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Critical behavior of active Brownian particles
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We study active Brownian particles as a paradigm for a genuine nonequilibrium phase transition requiring
steady driving. Access to the critical point in computer simulations is obstructed by the fact that the density is
conserved. We propose a method based on arguments from finite-size scaling to determine critical points and suc-
cessfully test it for the two-dimensional (2D) Ising model. Using this method allows us to accurately determine
the critical point of two-dimensional active Brownian particles at Pecr = 40(2), φcr = 0.597(3). Based on this
estimate, we study the corresponding critical exponents β, γ /ν, and ν. Our results are incompatible with the 2D-
Ising exponents, thus raising the question whether there exists a corresponding nonequilibrium universality class.

DOI: 10.1103/PhysRevE.98.030601

The notion “active matter” encompasses a wide range
of systems and phenomena at the border of physics, chem-
istry, and biology that share a common trait: they are out
of thermal equilibrium due to local dissipation stemming
from the directed motion of its constituents. Examples range
from actomyosin [1–3] (actin filaments driven by molecular
motors) to swimming bacteria [4,5] to colloidal particles
propelled by a multitude of mechanisms [6–14]. The interplay
of interactions with this persistent motion leads to a variety
of collective dynamic behaviors such as swarming [15], tur-
bulent motion [16], giant number fluctuations [17–19], and
clustering [20–25]. In the language of statistical physics, this
behavior often can be characterized as “phases” with abrupt
changes depending on external parameters such as tempera-
ture and density.

Such phase transitions have been investigated intensively,
and much has been learned from the study of minimal model
systems. The arguably simplest model that shows an order-
disorder phase transition ending in a critical point is the
Ising model of a lattice of spins interacting with their nearest
neighbors. In particular, the understanding of critical points
has sparked intensive research that has culminated in the
development of tools such as the renormalization group and
finite-size scaling in computer simulations that have found
application in a wide range of problems. Specifically the
system-size dependence of order parameter fluctuations and
the crossing of cumulants has proven to be very success-
ful [26–29]. Denoting the order parameter as m, the ratio

Q� = 〈
m2

�

〉2
/
〈
m4

�

〉
(1)

becomes independent of system size � exactly at the critical
point. Hence, plotting this quantity for several values of �

versus a suitable control parameter allows one to locate the
critical point from the intersection with high accuracy.

Universal behavior and scaling invariance are not restricted
to passive systems but are also observed in systems driven
away from thermal equilibrium. A well-studied paradigm
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constitutes the Kardar-Parisi-Zhang equation, originally pro-
posed for the evolution of interfaces [30]. Regarding phase
transitions, systems ranging from directed percolation [31],
driven diffusive systems [32], to Kuramoto-type coupled os-
cillator systems [33] have been examined before. However,
in the context of active matter, previous studies have focused
on nonequilibrium effects on the critical point and the critical
exponents of an underlying equilibrium phase transition. Ex-
amples include two-dimensional and three-dimensional Ising
models under shear [34–37] and active versions of the Ising
model [38,39]. In the context of active particles, the influence
of self-propulsion on the gas-liquid transition in the contin-
uous Asakura-Oosawa model [40] (with alignment interac-
tions) and in a Lennard-Jones fluid [41] (without alignment
interactions) have been determined.

While driving a system featuring a passive transition influ-
ences its critical behavior, genuine nonequilibrium transitions
without a passive counterpart are much less studied. Active
Brownian particles (ABPs) have emerged as a minimal model
showing such a transition: the coexistence of dilute and dense
regions in the absence of cohesive forces [23,42–47]. While
the binodal lines away from the critical point have already
been determined [23,42,44,48] with good accuracy, the pre-
cise position of the critical point remains unknown. It has
been estimated in Ref. [49] from an effective equation of state
and in Ref. [50] from fitting the binodals. The close resem-
blance with passive phase separation suggests that density
fluctuations of ABPs become scale invariant in the vicinity
of the critical point. In the following, we employ extensive
computer simulations to shed light on the critical behavior of
ABPs and the intriguing possibility of a novel nonequilibrium
universality class.

To be specific, we simulate N particles moving in d = 2
dimensions in a box with periodic boundary conditions along
both dimensions. The coupled equations of motion read

ṙk = −∇kU + Pe

dBH/σ

(
cos ϕk

sin ϕk

)
+

√
2Rk (2)

with normal distributed Gaussian noise Rk and potential en-
ergy U modeling short-range repulsion with effective hard
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disk diameter dBH and unit of length σ . Every particle has an
orientation, the evolution of which is described by the angle ϕk

undergoing free rotational diffusion with diffusion coefficient
Dr. Particles are propelled along this orientation with constant
speed which implies a steady dissipation. Throughout, we
employ dimensionless quantities with the speed given by the
Péclet number Pe = (3v0)/(dBHDr ). Further details can be
found in the Supplemental Material [51].

