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Grand-potential-based phase-field model for multiple phases, grains, and chemical components
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Grand-potential-based phase-field model for multiple phases, grains, and chemical components is derived from
a grand-potential functional. Due to the grand-potential formulation, the chemical energy does not contribute to the
interfacial energy between phases, simplifying parametrization and decoupling interface thickness from interfacial
energy, which can potentially allow increased interface thicknesses and therefore improved computational
efficiency. Two-phase interfaces are stable with respect to the formation of additional phases, simplifying
implementation and allowing the variational form of the evolution equations to be used. Additionally, we show that
grand-potential-based phase-field models are capable of simulating phase separation, and we derive conditions
under which this is possible.

DOI: 10.1103/PhysRevE.98.023309

I. INTRODUCTION

The phase-field method is an increasingly popular technique
for simulating microstructural evolution in materials. Because
engineering materials are often both polycrystalline and mul-
ticomponent, phase-field models are required that are capable
of tracking an arbitrary number of chemical components,
phases, and grains of each phase. Several phase-field models
capable of simulating multiphase, multigrain materials have
been developed in recent years [1–8], and others have also
been developed that add the capability to simulate multiple
chemical components [9–25]. Each of these models has various
advantages and disadvantages relative to desirable model
characteristics.

One highly desirable characteristic of phase-field models of
multicomponent systems is the decoupling of interfacial thick-
ness and interfacial energy. In the seminal alloy solidification
model of Wheeler, Boettinger, and McFadden (WBM) [26],
the interface between phases is considered to be a mixture of
the two phases with an equal composition. However, in this
formulation, there is a nonzero contribution to the interfacial
energy from the chemical energy in the interfacial region. This
contribution increases with interface thickness, and thus the
interfacial energy is coupled to the interfacial thickness in this
formulation. This sets a practical upper limit on the interface
thickness for a given materials system and requires a simulation
resolution fine enough to resolve that interface. Thus, the
coupling between interfacial energy and interfacial thickness in
WBM-type models can present limitations in simulating large
systems.

To circumvent these limitations, several strategies have been
pursued. Tiaden et al. [27] first showed that in the WBM
model the coupling between solute concentration and order
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parameter influences the interface thickness. They developed a
multiphase model for binary alloys in which the concentration
in the interfacial region is defined as a mixture of each phase’s
concentration and showed that when the ratio of concentrations
between phases is given by a constant partition coefficient,
the concentration is decoupled from the evolution equation for
the order parameter, removing the limit on interface thickness
[27]. Building on this approach, Kim, Kim, and Suzuki (KKS)
introduced a phase-field model for two-phase binary alloys
in which the interfacial region is defined as a mixture of the
two phases with different phase compositions but constrained
to have the same chemical potential [28]. In this case, the
chemical energy in the interface does not contribute to the
interfacial energy, and the interfacial energy and interfacial
thickness are decoupled, allowing interface thickness to be
increased (subject to adequately resolving curvatures of mi-
crostructural features of interest) and simulation resolution
made coarser. However, this comes at a cost of introducing
the additional phase composition variables, resulting in ad-
ditional complexities in solving the equations numerically.
Kim et al. also extended the model to three-phase systems
[29]. Folch and Plapp developed a three-phase model that
decouples the interfacial thickness from interfacial energy for
parabolic phase free energies [30] and introduced interpolation
functions that prevented the spurious formation of the third
phase at a two-phase interface, as discussed further below.
Ohno et al. extended the KKS model to three phases [31]
using the interpolation functions developed by Folch and
Plapp. Moelans developed a multi-order-parameter model that
allows an arbitrary number of phases, grains, and chemical
components to be represented and uses the KKS approach to
exclude the chemical energy contribution to interfacial energy
[13]. In this model, the interfacial thickness is decoupled from
the interfacial energy in a multiphase, multi-order-parameter
model. However, as with the original KKS model, the phase
concentration variables for each solute species must be solved
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for simultaneously with the evolution equations, increasing
computational requirements.

Recently, a phase-field model for alloy solidification based
on a grand-potential functional was introduced by Plapp
[32] that retains the advantage of decoupling the interfacial
energy from the interfacial thickness, while removing the
need for phase concentration variables for certain chemical
free energy forms. In this model, the evolution equations
are derived from a functional of the grand-potential density
rather than the Helmholtz free energy density more typically
used in phase-field models. An evolution equation for the
chemical potential difference between species is used, rather
than composition. Reference [32] also showed that KKS-
type models can be derived starting from the grand-potential
functional. The grand-potential approach has been extended
to multi-phase-field models [16,18–25]. (We refer to multi-
phase-field models as models that enforce the constraint that
all phase-field variables φi sum to 1 at each point, and we
refer to multi-order-parameter models as models where this
requirement is not enforced.) These models also decouple
interfacial thickness from interfacial energy and evolve the
chemical potential difference as a function of time and thus do
not require solving for phase concentration variables. However,
in these models, a two-phase interface is not stable with respect
to the formation of additional phases at the interface [7].

