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Role of many-body interactions in the structure of coarse-grained polymers
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In developing coarse-grained (CG) polymer models it is important to reproduce both local and molecule-
scale structure. We develop a procedure for fast calculation of the bond-orientation correlation and the internal
squared distance 〈R2(M )〉 through evaluation of the probability distribution functions that represent a CG model.
Different CG models inherently contain or omit correlations between CG variables. Here, we construct CG
models that contain specific correlations between CG variables. The importance of different correlations is tested
on CG models of polyethylene, polytetrafluoroethylene, and poly-L-lactic acid. The chain stiffness and 〈R2(M )〉
are calculated using both analytic evaluation and Monte Carlo sampling, and approximate model results are
compared with exact results from all-atom simulations. For polymers with an exponential correlation decay,
the bond-orientation correlation and 〈R2(M )〉 indicate which CG variable correlations are most important to
reproduce molecule-scale structure. Analysis of the bond-orientation correlation and internal-squared distance
indicates that for poly-L-lactic acid the bond-orientation correlation requires qualitatively different additional
terms in CG models and quantifies the error in neglecting this important behavior.
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I. INTRODUCTION

Modeling polymers is an inherently multiscale problem,
with important properties arising from both short and long
length scales. Local structure, for example, the local bond and
angle stiffness, is a function of specific polymer chemistry,
and small changes in structure can have important effects on
the transferability of polymer models and important polymer
properties, particularly near phase boundaries [1–4]. At larger
lengths, the stiffness of a polymer is one of the most impor-
tant properties of polymers in a melt or solution. Molecule-
scale structural properties like the internal squared distance
〈R2(M )〉, radius of gyration, and entanglement length all
depend on the polymer stiffness. It also governs mechanical
response of systems as diverse as polymer melts, polymer
glasses, and biopolymers [5–9]. Given the fundamental impor-
tance of polymer stiffness it is critical that coarse-grained (CG)
polymer models reproduce this intrinsic property; otherwise,
the substantial (up to ×104) speedup realized by CG polymer
models [10–12] is not useful.

Chemically specific CG models are often derived from
underlying all-atom (AA) simulations, using various methods
to determine effective interactions between coarse-graining
sites. Often, these chemically specific CG models use either
tabulated interaction potentials or simple analytic potentials
to approximately reproduce the internal coordinates of the
coarse-graining interaction sites, i.e., bond lengths, angles,
and dihedrals within the CG polymer chain. For tabulated
potentials the local structure of bond lengths, angles, and
dihedrals can be an exact (statistical-distribution) match. How-
ever, CG polymer models often do not match molecule-scale
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structural properties of AA simulations, even when indepen-
dent CG variable distributions match exactly, and different
ad hoc remedies have been used, including additional bonds
between third-nearest neighbors along the CG polymer or
phenomenological changes to the bond-angle or dihedral-angle
interaction [13–15]. Previous work has found that for some CG
polymer models, certain variables and the correlations between
them are important. For example, studies of polyethylene
(PE) [15,16] have found dihedral-angles significant while
studies of poly(vinyl alcohol) [1,17] did not. Researchers have
long noted how some CG variables, for example, the bond
angle and dihedral angle in Boltzmann inverted CG models
of PE [18] or polystyrene [14], can be correlated. Here we
examine correlations between the variables in CG polymer
representations and measure the influence of these correlations
on molecule-scale structural properties.

Since the central goal is to create CG polymer models
that reproduce features and properties of an underlying AA
simulation, it is important to make an explicit distinction
between a CG representation, by which we mean the CG
variables yielded from applying a CG mapping to simulated
AA configurations, and an approximate CG model, by which
we mean approximations to the full probability distribution
function (PDF) of all the CG variables in a CG representation
[15]. Approximate models can be cast as either a PDF of CG
variables or equivalently as a set of CG interaction potentials.
Quantities can be calculated using the CG model through
analytic evaluation using CG variable PDFs, or through Monte
Carlo (MC) sampling or molecular dynamics (MD) simulation
of the equivalent set of CG interaction potentials.

As an example, a center-of-mass mapping scheme applied
to AA simulation data produces CG site positions, and this CG
representation contains all the CG site internal coordinates, i.e.,
all (3N − 6) bond-lengths, bond-angles, and dihedral-angles,
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where N is the number of CG bead sites in a single chain.
From this representation an approximate CG model can be
created, for example, by assuming independent and identically
distributed bond lengths and bond angles and uniformly dis-
tributed dihedral angles.

An ideal CG model meets two criteria, computational
feasibility and accuracy. The first, feasibility, requires that
the model be fast both to create and to simulate. A CG
model is constructed with explicit PDFs of CG variables from
the full CG representation. The number of required samples
increases exponentially with the dimensionality of a PDF,
so to be fast requires that the dimensionality of the sampled
PDFs should be small. For fast CG model simulations the CG
interaction potential, which is simply kBT times the log of
the multidimensional PDF, should have as short a range as
possible while maintaining accuracy. For example, if there are
interactions between all the beads in a chain then the cost will
grow with the number of CG beads N as N2, and simulating
the model will be slow.

The second criterion, accuracy, requires that the CG model
at least match both the independent CG-variable distribu-
tions and molecule-scale structure of the CG representation.
For CG models constructed using measured distributions of
the underlying CG variables the independent distribution of
each CG variable is matched by construction. To match the
molecule-scale structure we aim to match the bond-orientation
correlation Cbb(m) for all bond-separations m. The full bond-
orientation correlation decay determines the internal squared
distance 〈R2(M )〉, and, given an exponential correlation decay,
the definition of a persistence length.

