeping the GB interfacial
area constant at A = 449.31. The snapshots show the GB regions of
the largest systems at T = 1.0 and T = 2.0.

If the distance between the GB and its periodic image is not
sufficiently large, the two GBs might “see” each other, thus
introducing strong finite-size corrections in our estimates of
the GB free energy γ . To systematically study these finite-size
effects, we have computed γ at T = 1.0 and T = 2.0 for
six values of the box dimension in the z direction, Lz =
lz, 2lz, . . . , 6lz, keeping the area of the GBs constant at A =
2lx × 2ly = 449.31. The results for the dependence of γ on Lz

are shown in the inset of Fig. 4. A similar behavior is found
for the two considered temperatures. While for Lz � 30, γ

significantly decreases with increasing Lz, for larger values
of Lz, it essentially saturates to a constant. Therefore, for
the following calculations we have chosen Lz = 4lz (marked
with an arrow in the inset of Fig. 4) to avoid significant
finite-size corrections due to interactions between the GBs and
to investigate the effects due to the change of the GB’s area
on γ .

We determine γ for three different choices of the GB area,
(Lx,Ly ) = (lx, ly ), (2lx, 2ly ), (3lx, 3ly ), where we keep the
Lx : Ly ratio at approximately 1 : 1. Again, the temperatures
T = 1.0 and T = 2.0 are considered. As can be inferred from
the figure, the scaling of γ with 1/A is qualitatively different
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FIG. 5. GB energy �E/2A (blue squares) and free energy γ (red
circles) as a function of temperature for systems with N = 47 520
particles and dimensions (Lx, Ly, Lz ) = (3lx, 3ly , 4lz ). The black
circles are estimates of γ in the thermodynamic limit (cf. Fig. 4).
The inset shows the excess entropy �S/2A (see text).

at these temperatures. At T = 1.0, γ approaches the constant
γ = 1.554 for sufficiently large systems (i.e., 1/A � 0.003), as
indicated by the horizontal line in Fig. 4. For T = 2.0, however,
the GB free energy shows a linear dependence on 1/A and
the fit with a linear function allows for an extrapolation to the
thermodynamic limit (A → ∞) which gives γ = 1.570 in this
case (solid square). The latter scaling behavior is expected for
a rough interface, where long-wavelength thermal undulations
along the interface (capillary waves) lead to leading-order
finite-size corrections proportional to 1/A [24,61]. In fact,
the snapshots in Fig. 4 indicate that the nature of the GB
changes from a rigid interface at T = 1.0 to a rough interface
at T = 2.0.

Figure 5 shows the temperature dependence of the GB free
energy γ in comparison to the corresponding excess GB energy
per unit area, �E/2A. While the excess energy increases
monotonically with temperature, the excess free energy γ

has a maximum at T ≈ 1.5. Around this maximum, the GB
undergoes a transformation from a rigid to a rough interface.
Here, the roughness is reflected in the high mobility of the GB
(see movies in the Supplemental Material [62]) and thermal
undulations along the GB (cf. snapshots in Fig. 4). Whether at
high temperatures the GBs are truly rough or whether, due to
elastic effects, the capillary wave spectrum of the thermal GB
undulations is cut off at a finite wavelength, is an open question
which goes beyond the scope of the present work.

Also shown in Fig. 5 is the temperature dependence of the
GB excess entropy per unit area, as defined by �S/(2A) =
1
T

[�E/(2A) − γ ]. Below the maximum value of γ (T ), the
excess entropy is negative and it exhibits a minimum around
T ≈ 0.9. At high temperature (where the GB is rough), it is
positive and increases linearly with temperature. How this
behavior of the excess entropy is linked to the roughening
transformation of the GB, is an open issue.