The stability of two-phase interfaces with respect to the
formation of additional phases is another highly desirable
characteristic of phase-field models of multiphase, multigrain
systems. The spurious formation of additional phases at two-
phase interfaces can potentially lead to nucleation of new
phases in unphysical locations and causes the interfacial energy
to deviate from its value for the two-phase interface. The
spurious formation of additional phases has been a commonly
encountered problem in multi-phase-field models that has been
addressed in different ways. The models of Steinbach et al.
[1] and Steinbach and Pezzola [2], and those derived from
them, result in two-phase interfaces that are unstable with
respect to the formation of additional phases, as discussed by
Toth et al. [7]. Reference [1] uses the double-well potential,
with terms of the form Wijφ

2
i φ

2
j (where Wij is a constant),

whereas Ref. [2] uses the double-obstacle potential, with terms
of the form Wijφiφj and a sharp penalty for phase-field values
outside the range [0,1]. The use of the double-obstacle potential
significantly reduces third-phase formation at interfaces [33].
An alternative approach to preventing spurious third-phase
formation in the models of Refs. [1,2] was developed by
Kim et al. [5,29], who introduced a step function sij to the
Allen-Cahn equation for each order parameter. The step func-
tion sij = sisj , where si = 1 if φi > 0 and si = 0 otherwise.
Although this approach retains the variational formulation
of the Allen-Cahn equations, it may generate a stationary
solution from a nonequilibrium state [7]. It also prevents
the propagation of φi into regions where φi = 0 initially
unless the step function is modified based on neighboring
values of the order parameter on a uniform finite-difference
grid [29]. This requirement makes it difficult to generalize
the method to adaptive grid spacing, finite element, or finite
volume discretization schemes. The multi-phase-field, grand-
potential-based models in Refs. [16,18–24] use the multiphase
free energy functional including double-obstacle potential of

Ref. [2], whereas Ref. [25] uses the double-well potential of
Ref. [1]. In Refs. [16,18–24], the authors mitigated spurious
third-phase formation by adding penalty terms of the form
Wijkφiφjφk , where Wijk is a constant. Such terms can cause
the contact angles at triple junctions to deviate from their
equilibrium values; a procedure to calibrate Wijk to obtain
improved accuracy in triple junction angles is given in Ref. [8].
In Ref. [34] terms of the form Wijkφiφjφk were employed in
the model of Ref. [2] to minimize leakage of third phases
from triple junctions to adjacent grain boundaries in cases
of large differences in interfacial energies between the grain
boundaries. A procedure to determine Wijk was given to obtain
improved accuracy in triple-junction angles and interfacial
velocities in grain growth simulations [34]. The three-phase
model of Folch and Plapp [30] prevents spurious third-phase
formation through the use of a triple-well potential for the
bulk energies and specially chosen fifth-order interpolation
functions for the chemical free energies in each phase (with
the limitation that the chemical free energies are parabolic with
respect to concentration). Along an i-j interface, derivatives of
these interpolation functions are zero with respect to φk . The
three-phase extension of the KKS phase-field model developed
by Ohno et al. [31] uses these same interpolation functions
to allow for stable binary interfaces with greater flexibility in
choice of chemical energies for each phase. However, the poly-
nomial interpolation functions developed in Ref. [30] cannot be
readily generalized to higher numbers of order parameters. The
previously discussed multiphase, multi-order-parameter model
by Moelans [13] employs bulk and gradient energy terms that
are stable with respect to third-phase formation at a two-phase
interface. This work also introduced interpolation functions
for chemical energies that, in a binary interface, have zero
slope with respect to order parameters for additional phases
and thus prevent the chemical energy terms from contributing
to third-phase formation.

Here we introduce a multiphase, multi-order-parameter
model based on a grand-potential functional that features
the desirable characteristics discussed above: decoupling of
interfacial energy from interfacial thickness and the stability of
two-phase interfaces with respect to the formation of additional
phases. To our knowledge, the only existing model for multi-
grain, multiphase, multicomponent systems that features both
of these characteristics is the model of Moelans [13], based on
the KKS approach. By employing the bulk free energies and
interpolation functions from Ref. [13] within a grand-potential
functional, we retain the decoupling of interfacial thickness and
interfacial energy and the stability of binary interfaces, while
removing the need for additional phase concentration variables
of the KKS approach. This eliminates the need to solve a
nonlinear equation for each of these variables, simplifying
implementation and reducing computational complexity.

An additional capability of grand-potential-based phase-
field models considered here is the ability to model phase
separation. Since their introduction, grand-potential-based
phase-field models were considered incapable of simulating
phase separation [32]. This conclusion was drawn from the
fact that the model formulation prevents the usage of square
gradient terms of concentrations in the total grand potential
and requires a convex chemical free energy function in each
phase. These conditions are necessary such that concentration
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and chemical potential are related by a local and invertible
relation [32]. However, we demonstrate here analytically and
with simulations that the grand-potential formulation can be
used to model phase separation.

This work is organized as follows. In Sec. II, we give the
formulation of the model and show analytically that it has the
desired properties discussed in the introduction. In Sec. III
the formulation and implementation of the model is verified
by comparing with expected results for the morphology of
steady-state microstructures and the kinetics of growth. The
capability of both single-order parameter and multi-order-
parameter grand-potential models to simulate phase separation
is discussed in Sec. IV, and conclusions and future implications
of the work are discussed in Sec. V.