Analytic evaluation of Cbb(m) for small m is orders of
magnitude faster than MC sampling or MD simulation, and
we exploit this speed by evaluating Cbb(m) for m = 1, 2, 3
and then extrapolating an exponential decay curve to calculate
〈R2(M )〉. As will be discussed in detail below, evaluating
Cbb(3) requires constructing a (3 × 5 − 6) = 9 dimensional
PDF from the CG variables and correlations that define the
CG model.

An alternative is to use MC to sample from the potential
equivalent to the (3N − 6) dimensional PDF for an N -bead
chain. Several benefits of the method are that N is restricted
only by computational limits, Cbb(m) can be computed for
any m < N − 1, and 〈R2(M )〉 can be computed for arbitrary
separation M. We use these features of the MC sampling to
check the analytic model calculations and to check the large m

values and extrapolation of Cbb(m).
We expect that there may be some polymers for which

approximate CG models with local interactions will success-
fully match the local and molecule-scale structure, and others
for which the models will not. For example, polymers with
significant charge could have a more complicated form for the
bond-orientation correlation decay that cannot be reproduced
by local interactions. We construct seven different approxi-
mate models that include different correlations between CG
variables and test which models reproduce molecule-scale
structure for three different polymers, PE, polytetrafluoroethy-
lene (PTFE) and poly-L-lactic acid (PLLA). For CG models
of PE and PTFE analytic evaluation of the bond-orientation
correlation and extrapolation to calculate 〈R2(M )〉 gives a
clear, effective metric for the CG models, and indicates which

CG variable correlations are most important for reproduc-
ing long-range structure. For approximate models of PLLA,
analytic evaluation of the bond-orientation correlation and
〈R2(M )〉 indicates that our simple approximate models neglect
important long-range interactions, which we confirm by results
from MC simulations.

II. METHODS

A. All-atom simulation

All-atom (AA) simulations were performed to generate
reference PE, PTFE and PLLA AA position data. Details of the
PE and PTFE AA simulations have been presented previously
[12,15]. Like the PE and PTFE simulations, the reference
AA PLLA simulations used parameters from the OPLS-AA
force field. The AA PLLA simulation contained 1152 chains
of 48 repeat units. The PLLA simulation temperature was
550 K, significantly above the glass transition and near the
maximum of experimental temperatures [19]. The density was
chosen to be 1.03 g/cm3 based on a 1 ns NPT simulation with
a target pressure of 30 atm and barostat damping constant
τP = 0.1 ps. A production simulation was run in the NVT
ensemble for over 80 ns, with atom configurations sampled
every 100 ps after 35 ns. An integration time step of 1 fs was
used and a Langevin thermostat with time constant τT = 1
ps was applied. A real-space cutoff of 1.0 nm was used.
The precision for the reciprocal-space electrostatic interactions
was 10−4. All simulations were performed using LAMMPS
[20]. Simulation times are of order 50–100 ns, representing
greater than 500 times the longest decorrelation time for CG
variables of 100–150 ps. Information about these CG variable
decorrelation times is given in the Appendix.

B. Coarse-grained mapping or representations

CG representations were created from AA simulations of
PE, PTFE, and PLLA. For PE and PTFE, the CG representa-
tions were constructed from AA simulations at 500K (PE) and
650K (PTFE) discussed in previous work [12,15,21]. While
each CG representation is only exactly valid at single state
point there has been work to explore CG model transferability
[13,22], a subject that is outside the scope of this work. The
techniques and analysis that follow can be applied to a CG
model developed at any temperature or pressure, provided that
good sampling of the all-atom configurations may be obtained
at that temperature. The CG representations used here were
constructed by grouping λ CX2 groups per CG bead, using
either an averaging (Aλ) or decimation (Dλ) technique to
determine the CG bead locations. In the averaging method
the CG bead position is based on an average of atom positions,
while the decimation technique places a CG bead at the location
of every λth backbone atom. For PLLA, four representations
were used. Two represent each C3O2H4 repeat unit as a CG
bead, while two representations group two repeat units in a
single CG bead. Figure 1 illustrates the two averaging CG
PLLA representations used in this paper. These representations
are labeled PLLA-Xλ, where X represents averaging (A) or
decimation (D) and the λ is the number of backbone atoms per
bead.
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FIG. 1. (top) A diagram of the CG angle (θ ) and dihedral (ϕ)
variables studied in this work. (bottom) A diagram of the atoms
included in the PLLA-A3 and A6 CG representation.

C. Models

Evaluating observables using CG models requires con-
structing high-order PDFs from the product of low-order
PDFs, an approach that has a long history in the physics
literature [23–28]. We borrow from previous work both in some
aspects of notation, as well as ideas [24,27,28]. Particularly
relevant to the current context is work modeling small molecule
conformations and estimating configurational entropy with
reduced-dimensional models [27,28].

Here we sample variables from CG representations of AA
simulations to form low-order PDFs that include correlations
between nearby CG variables. For example, the adjacent angles
θ1 and ϕ1 shown in Fig. 1 are likely to contain non-trivial
correlations. In this work we assume that for an N -bead chain
the (N − 1) CG bond-length variables are independent of each
other and of the other CG angle variables, leaving a (2N − 5)-
dimensional distribution of bond-angle and dihedral-angle
variables. Including correlations between CG angles and bond-
lengths does not influence the “stiffness” of the CG polymer
model, which depends only on the bond-bond correlation, but
it can change 〈R2〉. For the models studied here this effect is
smaller than the error introduced in the angle approximations
except in the decimation models with small λ (D2), which are
of comparable (1–2%) size. Hence, we focus on the bond-angle
and dihedral-angle variables and refer to them throughout the
paper as the angle and dihedral, respectively.