To determine critical points in passive fluids and suspen-
sions, best practice is to conduct numerical simulations in the
grand canonical ensemble with the total number of particles
fluctuating [52–54]. In driven systems, this option is not (yet)
available due to the lack of a rigorous free energy. An alterna-
tive strategy to sample density fluctuations is block-density-
distribution methods [55–59]. By subdividing a simulation
box into smaller subboxes, we allow every subbox to have
a fluctuating particle number while the remaining system
effectively acts as a particle reservoir. Especially in three-
dimensional off-lattice systems this approach has proven to
be very successful [29]. Even though it only works for a
rather small range of intermediate subbox sizes, it provides
accurate results in equilibrium [29] as well as nonequilib-
rium systems [40]. Nonetheless, there are severe drawbacks
especially in two dimensions. For off-lattice systems, e.g., a
Lennard-Jones fluid in two dimensions, the method seems to
work to some extent, but for the 2D Ising model, it completely
fails if the underlying simulation takes place in the canonical
ensemble [59]. This failure is demonstrated in Fig. 1(a). The
plot shows the cumulant ratio Q� [Eq. (1)] for the subbox
magnetization m as a function of temperature T averaged
over independent runs for different subbox lengths � using the
original block-magnetization-distribution method [26,27,55].
The curves do not cross over a large temperature range around
the critical temperature.

This failure can be traced to the biased measurement
of the order parameter distribution in the subboxes, which
does not reproduce the grand canonical distribution due to
the overexpression of interfaces [59]. To solve this problem,
we propose an improved block-distribution method [51]. In
a nutshell, we exploit the stability of interfaces in a finite
system (even in the vicinity of a critical point) to sample
subboxes away from the interface. By simulating an elon-
gated box with aspect ratio 1 : 3, we force the system into
a slab geometry [see Fig. 1(c)]. Although, close to the critical
point, fluctuations increase such that bubbles or even rifts can
appear. Going further into the homogeneous region, the slab
eventually dissolves. Four subboxes of size � × � are placed
in the box; two at the center of mass and two shifted by 3�

in the x direction. Aside from avoiding the interfaces, the
necessary simulations of systems with different sizes then
allow one to also eliminate the second length scale that is
introduced by the size of the surrounding simulation box in
the original method. Including only the indicated boxes into
the calculation of the magnetization, the method is indeed
able to predict the critical point of the 2D Ising model with
remarkable accuracy. Below the critical point, i.e., in the
phase-separated region, the Q�(T ) curves are ordered going
from large values for large subboxes to small values for small
subboxes. At the critical temperature the curves now cross and
at even higher temperatures, i.e., in the homogeneous region,
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FIG. 1. Critical temperature of the 2D Ising model. (a) Cumulant
ratio Q�(T ) as a function of temperature T for different subbox
sizes � = 5, 6, 10, 12, 15 (top to bottom) does not cross applying the
original block-magnetization-distribution method on an underlying
canonical simulation. As discussed in Ref. [59], the cumulants do
not intersect due to the presence of interfaces. (b) Using the mod-
ified block-magnetization method, Q�(T ) curves for different � =
8, 10, 12, 15 [same color scale as in (a)] now cross very close to the
critical temperature Tc ≈ 2.269 185 (indicated by the dashed vertical
line) even if the underlying simulation is canonical. (c) Schematic
representation of the simulation box used for the cumulant analysis.
Simulations are done at medium packing fractions in an elongated
box with an edge length ratio of 1:3. This results in a slab geometry
where the slab is always aligned with the short axis. Two subboxes
are then placed at the center of mass. The other two subboxes are
shifted by 3� in the x direction.

they invert their order. This shows that our method indeed
allows one to circumvent the main problems of the original
block-magnetization-distribution method.

Encouraged by these results, we now return to the active
Brownian particles. Analogously to the Ising system, we study
simulation boxes with aspect ratio of 1 : 3 and then evaluate
subboxes at the center of the dense and the dilute slab [cf.
Fig. 1(c)]. In place of the magnetization we employ the sub-
box density fluctuations m� = ρ� − 〈ρ�〉 away from the time-
averaged density 〈ρ�〉 and vary the propulsion speed Pe. Here
ρ� = N�/�

2 with N� the fluctuating number of particles in a
subbox with edge length �. The overall packing fraction φ =
ρπd2

BH/4 = 0.6 was chosen to be close to the critical packing
fraction as estimated by applying the original subsystem
scheme [51]. The resulting curves for Q�(Pe) = 〈m2