II. GRAND POTENTIAL MODEL FORMULATION

The phase-field model is formulated to describe N possible
phases and K chemical species. For each phase α, there are pα

possible grain orientations. The individual grains of phaseα are
represented by a set of nonconserved order parameters �ηα =
(ηα1, ηα2, . . . , ηαpα

), where the first subscript of each order
parameter indexes the phase and the second subscript indexes
the grains. A similar set of order parameters exists for each of
the N possible phases, such that the microstructure is repre-
sented by the vector of order parameters �η = (�ηα, �ηβ, . . . , �ηN ).
Within the interior of grain i of phase α, ηαi = 1 and all other
order parameters have value 0. The interface between grain i

of phase α and grain j of phase β is represented by smooth
variation of order parameters ηαi from 1 to 0 and ηβj from
0 to 1.

In addition to the local crystallographic information, the
local chemical composition is required to represent the mi-
crostructure. As in Ref. [32], we track the number density ρ of
each solute species at each position. Assuming each chemical
species has the same atomic volume Va , K − 1 variables are
then required, and the Kth species is considered the solvent.
The number density of chemical species A, ρA, is related to its
local atomic fraction, cA, as

ρA = cA

Va

. (1)

The total grand potential � of the system is defined as

� =
∫

V

(ωmw + ωgrad + ωchem ) dV. (2)

ωmw is a multiwell contribution to the bulk free energy density
that has the form

ωmw = mf0, (3)

f0 =
N∑

α=1

pα∑
i=1

(
η4

αi

4
− η2

αi

2

)

+
N∑

α=1

pα∑
i=1

⎛
⎝ N∑

β=1

pβ∑
j=1,αi �=βj

γαiβj

2
η2

αiη
2
βj

⎞
⎠ + 1

4
, (4)

where m is a constant with dimensions of energy per unit
volume, α and β index phases, i and j index grains, and γαiβj

are a set of constants that allow the interfacial energy between

grain i of phase α and grain j of phase β to be controlled
[13,35]. We require γαiβj = γβjαi so the terms γαiβj

2 η2
αiη

2
βj

can be combined, resulting in one cross-term γαiβjη
2
αiη

2
βj for

each pair of order parameters. Although interfacial energy
anisotropy and/or grain boundary energy anisotropy can be in-
cluded by making the coefficients γαiβj dependent on interface
orientation, these effects are not considered here. The gradient
energy contribution ωgrad is given by

ωgrad = κ

2

N∑
α=1

pα∑
i=1

|∇ηαi |2, (5)

where κ is the gradient energy coefficient. Consistent with the
assumption of isotropic interfacial energy and grain boundary
energy, we maintain a constant κ throughout and assume it is
independent of composition. The chemical contribution to the
grand-potential functional ωchem is given by

ωchem =
N∑

α=1

hαωα, (6)

where hα is an interpolation function for phase α and ωα is the
grand-potential density for phase α. hα has the form [13]

hα =
∑pα

i=1 η2
αi∑

β

∑pβ

i=1 η2
βi

. (7)

hα = 1 in the interior of phase α and hα = 0 in the interior of
all other phases. hα can be interpreted as the phase fraction of
phase α. The grand-potential density for phase α, ωα , is

ωα = fα − ρAμA − ρBμB − · · · − ρK−1μK−1, (8)

where fα is the Helmholtz free energy density of phase α,
and μA is the chemical potential difference between species
A and species K . As in Ref. [32], here μA has dimensions of
energy, rather than energy per unit volume as is often used in
phase-field models.

A. Evolution equations

Each order parameter ηαi evolves by an Allen-Cahn equa-
tion derived from the grand-potential functional:

∂ηαi

∂t
= −L

δ�

δηαi

= −L

⎡
⎣m

⎛
⎝η3

αi − ηαi + 2ηαi

N∑
β=1

pβ∑
j=1,αi �=βj

γαiβjη
2
βj

⎞
⎠

− κ∇2ηαi +
N∑

β=1

∂hβ

∂ηαi

ωβ

⎤
⎦, (9)

where the Allen-Cahn mobility is given by [13]

L =
∑

αi

∑
βj �=αi Lαiβjη

2
αiη

2
βj∑

αi

∑
βj �=αi η2

αiη
2
βj

. (10)

Lαiβj is the mobility coefficient for the interface between grain
i of phase α and grain j of phase β and is discussed further in
Sec. II D.
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For each solute species, the generalized diffusion equation
is

∂ρA

∂t
= ∇ ·

K−1∑
I=1

MAI∇μI , (11)

where MAI is a mobility coefficient with dimensions of
(energy × length × time)−1. [This is in contrast to the more
typically used evolution equation ∂c

∂t
= ∇ · (M∇ δF

δc
), where

the mobility coefficient has units of length5× (energy ×
time)−1]. Since the phase-field model is developed starting
from a grand-potential functional, the chemical potential of
each species, rather than its number density, is the appropriate
field variable to express the functional in terms of [32]. Thus,
the time evolution of μI rather than ρI should be considered,
and Eq. (11) is transformed to a set of evolution equations for
μI as follows. Using the chain rule, ∂ρA

∂t
can be expressed as

∂ρA

∂t
=

K−1∑
I=1

∂ρA

∂μI

∂μI

∂t
+

N∑
β=1

pβ∑
i=1

∂ρA

∂ηβi

∂ηβi

∂t
. (12)

Substituting Eq. (11) in Eq. (12) and rearranging,

K−1∑
I=1

∂ρA

∂μI

∂μI

∂t
= ∇ ·

K−1∑
I=1

MAI∇μI −
N∑

β=1

pβ∑
i=1

∂ρA

∂ηβi

∂ηβi

∂t
.