The number of histogram bins and the samples needed to
build a PDF increases exponentially with the PDF dimension-
ality. Thus the computational cost of creating CG variable
samples with AA MD simulations limits the dimensionality
of the PDFs we can use. Based on CG variable decorrelation
times discussed in the Appendix we are limited to one-, two-,
and three-dimensional distributions of CG variables. In fact,
sampling CG variables is only feasible because, excluding
chain ends, the CG angle and dihedral variables are assumed to
be independent of location along a chain and PDF histograms
can be generated by averaging together CG variables at
different positions along every chain.

The correlations between CG variables that are included
in each different model are embodied in the “Minimal Set of
PDFs” listed in Table I. In Table I the distributions use the

shorthand notation P (βj , βj+δ1 , βj+δ2 , ...) ≡
[βj , βj+δ1 , βj+δ2 , ...] adapted from recent work on
reduced-dimensional models [27,28]. In this notation
the CG variable β represents either the CG angle (θ )
or dihedral (ϕ) variable, and the PDF is defined by the
sequence of CG variables and their relative indices δ1, δ2,
etc., rather than the absolute index or location j along
the chain. We also include the Jacobian factor sin θ

within the bracket definition [−] when β represents the
bond-angle θ. For example, the ��� model contains the
PDF P (θj , ϕj , θj+1) sin θj sin θj+1 = [θj , ϕj , θj+1], which
is sampled over all chains and all values of j in the CG
representation of the AA simulation.

As we combine the low-order PDFs to represent a model
polymer chain, we indicate that these CG angle and dihedral
variables represent a model chain by using numeric indices to
specify an absolute location along the chain. These variables
are distinct random variables drawn from a distribution that is
defined by the relationship between the variable subscripts or
equivalently, their relative configuration along the chain.

The high-dimensional PDFs needed to analytically evaluate
the bond-orientation correlation terms up to m = 3 require
modeling N = 5 beads or constructing a (2N − 5) = 5-
dimensional PDF for all the CG angle and dihedral variables.
For a MC simulation the value of N is not fixed, but simply
represents the chain length.

Generically, if a single bead is added to a polymer chain the
dimensionality of the distribution increases by two, since an
additional ϕ and θ variable are each added. The approximate
distribution for an (N + 1)-bead chain can be constructed
by extending the distribution for an N -bead chain. For this
procedure it is useful to define a Minimal-Chain Distribution
(MCD) of dimension n, the lowest dimensionality that includes
all the PDFs in the Minimal Set of PDFs for an approximate
model and both starts and ends with an angle θ [29]. This feature
allows the MCD to be used to construct an arbitrarily high-
dimensional PDF or equivalently an arbitrarily long polymer
chain.

In constructing the MCD, Bayes’ rule is used to eliminate re-
dundant variables. For example, the MCD for the ���-���

model listed in Table I contains consecutive triplets of angle
and dihedral CG variables, [θ1, ϕ1, θ2] and [ϕ1, θ2, ϕ2], and
these PDFs both contain ϕi and θi+1. The MCD is constructed
by multiplying the full [θ1, ϕ1, θ2] PDF by the distribution
of the new variable conditioned on the redundant variables
[ϕ2|ϕ1, θ2]. Bayes’ rule is applied to replace the conditional
distribution with the ratio of the three-dimensional distribution
and the PDF of the redundant variables, as in

[θ1, ϕ1, θ2][ϕ2|ϕ1, θ2] = [θ1, ϕ1, θ2][ϕ1, θ2, ϕ2]

[ϕ1, θ2]
. (1)

For some models this process is repeated to build up the PDF
with more CG variables until the full MCD is constructed, for
example,

[θ1, ϕ1, θ2][ϕ1, θ2, ϕ2][θ3|θ2, ϕ2]

[ϕ1, θ2]

= [θ1, ϕ1, θ2][ϕ1, θ2, ϕ2][θ2, ϕ2, θ3]

[ϕ1, θ2][θ2, ϕ2]
. (2)
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TABLE I. The approximate CG models used in this work, the Minimal Set of PDFs that embody the correlations between CG variables
within each CG model, and the Minimal-Chain Distribution that can be used build a polymer chain of arbitrary length using the approximate
CG model.

Model Minimal set of PDFs Minimal-chain distribution (MCD)
� [θ ] [θ ]

�-� [θ ], [ϕ] [θ1][ϕ1][θ2]

��-�� [θ1, ϕ1], [ϕ1, θ2]
[θ1, ϕ1][ϕ1, θ2]

[ϕ1]
��� [θ1, ϕ1, θ2] [θ1, ϕ1, θ2]

��-��-�� [θ1, ϕ1], [ϕ1, θ2], [ϕ1, ϕ2]
[θ1, ϕ1][ϕ1, θ2][ϕ1, ϕ2][θ2, ϕ2][ϕ2, θ3]

[ϕ1]2[θ2][ϕ2]2

���-��� [θ1, ϕ1, θ2], [ϕ1, θ2, ϕ2]
[θ1, ϕ1, θ2][ϕ1, θ2, ϕ2][θ2, ϕ2, θ3]

[ϕ1, θ2][θ2, ϕ2]

���-��� [θ1, ϕ1, θ2], [θ1, ϕ1, ϕ2]
[θ1, ϕ1, θ2][θ1, ϕ1, ϕ2][θ2, ϕ2, θ3]

[θ1, ϕ1][θ2][ϕ2]

The MCD for each of the models is listed in the right column
of Table I. The MCDs have dimensionality n, which can be as
small as n = 1 for the � model (top section), is n = 3 for the
middle section, and is n = 5 for the bottom section, growing
with the spatial extent of the CG variable correlations included
in the model.