�〉2/〈m4
�〉

with values of � between 10 and 17.5 averaged over multiple
realization of the system are shown in Fig. 2(b). There is an
interval of admissible subsystem sizes outside of which the
method fails; a shortcoming that is shared with other block-
density-distribution methods [40,59]. To make contact to the
physics of hard spheres and previous estimates of the phase
diagram [23,42,46], we use the packing fraction φ instead of
the density. Similarly to the Ising system, the curves show the
correct ordering above (Pe � 42.1) and below (Pe � 37.6)
a putative critical point. Between Pe = 37.6 and Pe = 42.1
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FIG. 2. Critical point of active Brownian particles. (a) Coexisting
packing fractions φ [23,42] showing our estimate for the critical
point as a red diamond. The rectilinear diameter is shown as red
circles. For all points without error bars, the statistical uncertainty
is smaller than the symbol size. Points far from the critical point
(Pe > 120) are connected by a dashed line as a guide for the eye.
For points close to the critical point, the gas and liquid branches
are both fitted with a power law, where the exponent β = 0.45 is
the best estimate arising from our analysis of the critical exponents.
(b) Cumulant intersection analysis for ABPs. A crossing of Q�(Pe)
[Eq. (1)] for all system sizes � can be seen between Pe � 38 and
Pe � 42, giving an estimate of the critical point of Pecr = 40(2).
Error bars are estimated from independent runs. The dashed lines
are again only included as guides to the eye.

the curves cross. This is already a very remarkable result as
it supports the notion that scaling behavior as known from
equilibrium finite-size scaling is valid also in this nonequilib-
rium system. Outside this interval, the points corresponding
to different edge lengths are clearly separated, whereas within
this intermediate interval the points’ uncertainties do not allow
one to distinguish between them, which in turn indicates that
Pecr lies within this interval. Note that even after eliminating
the additional scaling variable of box length over subbox
length there are still successive intersections over this region.

Also, even though every point corresponds to between 54 and
174 independent runs that are used to determine the average
of Q�(Pe), the resulting uncertainties in Q� are still notable.
Nonetheless, this analysis allows one to estimate the critical
point to be at Pecr = 40(2). To estimate the critical density, we
average the mean packing fractions 〈φ�〉 over all subbox sizes,
all independent runs, and over all Péclet numbers between
37.6 and 42.1. This results in an estimate of φcr = 0.597(3).
As this is an average over different subbox sizes and Péclet
numbers, the uncertainty is given as the standard deviation
of the density for all subbox sizes and Péclet numbers each
averaged over all respective runs.

Even though our method gives a much more accurate
and reliable result, we also checked its consistency with the
original block-density-distribution method, which, regardless
of its shortcomings, still gives an estimate of the critical
point [51]. This estimate is compatible with the results of
the modified method excluding interfaces (albeit of course
less precise). Furthermore, it is possible to determine a lower
bound for the critical speed based on the divergence of the
static structure factor, as well as an upper bound by analyzing
the cluster size distribution. Both bounds agree well with our
current estimate. Altogether, we can conclude that the critical
point of ABPs is located at Pecr = 40(2) and φcr = 0.597(3).
This point is shown as a red diamond in the phase diagram
in Fig. 2(a). Notably, the critical point of ABPs does not
lie on the linear extension of the rectilinear diameter, which
is shown as red circles. While this is rather uncommon in
equilibrium systems, a similar behavior has been found for
other nonequilibrium transitions as well [40,41].

We now extract numerical estimates for the critical ex-
ponents allowing insight into the critical behavior and the
universality class of ABPs. For this purpose, we define the
dimensionless distance

τ = Pe−1 − Pe−1
cr

Pe−1
cr

(3)

to the critical point, generalizing the usual expression by treat-
ing the propulsion speed as an inverse temperature. First, we
turn to the order parameter exponent β. In the phase-separated
region, but still close to the critical point, one expects a power-
law increase of the mean order parameter 〈m〉 ∝ τβ [see
Fig. 3(a)]. To account for the uncertainty in the determination
of Pecr, we show three curves corresponding to our best
estimate of Pecr � 40 as well as (generous) lower and upper
bounds of 37.6 and 42.1, respectively. All three curves show
a reasonably linear behavior within the uncertainties of the
order parameter. Instead of a fit, as guides we show the slopes
corresponding to 2D Ising (β = 1/8), three-dimensional (3D)
Ising (β ≈ 0.326), and mean field (MF) (β = 1/2). For all
reasonable estimates of Pecr, the slope of the resulting curve
is significantly higher than that of the 2D Ising universality
behavior.