(13)

The susceptibility χAI is defined as

χAI≡ ∂ρA

∂μI

. (14)

Using Eq. (14) in (13),

K−1∑
I=1

χAI

∂μI

∂t
= ∇ ·

K−1∑
I=1

MAI∇μI −
N∑

β=1

pβ∑
i=1

∂ρA

∂ηβi

∂ηβi

∂t
.

(15)

The susceptibility χAI needs to be expressed in terms of order
parameters and chemical potential. To do so, the density ρA

can be determined from � using the thermodynamic relation

ρA = − δ�

δμA

= −
N∑

β=1

hβ

∂ωβ

∂μA

=
N∑

β=1

hβρ
β

A, (16)

where ρ
β

A = − ∂ωβ

∂μA
is the number density of A atoms in the

interior of phase β. Substituting (16) into (14),

χAI = ∂

∂μI

N∑
β=1

hβρ
β

A =
N∑

β=1

hβχ
β

AI , (17)

where χ
β

AI = ∂ρ
β

A

∂μI
. The specific form of χ

β

AI depends on fβ , as
further discussed in Sec. II A 1.

The mobility coefficients MAI are given by

MAI =
N∑

β=1

hβM
β

AI . (18)

The mobilities in phase β, M
β

AI , can be determined as a
function of the self-diffusivity D

β

AA and interdiffusivities D
β

AI ,

A �= I [36]:

D
β

AI =
K−1∑
J=1

M
β

AJ

∂μJ

∂ρ
β

I

=
K−1∑
J=1

M
β

AJ

1

χ
β

IJ

. (19)

This results in a set of equations that can be solved for M
β

AJ .
For the case where interdiffusivities are negligible, M

β

AI = 0
for I �= A, and M

β

AA = D
β

AAχ
β

AA.

1. Evolution equations for common free energy forms

The dependence of grand potential, density, composition,
and susceptibility on chemical potential is given here for com-
mon Helmholtz free energy functional forms. The functions
presented here are multispecies generalizations of the results
of Ref. [32].

For a parabolic free energy with fα = f α
min +∑K−1

I=1
1
2kα

I (cI − c
α,min
I )

2
, where I indexes chemical species,

kα
I is the curvature of the parabola with units of energy density,

c
α,min
I is the composition at which the minimum occurs,

f α
min is a constant with units of energy density, and using

μI = ∂fα

∂ρI
= Va

∂fα

∂cI
,

ωα = f α
min +

K−1∑
I=1

−1

2

μ2
I

V 2
a kα

I

− μI

Va

c
α,min
I , (20)

ρα
A = − ∂ωα

∂μA

= μA

V 2
a kα

A

+ c
α,min
A

Va

, (21)

cA = VaρA =
N∑

β=1

hβ

(
μA

Vak
β

A

+ c
β,min
A

)
, (22)

χα
AI = ∂ρα

A

∂μI

=
{

1
V 2

a kα
A

, I = A

0, I �= A
. (23)

For a dilute solution with fα = f α
min + ∑K−1

I=1
Eα

I cI

Va
+

kT
Va

(cI ln cI − cI ), where Eα
I is a constant with units of energy,

ωα = f α
min +

K−1∑
I=1

−kT

Va

exp

(
μI − Eα

I

kT

)
, (24)

ρα
A = − ∂ωα

∂μA

= 1

Va

exp

(
μA − Eα

A

kT

)
, (25)

cA = VaρA =
N∑

β=1

hβ exp

(
μA − E

β

A

kT

)
, (26)

χα
AI = ∂ρα

A

∂μI

=
{

1
kT Va

exp
(μA−Eα

A

kT

)
, I = A

0, I �= A
. (27)

For either the parabolic or dilute solution Helmholtz free
energy, since χα

AI = 0 for A �= I , the evolution equation for
chemical potential, Eq. (15), can be simplified to

χAA

∂μA

∂t
= ∇ ·

K−1∑
I=1

MAI∇μI −
N∑

β=1

pβ∑
i=1

∂ρA

∂ηβi

∂ηβi

∂t
. (28)
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In the case when all interdiffusivities are zero, only MAA is
nonzero, and Eq. (28) further simplifies to

χAA

∂μA

∂t
= ∇ · (MAA∇μA) −

N∑
β=1

pβ∑
i=1

∂ρA

∂ηβi

∂ηβi

∂t
. (29)

B. Steady-state conditions and interfacial profiles

The conditions for steady state can be can be found from
Eq. (15) and (9). Consider a planar interface with its normal in
the x direction between grain 1 of phase α and grain 1 of phase
β, represented by order parameters ηα1 and ηβ1, respectively.
The center of the interface is at x = 0, with phase α where
x < 0 and phase β where x > 0. For the system to be in
chemical equilibrium, the chemical potential μI for each solute
species must be constant, and the grand-potential densities in
each phase must be equal: ωα = ωβ [37]. For a two-species
system, the conditions of equal chemical potential and equal
grand-potential density are equivalent to the common tangent
construction. For the system to be in steady state, ∂μI

∂t
= 0 ∀I ,

which is met when μI is constant, and ∂ηα1

∂t
= ∂ηβ1

∂t
= 0 by

Eq. (15). By Eq. (9), when ∂ηα1

∂t
= 0,

m
(
η3

α1 − ηα1 + 2ηα1γα1β1η
2
β1

) − κ∇2ηα1

+ ∂hα

∂ηα1
ωα + ∂hβ

∂ηα1
ωβ = 0. (30)