To evaluate observables for a CG model, the MCD is used
to construct the (2N − 5)-dimensional (angle and dihedral)
distribution required to model an N -bead chain. This construc-
tion has two steps: first, use the MCD to represent the angle
and dihedral distribution for an N = (n + 5)/2-bead chain.
Second, for arbitrary N extend the chain by 1 bead to N + 1 by
using the MCD. For the � model the distribution is extended by
multiplying the N -bead approximate distribution by the angle
distribution,

[θ1, ..., θN−2]A × [θN−1]. (3)

For models with n = 3, the N -bead approximate distribution
is multiplied by the two-dimensional conditional distribution
constructed from the three-dimensional MCD:

[θ1, ϕ1, ...ϕN−3, θN−2]A × [ϕN−2, θN−1|θN−2]A, (4)

while for n � 5 the general form is

[θ1, ϕ1, ...ϕN−3, θN−2]A

× [ϕN−2, θN−1|θN−n, ϕN−n, ...ϕN−3, θN−2]A (5)

with the subscript [−]A on both the N -bead distribution and
the MCD signifying that they are distributions using the
approximate model rather than the full distribution. Bayes’
rule is used to eliminate the conditional in Eq. (4) for n = 3,

[θ1, ϕ1, ...ϕN−3, θN−2]A × [θN−2, ϕN−2, θN−1]A/[θN−2], (6)

with the redundant variable θN−2 or Eq. (5) for n � 5,

[θ1, ϕ1, ...ϕN−3, θN−2]A

× [θN−n, ϕN−n, ...ϕN−2, θN−1]A

/ [θN−n, ϕN−n, ...ϕN−3, θN−2]A, (7)

using [θN−n, ϕN−n, ...ϕN−3, θN−2]A, the approximate distribu-
tion that contains only the components of the model needed

to construct the (2n − 3) distribution, i.e., the CG variables
that are common between the first two terms in Eq. (7). The
final result is the (2N − 3)-dimensional PDF that represents an
(N + 1)-bead chain with a CG model. This procedure ensures
that any set of variables βi, βi+δ1 , βi+δ2 , with relative indices
δ1 and δ2 that match a PDF in the model’s Minimal Set will
follow that PDF.

For the CG models discussed in this paper we take care to
approximate the infinite-chain case by discarding data from the
bead nearest each chain end in the CG representations. This
limits all our CG-variable PDFs to representing the interior
chain beads, rather than the chain ends. We apply this practice
to the MC simulations by simulating longer chains, e.g., N =
50 beads, and measuring properties such as CG-variable PDFs
or distances for the interior N = 48 beads. Throughout this
paper values of the number of bonds M or beads N represent
an internal segment of the chain and exclude chain ends. This
ensures that measurements of the internal-squared distance
〈R2(M )〉 match predictions based on extrapolations of the
bond-orientation correlation.

D. Analytic evaluation

It is straightforward to evaluate expectation values from
an approximate CG model PDF. For example, computing
the expectation value of a function is an integral over the
approximate PDF,

〈f (θ1, ϕ1, θ2...)〉 =
∫ ∫ ∫

f (θ1, ϕ1, θ2...)

× [θ1, ϕ1, θ2, ...]Adθ1dϕ1dθ2..., (8)

where the subscript [−]A signifies the approximate model PDF.
In principle, any explicit function f (·) can be evaluated.

E. Monte Carlo simulations

One simple and effective method for testing the structural
properties for approximate CG models is to use MC techniques
to sample model bond, angle and dihedral interaction potentials
for a single polymer chain. From the (3N − 6)-dimensional
PDF that represents an N -bead chain the interaction potential
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is constructed in the usual way as

U (X1, X2, ...) = −kbT log([X1, X2, ...]), (9)

where the 1, 2, or 3 variable PDFs become 1, 2, or 3 variable
potential terms. The full-chain potential is sampled by single
particle-moves with a displacement � and using the Metropolis
algorithm. The temperature for the MC sampling is the same as
that used for the AA simulations, 550K for PLA, 500K for PE
and 653K for PTFE. The initial displacement �i is chosen to be
1, and for an initial, preproduction period of 10,000–100,000
whole-chain MC sweeps � is increased or reduced by 10% if it
falls outside a 5–95% acceptance range over 100 sweeps. A MC
sweep is defined as N randomly chosen particle displacements,
where N is the chain length. An entire production MC run is
typically of order 107 MC sweeps, and results quoted below
use data from either the last half or quarter of the MC run.

III. RESULTS AND DISCUSSION

A. Physically motivated correlations

Our approximate CG models explicitly include correlations
between the CG angle and dihedral variables. It is not clear a
priori which of these correlations may be important, and here
we visually compare the joint PDFs and their independent
approximations for an intuitive sense of their importance.
Below we compare the PLLA-A3, PTFE-A2 and PTFE-A4
representation. The PTFE-A2 and A4 representations are
essentially similar to the representations of PE and illustrate the
trends with increasing coarseness. The qualitatively different
nature of the correlations between the CG variables in PLLA
is also clear.

Figure 2 compares the full two-variable PDF [θ1, ϕ1] (left)
for different CG polymer representations with the � − �

model approximation (right) for the same representation. The
comparison for the PLLA model (top) is particularly poor,
with symmetry in the independent approximation that is clearly
missing in the full PDF. For the PTFE CG2 model (middle) the
peak at θ = 160◦ is localized at ϕ = 0◦, but is smeared out over
a much wider range of ϕ in the independent approximation.
Similarly, the peaks at θ = 130◦ and ϕ = ±140◦ are spread
over a wide range of ϕ and are centered at the wrong location
in the independent approximation. Finally, for the PTFE CG4
model (bottom) only a minor asymmetry in θ is neglected in the
independent model. These visual cues are good indicators that
the independent angle approximations will become increas-
ingly accurate for the models in order from top to bottom.