Both the finite-size behavior of Q� and the behavior of
the order parameter approaching the critical point indicate
that usual scaling arguments are applicable, with scale-free
density fluctuations at the critical point. This implies the exis-
tence of a correlation length ξ that diverges as ξ ∼ τ−ν with
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FIG. 3. Determination of critical exponents [thick lines correspond to the estimate of Pecr, the dashed lines show lower (purple) and upper
(orange) bounds]. (a) Log-log plot of the order parameter 〈m〉 ∝ φliq − φgas vs the distance to the critical point τ [Eq. (3)] for different estimates
of the critical speed. Connecting lines are shown as guides to the eye. The order parameter exponent β is given by the slope of the curve. Ising
and mean-field (MF) slopes are shown as dashed lines for reference. (b) Log-log plot of the particle number fluctuations’ dependence on the
subbox size. Their slope corresponds to γ /ν with the susceptibility exponent γ and the correlation length exponent ν. Again, Ising and MF
slopes are shown as dashed lines for reference. (c) Log-log plot of Q�’s slope against the subbox size. The derivative dQ�/dτ |τ�0 is determined
by fitting a linear function to Q�(τ ) over the full width of the critical region. The slope of the curve in the log-log plot corresponds to 1/ν [51].
2D-Ising (ν = 1), 3D-Ising (ν � 0.63), and MF (ν = 1/2) universality are shown for reference as dashed lines in increasing order of steepness.

exponent ν. Assuming that the susceptibility

χ� = 〈(N� − 〈N�〉)2〉
〈N�〉 (4)

diverges as χ∞ ∼ τ−γ in the infinite size limit, one derives the
relation χ� = χ0(�/ξ )ξγ/ν = �γ/νχ̃ (x) with scaling function
χ̃ (x) replacing τ by ξ and assuming a prefactor χ0 that
depends on system size only through the ratio x = �/ξ . Since
ξ is bound by the smaller dimension of the full box 2� and the
quotient of that length and the subbox height is fixed, close to
the critical point the scaling function saturates to a constant
value and we can extract the ratio of γ /ν from the slope of
the calculated χ� plotted against � in Fig. 3(b). We see that the
resulting slope is again smaller than that expected for 2D Ising
(γ /ν = 1.75), and even farther from 3D Ising (γ /ν ≈ 1.96) or
MF (γ /ν = 2).

Finally, we turn to the dependence of Q�’s derivative
with respect to the distance from the critical point around
criticality: dQ�/dτ |τ�0. It is expected to have a power-law
dependence on the system size � with exponent 1/ν [51]. To
estimate the derivative, we fit Q�(τ ) in the region where we
estimated the critical point [Pe = 40(2)] with a linear func-
tion. Its dependence on the system size is shown in Fig. 3(c).
The slope of this curve is significantly lower than that
expected for 2D Ising (1/ν = 1), indicating that ν > 1, which
agrees with the much stronger fluctuations observed for ABPs
compared to passive phase coexistence. As demonstrated in
the Supplemental Material [51], less than a decade in � is
amply sufficient to deduce the exponents with reasonable pre-
cision (a few percent), as is well known [60]. Using rough es-
timates for the critical exponents (β � 0.45, ν � 1.5, and γ �
2.2), a tentative check of the scaling relation γ + 2β = 2ν

shows that it is approximately satisfied. While the derivations
of scaling relations for an equilibrium system are typically
based on a well-defined free energy scaling ansatz, our anal-
ysis is based on an analogy to equilibrium phase transitions.

The fact that the scaling relation seems to hold (which, given
the numerical uncertainties) is interesting in itself.

Within a mean-field treatment of Eq. (2), the qualitative
phase behavior of ABPs is indeed recovered with a crit-
ical point characterized by the expected mean-field expo-
nents [50]. The relevant nonlinearity ∼ρ4 is that of the Ising
class for short-range interactions. Hence, in the presence of
additive noise one would expect that the critical point also
falls into the Ising universality class. Somewhat surprisingly
(given the strong resemblance with ordinary phase separa-
tion), our numerical results indicate that this might not be
the case. Extracting critical exponents from numerical data
crucially depends on the precise determination of the critical
point. An exact determination, which would allow a definite
answer to the question of the existence of an “active matter”
universality class, is still precluded by the statistical uncertain-
ties in the determination of the critical point. Nevertheless, our
best estimate Pecr � 40(2) for the critical speed implies that
all exponents do not agree with the corresponding 2D Ising
values (cf. Fig. 3 in Ref. [61]).

To conclude, we were able to determine the critical point
of ABPs to be at Pecr = 40(2) and φcr = 0.597(3). Moreover,
we have provided numerical evidence that the universality
class might not agree with Ising 2D universality despite the
strong qualitative agreement with passive liquid-gas phase
separation. This is somewhat unexpected and we hope that
these results will stimulate further research into the theoretical
underpinning of scale invariance in active matter and genuine
nonequilibrium phase transitions.
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