Because ∂hα

∂ηα1
= − ∂hβ

∂ηα1
= 2ηα1η

2
β1

η2
α1+η2

β1
,

m
(
η3

α1 − ηα1 + 2ηα1γα1β1η
2
β1

) − κ∇2ηα1

+ ∂hα

∂ηα1
(ωα − ωβ ) = 0. (31)

A similar expression can be derived from the condition
∂ηβ1

∂t
= 0:

m
(
η3

β1 − ηβ1 + 2ηβ1γα1β1η
2
α1

) − κ∇2ηβ1

+ ∂hα

∂ηβ1
(−ωα + ωβ ) = 0. (32)

Since ωα = ωβ throughout in chemical equilibrium, Eqs. (31)
and (32) become

m
(
η3

α1 − ηα1 + 2ηα1γα1β1η
2
β1

) − κ∇2ηα1 = 0, (33)

m
(
η3

β1 − ηβ1 + 2ηβ1γα1β1η
2
α1

) − κ∇2ηβ1 = 0. (34)

Thus, for steady-state conditions, μI = 0, ωα = ωβ , and the
steady-state equilibrium interfacial profiles for ηα1 and ηβ1

can be determined from the analysis of Ref. [35]. For the case
γα1β1 = 1.5, an analytical solution can be found for both order
parameters:

ηα1 = 1

2

[
1 − tanh

(√
m

2κ
x

)]
, (35)

ηβ1 = 1

2

[
1 + tanh

(√
m

2κ
x

)]
. (36)

These are referred to as the symmetric profiles in Ref. [35],
where a symmetric profile has the property ηα1(x) = 1 −

ηα1(−x) with the midpoint of the interface defined at x = 0.
ηα1 + ηβ1 = 1 also holds throughout, and at x = 0, ηα1 =
ηβ1 = 0.5.

For γα1β1 �= 1.5, an analytical solution to the interfacial
profiles does not exist. The interfaces are not symmetric,
and ηα1 + ηβ1 �= 1 through the interface. For γα1β1 < 1.5, the
interface width becomes smaller, and at x = 0, ηα1 = ηβ1 >

0.5; conversely, for γα1β1 > 1.5, the interface width becomes
larger, and at x = 0, ηα1 = ηβ1 < 0.5. Further details are
available in Ref. [35].

C. Stability of two-phase interface with respect
to third-phase formation

One advantage of this formulation is that a two-phase
interface is stable with respect to formation of a third phase. To
show this, we first demonstrate the stability of the multiwell
and gradient terms in the total grand-potential functional, then
show that the chemical energy contribution does not alter
stability. Consider a three-phase system with phases α, β, and
δ. ηδ1 is an order parameter representing grain 1 of phase δ.
Throughout a planar α-β interface as described in Sec. II B, the
δ phase is not present initially, and ηδ1 = 0. The grand potential
of the system with only the multiwell and gradient terms, �mg ,
is

�mg =
∫

V

(ωmw + ωgrad ) dV . (37)

For the three-phase system in the absence of chemical energy,
the variational derivatives are

δ�mg

δηα1
= m

[
η3

α1 − ηα1 + 2ηα1
(
γα1β1η

2
β1 + γα1δ1η

2
δ1

)]
− κ∇2ηα1, (38)

δ�mg

δηβ1
= m

[
η3

β1 − ηβ1 + 2ηβ1
(
γα1β1η

2
α1 + γβ1δ1η

2
δ1

)]
− κ∇2ηβ1, (39)

δ�mg

δηδ1
= m

[
η3

δ1 − ηδ1 + 2ηδ1
(
γα1δ1η

2
α1 + γβ1δ1η

2
β1

)]
− κ∇2ηδ1. (40)

The order parameters ηα1, ηβ1, ηδ1 will be in steady state
if δ�mg

δηα1
= δ�mg

δηβ1
= δ�mg

δηδ1
= 0 holds throughout. From Eq. (40),

since ηδ1 = 0, δ�mg

δηδ1
= 0. Also using ηδ1 = 0, Eq. (38) and (39)

reduce to Eq. (33) and (34). Thus, steady state α-β interfaces
in the two-phase system are also steady-state solutions δ�mg

δηα1
=

δ�mg

δηβ1
= 0 for the three-phase system when ηδ1 = 0.

Having established the stability of two-phase interfaces
considering only the multiwell and gradient terms, we now
consider the effect of the chemical energy contribution. For the
three-phase system, the variational derivatives of the original
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grand potential � are

δ�

δηα1
= δ�mg

δηα1
+ ∂hα

∂ηα1
ωα + ∂hβ

∂ηα1
ωβ + ∂hδ

∂ηα1
ωδ, (41)

δ�

δηβ1
= δ�mg

δηβ1
+ ∂hα

∂ηβ1
ωα + ∂hβ

∂ηβ1
ωβ + ∂hδ

∂ηβ1
ωδ, (42)

δ�

δηδ1
= δ�mg

δηδ1
+ ∂hα

∂ηδ1
ωα + ∂hβ

∂ηδ1
ωβ + ∂hδ

∂ηδ1
ωδ. (43)

In Eq. (43), ηδ1 = 0 and ∂hα (ηδ1=0)
∂ηδ1

= ∂hβ (ηδ1=0)
∂ηδ1

=
∂hδ (ηδ1=0)

∂ηδ1
= 0, so δ�

δηδ1
= 0. Because ∂hδ (ηα1=0)

∂ηα1
= 0, Eq. (41)

reduces to Eq. (31). Similarly, Eq. (42) reduces to Eq. (32).
Thus, when ηδ1 = 0, order parameter profiles that satisfy (31)
and (32) result in δ�

δηα1
= δ�

δηβ1
= 0 for the three-phase system,

and δ�
δηδ1

= 0 also holds. Thus, the planar α-β interface remains
an equilibrium solution for the three-phase system when the
chemical energy contribution is also considered and is stable
with respect to spurious formation of additional phases.