Calculations of the absolute value of the difference between
the full two-dimensional PDF and the independent approxima-
tions confirm the visual evaluation of the agreement between
the two figures. We use the simple measure

�βi ,βj
=

∫
dβi

∫
dβj

∣∣[βi, βj ] − [βi][βj ]
∣∣, (10)

where βi and βj are two CG variables. For example, the
error introduced by assuming independent adjacent dihedrals
and angles is �θ1,ϕ1 = ∫

dθ1
∫

dϕ1|[θ1, ϕ1] − [θ1][ϕ1]|. The
numerical values of the error �θ1,ϕ1 = 0.422, 0.185, and
0.109 for the PLLA-A3, PTFE-A2, and PTFE-A4 models,
respectively, indicate that the independent angle and dihedral
approximation should improve from top to bottom in Fig. 2.
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FIG. 2. The joint PDF [ϕ1, θ1] for the (a) PLLA A3, (b) PTFE
A2, and (c) PTFE A4 CG representations. (d-f) The corresponding
independent approximation [ϕ1][θ1] for the same CG representations.

Figure 3 shows the joint PDF of adjacent angles θ1, θ2 for
PLLA-A3 (top), PTFE-A2 (middle), and PTFE-A4 (bottom).
As in Fig. 2 the left side represents the full joint PDF [θ1, θ2],
while the right column shows the product of two independent
PDFs [θ1][θ2]. For PTFE, the good match between the right
and left PDFs indicates that the θ1 − θ2 correlations may be
less important for CG models to capture. Hence, the ��-��

and ��-��-�� models, which omit the θ1 − θ2 correlations,
could be effective at modeling the full distribution. The abso-
lute value of the differences between the full two-dimensional
θ1 − θ2 PDF and the independent approximation are �θ1,θ2 =
0.122, 0.134, and 0.035 for the PLLA-A3, PTFE-A2, and
PTFE-A4 models, respectively, indicating that the PTFE-A4
θ1 − θ2 angles contain the least structure or correlation between
adjacent angles, with the value of �θ1,θ2 three times less than
the other two models shown.

Figure 4 shows the joint PDF of adjacent dihedrals ϕ1, ϕ2

for PLLA-A3 (top), PTFE-A2 (middle), and PTFE-A4 (bot-
tom). As in Figs. 2 and 3 the left side represents the full
joint PDF [ϕ1, ϕ2], while the right column represents the
independent-variable approximation. In all cases there is
substantial asymmetry in the joint distribution that is not
contained in the product PDFs shown at right. Given this
asymmetry one would predict that for all CG representations
shown, an approximate model that includes a [ϕ1, ϕ2] term
would perform better than a model that assumes independent
dihedrals. Another notable feature is the overall flatness of
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FIG. 3. The joint PDF [θ1, θ2] for the (a) PLLA A3, (b) PTFE
A2, and (c) PTFE A4 CG representations. (d-f) The corresponding
independent approximation [θ1][θ2] for the same CG representations.

the PTFE-A2 representation (middle). The absolute value of
the error in the independent ϕ approximation �ϕ1,ϕ2 = 0.179,
0.046, and 0.073, for PLLA-A3, PTFE-A2, and PTFE-A4,
respectively; 2–3 times smaller for the PTFE models than for
PLLA.

Above we have calculated a mismatch between pairwise
joint PDFs in the CG angle and dihedral variables and their
independent angle and dihedral approximations. It is important
to note that while a value of 0 for � indicates a perfect
match, the measure does not indicate how the mismatch affects
observables like the bond-orientation correlation. That is, the
quantity � says little or nothing about the expectation value
of any particular expression evaluated using the PDFs. Instead
it is something like an upper bound on the error introduced by
the approximation.

B. Bond-orientation correlation

The bond-orientation correlation links the local CG vari-
ables to large-scale structural properties. In this section we
discuss how it is computed analytically using an approximate
model PDF and numerically using MC sampling of the equiva-
lent potential. We evaluate the bond-orientation correlation for
the approximate models and compare those values with results
from CG representations of AA simulations.

The bond-orientation correlation,

Cbb(m) ≡
〈

bi · bi+m

|bi ||bi+m|
〉
, (11)
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FIG. 4. The joint PDF [ϕ1, ϕ2] for the (a) PLLA A3, (b) PTFE
A2, and (c) PTFE A4 CG representations. (d–f) The corresponding
independent approximation [ϕ1][ϕ2] for the same CG representations.

between two bonds separated by m − 1 bonds along a polymer
chain is an important quantity, since a sum over Cbb gives
〈R2(M )〉 and related quantities. It is straightforward to write
the m = 1, 2, and 3 terms in terms of CG angle variables
θ1, ϕ1, θ2, etc. The explicit expressions are

Cbb(1) = 〈cos θ1〉 (12)

for the m = 1 term,

Cbb(2) = 〈cos θ1 cos θ2〉 − 〈sin θ1 sin θ2 cos ϕ1〉 (13)

for the second, and we derive the expression

Cbb(3) = 〈cos θ1 cos θ2 cos θ3〉
− 〈cos θ1 sin θ2 sin θ3 cos ϕ2〉
− 〈sin θ1 sin θ2 cos θ3 cos ϕ1〉
+ 〈sin θ1 sin θ3 sin ϕ1 sin ϕ2〉
− 〈sin θ1 cos θ2 sin θ3 cos ϕ1 cos ϕ2〉 (14)

for the third term. Given the expressions in Eqs. (11)–(14)
it is possible to evaluate the bond-orientation correlation for
the approximate models proposed using both analytic and
MC methods. To analytically evaluate Eqs. (12)–(14) one
first constructs the five-dimensional PDF [θ1, ϕ1, θ2, ϕ2, θ3]A
in the approximate model, and then explicitly evaluates the
expectation values. The values of Cbb(m) for m = 1, 2, 3 can
be evaluated via Eqs. (12)–(14) using MC sampling of a single
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chain, however with MC it is also possible to calculate the
bond-orientation correlation directly for all m using Eq. (11).