The estimates of the GB free energy in the thermodynamic
limit at the temperatures T = 1.0 and T = 2.0 (the two γ∞
points in Fig. 5) indicate that the considered system size with

0.0 0.1 0.2 0.3 0.4 0.5 0.6
T

0.4

0.5

0.6

0.7

0.8

γ,
ΔE

/2
A

ΔE /2A
γ

NPT, P = 0

NVT, ρ = 1.075

FIG. 6. Interfacial energy �E/2A (blue squares) and free energy
γ (red circles) as a function of temperature for the NPT ensemble at
P = 0 and for the NV T ensemble for ρ = 1.075.

N = 47 520 particles already leads to reliable values of γ

over the whole temperature range, without being significantly
affected by finite-size effects.

We also note that the occurrence of a maximum in γ (T )
is a special feature of the constant volume ensemble which is
usually considered in colloid experiments. Most experiments
on metallic systems are performed at constant pressure. In this
case, γ decreases monotonically with temperature, consistent
with observations in earlier simulation studies (see Appendix).

We have presented a TI technique to obtain the free energy
of GBs, γ , from MD simulations. The method allows us to
determine γ for both rigid and rough interfaces and to perform
a systematic finite-size scaling analysis at each temperature.
While in this Rapid Communication we have considered a
symmetric-tilt �11 GB in a Lennard-Jones system, our TI
scheme can also be applied to other types of GBs, including
asymmetric tilt GBs. Thus, our TI technique opens the gate
to address some fundamental open questions in materials
physics: What is the nature of the interface roughening in
low- and high-angle GBs (here, complementary information
can be obtained from the determination of the interfacial
stiffness for rough GBs, as shown in Ref. [63])? What is
the prevalent GB orientation for a given material? What is
the origin of GB wetting phenomena, GB premelting, and
structural transformations seen in GBs? These questions shall
be investigated in forthcoming studies.

We thank S. Akamatsu, S. Bottin-Rousseau, J. Eiken,
U. Hecht, and M. Plapp for discussions. The authors ac-
knowledge financial support from the German DFG in the
framework of the M-era.Net project “ANPHASES”, Grant No.
HO 2231/12-1.

APPENDIX: TI IN THE ISOTHERMAL-ISOBARIC
(N PT ) ENSEMBLE

The method presented above to determine the GB free
energy γ in the canonical (NV T ) ensemble can be applied to
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the isothermal-isobaric (NPT ) ensemble, keeping the pressure
P constant. The TI steps remain identical but unlike the
NV T ensemble, MD simulations at constant temperature and
pressure are required to obtain the integrands in Eq. (1).

We obtain γ as a function of temperature while the pressure
of the fcc as well as the GB structure is kept constant at P = 0
for a system of N = 5280 with dimensions (Lx,Ly, Lz) =
(lx, ly, 4lz). The dimensions, of course, change with the change
in temperature and are determined by the density of the fcc
or the GB structure at that particular temperature. Similar to
the NV T ensemble, periodic boundary conditions are applied
in all three orthogonal directions. Figure 6 shows γ and
the interfacial energy �E/2A as a function of T when the
pressure is kept constant at P = 0. The free energy γ shows
a monotonic decrease with increasing temperature while the
interfacial energy �E/2A shows relatively small changes at
lower temperature with a more prominent increase at higher

temperature. For comparison, the temperature dependence of
γ and �E/2A for a system of ρ = 1.075 and N = 5280 in
the NV T ensemble is also presented in Fig. 6. The systems
chosen for the calculations in the NV T and NPT ensembles
have identical configurations for the fcc crystal at T = 0.

The method presented in this Rapid Communication di-
rectly calculates the interfacial free energy of a GB structure
with respect to a pure fcc crystal at the same temperature. Our
results are consistent with the results obtained from previous
studies [30,38,53]. We would like to reiterate that γ obtained
using harmonic methods [30], or by extrapolation to different
temperatures [38,53] using thermodynamic integration tech-
niques, involve very specific approximations regarding the
structural and elastic properties of the GB. Despite substantial
computation efforts, the accuracy of these methods relies on
the validity of the approximations or accuracy of the references
used as starting points.
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