To guarantee that these are stable rather than metastable
solutions, the additional conditions δ2�

δη2
δ1

> 0 and δ2�
δc2 > 0 must

be satisfied to ensure that small perturbations of ηδ0 about 0 and
small composition fluctuations decay away [30]. As discussed
by Folch and Plapp, it is not possible to show this is true for
arbitrary chemical free energy parameters [30]. However, as
discussed further in Sec. III B, testing of α-β interfaces with
ηδ1 �= 0 in the initial conditions showed that the equilibrium
α-β interface with ηδ1 = 0 was recovered for the material
parameters used for verification.

D. Interfacial parameters

To perform quantitative phase-field simulations, the model
parameters need to be related to physical parameters of the
system. To determine the interfacial energy in terms of model
parameters, consider the interface between grain 1 of phase α

and grain 1 of phase β described in Sec. II B, with the interface
normal to the x direction. For a multicomponent alloy, the
interfacial energy per unit area between phase α and phase β is
defined thermodynamically as the excess of the grand potential
per unit area [37]. The interfacial energy σα1β1 is given by

σα1β1 = 1

A

∫
V

(ωmw + ωgrad + ωchem − ωeq ) dV, (44)

where ωeq is the equilibrium grand potential and A is the area
of the interface between phase α and phase β. Consider a
rectangular cuboidal integration volume V , with faces normal
to the x, y, and z directions, within the bounds −Lx/2 � x �
Lx/2, −Ly/2 � y � Ly/2, −Lz/2 � z � Lz/2, where Lx ,
Ly , and Lz are the dimensions of the rectangular cuboid in
the x, y, and z directions. The area of the interface A = LyLz,
and we allow Lx → ∞ to ensure the entire interfacial region
is contained in the integration volume. Because the interfacial
normal is in the x direction, the system is uniform in the y and
z directions, so

σα1β1 = 1

LyLz

∫ ∞

−∞
(ωmw + ωgrad + ωchem − ωeq )LyLz dx

=
∫ ∞

−∞
(ωmw + ωgrad + hαωα + hβωβ − ωeq ) dx. (45)

In equilibrium, ωα = ωβ = ωeq. Since by definition
hα + hβ = 1,

σα1β1 =
∫ ∞

−∞
(ωmw + ωgrad )dx. (46)

As expected, there is no contribution from the bulk chemical
energies to the interfacial energy of the system. The interfacial
energies described by Eq. (46) are thus equivalent to the those
described in Ref. [35], and the analysis developed there can be
applied to this model. For convenience, we restate those results
here. The interfacial energy can be written as [35]

σα1β1 = g(γα1β1)
√

mκ, (47)

where g(γαiβj ) is a dimensionless function of γαiβj . For
the symmetric interface, g(1.5) = √

2/3 [35]. The values of
g(γαiβj ) have been tabulated based on numerical simulations
[35,38]. Near γαiβj = 1.5, g(γαiβj ) can be approximated as

g(γα1β1) ≈ 4

3

√
f0,saddle = 4

3

√
2γα1β1 − 1

4(2γα1β1 + 1)
, (48)

where f0,saddle is the value of f0 at the saddle point of the free
energy landscape. In some cases, a desired g(γαiβj ) = σαiβj√

mκ
is

known for givenσαiβj ,m, andκ , and it is necessary to determine
the value of γαiβj that will result in the desired g(γαiβj ). This
can be done based on the results of Refs. [35,38] using the
polynomial interpolation

γαiβj = (−5.288g8 − 0.09364g6 + 9.965g4

− 8.183g2 + 2.007)−1. (49)

The characteristic width of the interface �α1β1 is defined based
on the absolute value of the gradients of the order parameters
at the interface and is given by [35]

�α1β1 =
√

κ

mf0,inter f

, (50)

where f0,inter f is the value of f0 at the interface. For a
symmetric interface f0,inter f = 1

8 ; for γα1β1 �= 1.5, tabulated
values of f0,inter f are available [35,38].

Equations (47) and (50) can be rearranged to obtain

κ = σα1β1�α1β1
√

f0,inter f

g(γα1β1)
, (51)

m = σα1β1

�α1β1g(γα1β1)
√

f0,inter f

. (52)

A convenient method to parametrize a system with multiple
types of interfaces is to choose one interface to be a symmetric
interface, for example, the ηα1-ηβ1 interface. This amounts to
setting γα1β1 = 1.5. κ and m are calculated using Eqs. (51)
and (52) based on the physical value of the interfacial energy
σα1β1 and the chosen interfacial thickness �α1β1 (subject to
the need to be significantly smaller than the curvatures of
microstructural features of the system being simulated). For
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γα1β1 = 1.5, Eqs. (51) and (52) reduce to [35]

κ = 3

4
σα1β1�α1β1, (53)

m = 6σα1β1

�α1β1
. (54)

In this case, the values of κ and m are determined by the
parameters of the symmetric interface. The interfacial energies
and grain boundary energies for all other types of interfaces
can then be set by calculating g = σ√

mκ
for each interface and

determining the value of the γ parameter needed to obtain
that value of g using Eq. (49). It should be noted that the
interfacial width will also change with γαiβj , and the simulation
mesh resolution must be set to adequately resolve the thinnest
interface.