For polymers with only local interactions the bond-
orientation correlation at large separations m follows an
exponential decay,

Cbb(m) ≈ C0e
−m/Lp , (15)

with a characteristic decay length Lp known as the persistence
length [30]. We previously showed that CG representations
of AA PE and PTFE simulation data followed the predicted
relationship, La

p = λLAλ
p , where La

p is the backbone AA
persistence length and λLAλ

p is the persistence length of the
corresponding CG representation [15].

The bond-orientation correlation terms m = 1–3 for the
PE-A2 and PE-A4 representation are shown in the upper two
curves in Fig. 5(a). Values from the full CG representation
are labeled as [θ1, ϕ1, θ2, ϕ2, θ3] and are represented as ∗. The
log-linear slope between terms 2 and 3, an estimate of the
persistence length Lp, is calculated from the full CG repre-
sentation and is shown as a dotted line. The bond-orientation
correlation values from the ��-�� (�) and ��-��-�� (	)
models are also shown. For both PE representations these two
models are significantly better than the �-� model. For both
PE-A2 and A4 the ��-��-�� model best reproduces the
fourth and fifth terms in Eq. (14), which contain a product
of adjacent dihedrals. As we show below, the ��� and
���-��� models (not shown for PE) perform about as
well as the ��-�� and ��-��-�� models, respectively.
This indicates that for PE the correlations in [ϕ1, ϕ2] are more
important than those in [θ1, θ2].

The corresponding values for PLLA are shown in the lower
curves in Fig. 5(a). The different approximate models show
similar features to those for PE, with more sophisticated
models that take correlations into account improving on the
�-� models. Here it is interesting to note that including the
dihedral-dihedral correlation, for example, in the ���-���

model versus the ��� model, does not necessarily improve
the model. The ���-��� model, which was chosen for
its ability to reproduce Cbb(3), is also shown. As for PE,
the log-linear slope between Cbb(2) and Cbb(3) is shown as
a dashed line, and it shows a striking mismatch with the
value of Cbb(1). We investigate the PLLA data in more detail
below.

The bond-orientation correlation calculated from the PE-A4
and PLLA-A3 CG representations using Eq. (11) is shown as a
function of separation in Fig. 5(b) to large separation on log-log
scales. Values of the bond-orientation correlation measured
from CG representations are shown as open symbols, while
the exponential form given in Eq. (15) is shown as a dotted
(dashed-dot) line for PLLA-A3 (PE-A4). Crossed symbols
show results from MC sampling of approximate CG models.
The decay length of the exponential form Lp and the prefactor
C0 are estimated from a fit to the values of Cbb(2) and Cbb(3). It
is clear that the PLLA data deviate from a simple exponential
form and may follow either a power-law or a second expo-
nential decay length for λm � 15. Long-range electrostatic
interactions are known to modify the simple exponential decay,
introducing different correlations [31–33], and in this context
the relatively strong polarity of PLLA monomers could modify

0.3

0.1

0.03

(a)

10-3

10-2

10-1

100

3 10 30

B
on

d-
B

on
d 

C
or

re
la

tio
n 

C
bb

(m
)

Separation λm

(b)

PLLA-A3 PE-A4

FIG. 5. (a) The bond-orientation correlation Cbb(m) for PE and
PLLA on log-linear scales. Symbols represent different approximate
CG models and dotted lines represent the persistence length deter-
mined from the m = 2 and m = 3 terms of Cbb(m) evaluated using the
full five-dimensional distribution of CG variables [θ1, ϕ1, θ2, ϕ2, θ3].
Data for PLLA have been shifted down by a factor of 2. (b) The
bond-orientation correlation of the PE-A4 (©) and PLLA-A3 (�)
representations of AA simulation data plotted on log-log axes. The
dashed-dot (dotted) lines show the exponential form in Eq. (15) with
the decay slope for PE-A4 (PLLA-A3) fit from Cbb(2) and Cbb(3) as
in (a). Data from MC sampling of the PE-A4 ��-��-�� model (+)
and PLLA-A3 ��� model (×) are also shown.

the bond-orientation correlation. The enhanced correlation at
large separations leads to errors of order 3% in sums (discussed
below) over the bond-orientation correlation out to separation
m = 45. In contrast, the exponential form with parameters fit
from Cbb(2) and Cbb(3) is a good match for the PE-A4 data,
capturing the persistence length quite well. For a comparable
sum over the PE-A4 representation values, the error is 0.5%.
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C. Internal-squared 〈R2(M )〉 distance

The utility of the bond-orientation correlation is its direct
link, through summation, to the squared distance between
polymer backbone atoms or CG beads a distance M bonds
away 〈R2(M )〉. As shown above, the first three terms of the
bond-orientation correlation can be rapidly and easily calcu-
lated for any CG approximate model or in the full CG represen-
tation by analytic evaluation of the CG variable distribution.
Unfortunately, the internal squared distance 〈R2(M )〉 depends
on M terms in the bond-orientation correlation, which are not
simple to compute analytically. To rank the different models
using an analytically calculated internal squared distance we
must extrapolate the bond-orientation correlation. It is clear
from the bond-orientation correlation shown above for PLLA
that this process introduces some systematic error. Here we
examine the terms in the internal squared distance summation
and estimate the error from this extrapolation.

For polymers like PE and PTFE that exhibit purely expo-
nential bond-orientation correlation decay, the molecule-scale
structure is dictated by the bond length and the correlation
decay length Lp, known as the persistence length. The squared
distance between beads separated by M bonds, a fundamental
molecule-scale structural measure, is related to a sum over the
bond-orientation correlation,

〈R2(M )〉 =
M∑
i=1

M∑
j=1

〈bi · bj 〉

≈ 〈b2〉
[
M + 2

M∑
m=1

(M − m)Cbb(m)

]
. (16)

However, since the m � 4 values of the bond-orientation
correlation Cbb(m) become increasingly difficult to compute
analytically we would like to determine the importance of the
m � 4 terms in the sum, and to know whether a persistence
length extracted from terms m = 2 and m = 3 is a good
approximation for the rest of the curve. Here we evaluate quan-
titatively the assumption exponential decay with a constant
slope, which appears reasonable based on a visual analysis of
the PE-A4 representation data and fit in Fig. 5(b).

Extrapolation of an exponential fit from the m = 2 and m =
3 values to the m � 4 portion bond-orientation correlation
curve is equivalent to computing the internal-squared distance
as

〈R2(M )〉 ≈ 〈b2〉
[
M + 2(M − 1)Cbb(1)

+ 2
M∑

m=2

(M − m)C0e
−m/Lp

]
, (17)

where the value of Cbb(1) = 〈cos θ〉 is explicitly calculated.
Values of C0 and Lp are determined from a fit to the full CG
representation values of Cbb(2) and Cbb(3). For PE, the value
of 〈R2(M )〉 predicted by Eq. (17) can be compared with the
measured 〈R2(M )〉 value computed by summing all the Cbb(m)
terms as in Eq. (16) for each CG representation. The difference
between the actual value and the extrapolated value is less than
1%, except for the A6 and D6 representations, which have
errors of 3.6% and 1.6%, respectively. Similarly, for PTFE,

the difference between the actual and extrapolated 〈R2(M )〉
values is less than 1% except for the D2 and A6 representations
which have error of 3% and 1.3%, respectively.

For PLLA, Fig. 5(b) shows that the exponential form for the
bond-orientation correlation decay does not fit the data. Instead
a power-law decay or double exponential better describes the
data for separation m � 3. The different form leads to an error
of 2.5% between the predicted value in Eq. (17) and the actual
squared distance for the A3 representation shown in Fig. 5(b). If
instead 〈R2(M )〉 is predicted using a power-law fit to the data
for m � 4, the extrapolation prediction and full sum values
agree to better than 0.1%. In what follows we do not use this
power-law fit since it cannot be reproduced by the short-range
models that are our focus.

For each of the CG models a similar comparison can be
made between the value of 〈R2(M )〉 predicted by extrapolating
the bond-orientation correlation and that measured using a
single-chain MC simulation. The value 〈R2(M )〉 measured
from MC simulations differs from the predicted values by
less than 1% for each of the approximate CG models. This
discrepancy indicates the small error in using the exponential
fit from m = 2 and m = 3 and extending it to the entire chain
length.

To confirm that the CG model probability distributions
and interaction potentials are equivalent, as they should be
by construction, we compare the Cbb(m) m = 1, 2, 3 values
explicitly. These predicted values vary by of order 0.1%,
indicating that the MC simulations and analytic calculations
are in excellent agreement. For computational speed we use
analytic evaluations of Cbb(m) and report values of 〈R2(M )〉
from extrapolations of these values below.

Overall, these tests indicate error introduced by extrapolat-
ing the decay slope of the bond-orientation correlation rather
than computing and summing every value is of order 1%. This
is true both for CG representations of AA simulations and for
approximate CG models sampled with MC. Extrapolation of
the bond-orientation from analytic evaluation of the approxi-
mate CG models or MC sampling are essentially equivalent. In
the following comparison of the different models we show the
error introduced by extrapolation as an approximate measure
of the systematic error.

D. Approximate model error

Our ultimate goal is to predict structural properties using CG
polymer models. Since the CG models are constructed from
CG variable PDFs the short-range structural properties are cor-
rect by construction, but molecule-scale structural properties
are only approximately matched. Models can be evaluated on
this large-scale structure by comparing the internal-squared
distance values predicted from each of the approximate CG
models with those measured from CG representations of AA
simulations. Results from this comparison clearly identify
which correlations are important to include in approximate CG
models of PE and PTFE, and indicate the difficulties in model-
ing a polymer like PLLA that contains long-range correlations
using CG models that do not include such interactions.

Figure 6 shows the fractional error between the extrapolated
squared distance 〈R2(M )〉 computed from Eq. (17) using
approximate CG models and the measured value from CG
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FIG. 6. The fractional error in the squared internal-squared dis-
tance 〈R2(M )〉 for the different CG polymer approximate models
in Table I relative to the true value of 〈R2(M )〉. Both the true and
predicted values of 〈R2(M )〉 omit end effects. Error bars represent
the systematic error in the calculation as described in Sec. III c, which
are of order 1% for PE and PTFE and of order 3% for PLLA.

representations of AA simulations. The top panel shows the
models created by averaging, while those from decimation
are shown in the bottom panel. For PE and PTFE both the
Aλ and Dλ approximate models have similar features. The �

models do not reproduce the chain stiffness correctly, except
at a representation-dependent value of Aλ∗ = 2 and Dλ∗ = 3
as found previously [15]. The �-� model approximation
is poor for λ = 2 and λ = 3 for the Aλ models, becoming
better for coarser beads. This has an intuitive physical picture,
that angle-dihedral correlations become less important for
coarser models. For the Aλ approximate models it is clear

that including the dihedral-dihedral (ϕ1 − ϕ2) correlation is
important. The models that include this correlation (	 and
�) perform better than the models which omit it (� and
�). In contrast, it is not clear that including the angle-angle
correlations (θ1 − θ2) is necessary. In contrast, for models
based on decimation representations the importance of the
dihedral-dihedral correlations appears diminished relative to
averaging, except for the PTFE D2 model.