The Allen-Cahn mobilities for interfaces between grains
can be parameterized using [13]

mα1α2σα1α2 = κLα1α2, (55)

where mα1α2 is the grain boundary mobility, with dimensions
length4 × (energy × time)−1.

To determine the Allen-Cahn mobility for interfaces be-
tween phases, note from Eq. (9) that the driving force for phase
transformation between phase α and β is the difference be-
tween grand potentials of those phases. Thus, the thin-interface
analysis of Ref. [13] also applies to this model. That analysis
allows the Allen-Cahn mobility at the interface between
phases Lα1β1 to be related to the interfacial mobility mα1β1

from the sharp-interface equation �f
α→β

i = σα1β1(1/R1 +
1/R2) + vn/mα1β1 [39], where �f

α→β

i is the driving force
for phase transformation, R1 and R2 are the principal radii
of curvature of the interface, and vn is the magnitude of the
velocity normal to the interface. Using that analysis,

1

mα1β1
=

√
mg(γα1β1)√
κLα1β1

−
√

κ

2m
Iφ (γα1β1)ζ. (56)

Iφ (γα1β1) is a numerical function whose values have been
tabulated for a range of γα1β1 [38]. ζ represents the ef-
fect of the difference in compositions between phases
on the interfacial velocity in the phase-field model and
is given by ζ = 1

V 2
a

∑K−1
I=1 (cα,eq

I − c
β,eq
I )

∑K−1
J=1 mIJ (cα,eq

J −
c
β,eq
J ) [13,40], where c

α,eq
I and c

β,eq
I are the equilibrium compo-

sitions of solute I in phase α and β, respectively, and mIJ are
the elements of the inverse of the diffusion mobility matrix
MIJ . The thin-interface analysis was performed under the
assumption that the diffusion mobilities are the same between
phases, Mα

IJ = M
β

IJ = MIJ ; however, it was found that when
diffusion mobilities were of the same order of magnitude, the
use of an averaged diffusion mobility MIJ = 0.5(Mα

IJ + M
β

IJ )
resulted in only small deviations from the expected kinetic
behavior [13]. For a binary alloy with solute species A, mAA =
1/MAA and ζ = (cα,eq

A −c
β,eq
A )2

V 2
a MAA

. In the case of K solute species, if
the off-diagonal terms of the mobility matrix vanish (MIJ = 0

for I �= J ), ζ = ∑K−1
I=1

(cα,eq
I −c

β,eq
I )2

V 2
a MII

[40].

TABLE I. Parameters for α, β, and δ phases used for model
verification.

Parameter Value

c
α,min
A 0.1

kα
A 10

c
β,min
A 0.9

k
β

A 10

c
δ,min
A 0.5

kδ
A 10

Va 1
Dα

A, D
β

A, Dδ
A 1

Lα1βj 0.21 or 1
Lβiβj , Lαiδj , Lβiδj 1

For diffusion-limited growth, 1/mα1β1 = 0 and [13]

Lα1β1 = L
eq
α1β1 =

√
2mg(γα1β1)

κIφ (γα1β1)ζ
, (57)

where L
eq
α1β1 is the mobility coefficient that ensures that local

equilibrium is maintained at the interface.

III. MODEL VERIFICATION

To verify the model, a binary alloy of A and B atoms
is considered, with the density of A atoms represented by
ρA and the atomic fraction of A represented by cA = VaρA.
Three possible phases are considered: α, β, and δ. The α

phase has a parabolic free energy fα = 1
2kα

A(cA − c
α,min
A )2,

where c
α,min
A = 0.1 and kα

A = 10. The β phase has a parabolic
free energy, fβ = 1

2k
β

A(cA − c
β,min
A )2, where c

β,min
A = 0.9 and

k
β

A = 10. Finally, the δ phase also has a parabolic free en-
ergy, fδ = 1

2kδ
A(cA − c

δ,min
A )2, where c

δ,min
A = 0.5 and kδ

A =
10. Other chosen material parameters are listed in Table I.
Different values of κ , m, γαiβj , γαiδj , and γβiδj are considered,
as described in Secs. III A–III C.

The governing equations were solved numerically using
the MOOSE framework [41]. Each system is discretized
spatially using uniform linear Lagrange finite elements, with
different element sizes as discussed further in Secs. III A–III C.
Time discretization used the second-order accurate backward
difference formula, with adaptive time stepping using the
IterationAdaptiveDT algorithm implemented in the MOOSE
framework [42]. The discretized system of equations was
solved for each time step using the preconditioned Jacobian-
free Newton-Krylov method. The MOOSE framework repos-
itory is publicly available at Ref. [43]; an example of the
implementation of the model can be found within the repository
at Ref. [44]; further information on installation and usage of
the MOOSE framework is available at Ref. [45].