The approximate CG PLLA models are less successful
than the PE and PTFE models. The CG variable correlations
are clearly very strong, as can be seen in the [θ1, ϕ1] and
[ϕ1, ϕ2] PDFs in Figs. 2 and 4. Not only are these cor-
relations important, but so are the correlations included in
the ���-��� model, which includes the term [θ1, ϕ1, ϕ2].
Unfortunately, all the approximate PLLA models perform
poorly because they are constructed with an assumption of
exponential bond-orientation correlation decay, which is not
observed in this polymer. At the coarser λ = 6 level it appears
that the models all match 〈R2(M )〉 better than λ = 3, which is
due to the long-range correlations being better represented by
an exponential form with coarser beads.

IV. CONCLUSION

We have developed seven approximate CG models of
PE, PTFE, and PLLA from CG representations of AA MD
simulations. The models are implemented as either high-
dimensional PDFs of CG angle and dihedral variables or as
an equivalent interaction potential. Approximate CG models
are constructed from low-dimensional CG variable PDFs that
contain correlations between different CG variables including
dihedral-dihedral, dihedral-angle, and angle-angle. We show
that these CG-variable combinations contain significant corre-
lations.

The m = 1, 2, and 3 terms of the bond-orientation corre-
lation Cbb(m) are calculated with each approximate model
analytically from the unique five-dimensional PDF of CG
angles and dihedrals. All (N − 2) terms of the bond-orientation
correlation are computed for an N -bead chain using single-
chain MC sampling for each model. Results for the internal
squared distance 〈R2(M )〉 from MC sampling and from an
exponential extrapolation of analytical bond-orientation cor-
relation decay are in agreement, confirming the accuracy of
the analytical approximation.

The internal squared distance for the approximate models
is compared with the value from the CG representation of the
AA polymer simulations. For PE and PTFE, models generated
from an averaging procedure that include dihedral-dihedral
correlations perform best. Angle-dihedral correlations also
have considerable importance, while angle-angle correlations
have negligible effect. For models generated from a decimation
procedure the angle-dihedral correlations are again important
and models with dihedral-dihedral correlations give only a
slight improvement. Evaluation of the model performance
based on 〈R2(M )〉 values from extrapolations of the bond-
orientation correlation gives a very clear ranking of the relative
importance of the different CG-variable correlations.

For PLLA, extrapolation of the bond-orientation correlation
and comparison between the AA CG representation and CG
model 〈R2(M )〉 values gives a different type of insight. Unlike
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FIG. 7. The autocorrelation of individual CG bond-length, bond-
angle, and dihedral-angle variables over a 10-ns atomistic simulation.
Curves are values averaged over 20 different bonds or angles in the
middle of a chain.

the case for PE and PTFE, for PLLA there is a mismatch
between model and representation 〈R2(M )〉 values even when
the first three terms are a good match because the electrostatic
interactions present for PLLA break the assumption of short-
range interactions in our approximate CG models. Physically,
these long-range interactions manifest as an enhancement of
the bond-orientation correlation, which is not reproduced by
either CG PDFs or local interaction potentials of CG variables.

Our overall goal was to use the bond-orientation correlation
to evaluate approximate CG models for three common, differ-
ent polymers. This approach proved remarkably robust. From
our analysis it is clear that PLLA’s electrostatic interactions,
which manifest in the bond-orientation correlation, are not
captured by the simple approximate models proposed. Further
work will be needed to include long-range (electrostatic)
interactions in CG polymer models [34] and to understand how
to quickly evaluate the structural properties of polymers within
those models. In contrast, the analysis was very successful
for PE and PTFE. For these polymers the most important CG

variable correlations were easily identified and the error in
the large-scale structure for each CG model was quantified.
We showed that more sophisticated CG models with dihedral-
angle and dihedral-dihedral correlations can reproduce the
structure of PE and PTFE with high fidelity. This success shows
that for a wide class of polymers approximate CG models can
be quickly evaluated for the ability to reproduce large-scale
structure accurately.
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APPENDIX: AUTOCORRELATION AND
INDEPENDENCE OF SAMPLES

Figure 7 shows the autocorrelation of individual CG bond-
length, bond-angle, and dihedral-angle variables during an AA
simulation. Our analysis indicates that the longest decorrela-
tion time for CG variables is approximately 100–150 ps for the
dihedral-angle variables.

Constructing low-order PDFs of CG-variables means gen-
erating histograms of the relevant variables, which requires
enough independent samples to construct a multidimensional
histogram. Simulation times are of order 50–100 ns, represent-
ing about 500 independent sampling times. Typical all-atom
simulation sizes are about 50 000 CG bonds, for a total
of about 2.5 × 107 independent CG variable samples. For a
three-dimensional histogram this number of samples produces
hundreds to thousands of counts per histogram bin, given bin
widths that adequately resolve the probability distribution.
Unfortunately, this is nearly the limit for resolution, since in-
creasing the dimensionality increases the number of bins with-
out increasing the number of samples, thereby decreasing the
counts in each bin by more than one order of magnitude. For the
CG-variables of interest here four and five-dimensional distri-
butions may be possible with considerable effort, but for prac-
tical considerations we use one-, two-, and three-dimensional
distributions as the Minimal Set of PDFs for CG models.
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