A. Morphology

To verify the equilibrium behavior of the model, we consider
the morphology of an α-phase grain between two β phase
grains, β1 and β2. In this case the α-phase grain assumes
a lenticular shape, as shown in Fig. 1. Experimentally, this
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FIG. 1. Geometrical analysis of a grain boundary allotriomorph,
with length L, thickness S, and dihedral angle φ indicated. γαβ = 4.5,
γββ = 1.5, φan = 135◦. The color bar represents the value of

∑
i η

2
βi

and is used to provide a visualization of the microstructure.

morphology is observed when a daughter phase precipitates
at a high-angle grain boundary between two grains of a
supersaturated parent phase and is sometimes referred to as
a grain boundary allotriomorph [46–50]. This morphology is
also observed in nuclear fuels such as UO2 when insoluble
gaseous fission products such as Xe and Kr form gas bubbles
at grain boundaries [51–55].

In our simulations, a circle-shaped α-phase particle with
radius r = 10 is placed on the grain boundary between two β

phase grains as the initial configuration. The domain size is
40 × 40, and the mesh is composed of uniform elements with
size �x = �y = 0.5. Changing the element size from �x =
�y = 0.5 to �x = �y = 0.125 caused the measured dihedral
angle, as described later in the present section, to change by
only 0.12% for the case κ = 1, m = 1, γαβ = 1.5, γβ1β2 =
1.5; therefore for computational efficiency �x = �y = 0.5
was used in the remainder of this section. No-flux boundary
conditions are used. Because this configuration is not at ther-
modynamic equilibrium, microstructure evolution is expected
during relaxation. After full relaxation, the α-phase particle
attains a lenticular shape, and its morphology is determined by
the interplay of interfacial energy and grain boundary energy.
We assume the interfacial energies σα1β1 = σα1β2 = σαβ . As
shown in Fig. 1, the length, thickness, and dihedral angle
are noted as L, S, and φ, respectively. To verify that the
model produces the correct morphology for a grain boundary
allotriomorph, we calculate φsim from L and S measured from
simulations and compare φsim to the dihedral angle predicted
by the balance of interfacial energy and grain boundary energy,
φan:

cos

(
φan

2

)
= σβ1β2

2σαβ

. (58)

In the simulation of Fig. 1, the parameters are chosen as
γα1β1 = γα1β2 = γαβ = 4.5, γβ1β2 = 1.5, κ = 1.0, and m =
1.0. The interfacial energy and grain boundary energy can be
estimated using Eq. (47) and Ref. [38], and the dihedral angle
is determined to be φan = 135◦.

To determine φsim from L and S, the results of previous
geometric analyses are used [46,49]. The shape of an idealized
grain boundary allotriomorph is assumed to be that of two
spherical caps, with both spheres having the same radius. In two
dimensions, a grain boundary allotriomorph can be considered
as the intersection region between two circles (orange dashed
circles in Fig. 1). Assume the radius of each circle is r , and the
distance between the two circle centers is d. The length and
thickness of the grain boundary allotriomorph can be expressed
as functions of r and d,

L =
√

4r2 − d2, (59)

S = 2r − d, (60)

and r and d can be solved through Eqs. (59) and (60) as

r = L2 + S2

4S
, (61)

d = L2 − S2

2S
. (62)

On the other hand, the dihedral angle is also related to r and d

through

cos
φ

2
= d

2r
. (63)

The dihedral angle φ can be expressed in terms of L and S by
combining Eqs. (61)–(63):

φ = 4 arctan(S/L). (64)

The geometrical parameters L and S can be measured in our
simulation results. S is measured as the distance from hα = 0.5
on the top edge of the α particle to hα = 0.5 on the bottom
edge of the particle, along the vertical line x = 0 through the
center of the system. (Because the circular initial condition was
exactly centered in the simulation domain, the thickest portion
of the particle in the y direction is expected to remain along
this vertical line; this was verified by measuring the thickness
along the edges of adjacent elements located at x = −0.5
and x = 0.5.) The location along x = 0 where hα1 = 0.5 was
determined through linear interpolation of the shape functions
representing ηα1, ηβ1, and ηβ2 and calculation of the resulting
hα . Similarly, L is measured along the horizontal line x = 0
through the center of the system. However, because in the
present model the order parameters are not constrained to
sum to 1 at each position, the definition of where the left
and right edges of the particle are located is not completely
clear. This leads to uncertainty in measurement of L due
to the diffuse interface description that is large relative to
the uncertainty in the measurement of S. We choose the
points hα = 1/3, hβ = 2/3 as the edges of the particle (which
corresponds to ηα1 = ηβ1 = ηβ2 = 0.270 for the simulation
shown in Fig. 1). To estimate the effect of the uncertainty �L

on the measurement of φsim, we assume that the location of the
left and right edges of the particle cannot be determined any
more accurately than half the characteristic thickness of the
grain boundary, �β1β2/2. The uncertainty in the measurement
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TABLE II. Parameters for α-β system used for model verification.
Measured dihedral angles φsim are within estimated measurement
uncertainty �φsim of the analytical prediction φan.

κ m γαβ �β1β2 φan φsim �φsim

1.0 1.0 4.5 2.82 135◦ 131.6◦ 6.3◦

0.5 1.0 4.5 2.0 135◦ 133.3◦ 4.2◦

0.5 0.5 4.5 2.82 135◦ 132.1◦ 5.7◦

0.5 1.0 1.5 2.0 120◦ 118.3◦ 3.4◦

0.5 1.0 0.9988 2.0 105◦ 103.3◦ 2.7◦

of the angle, �φsim, is given by

�φsim =
√(

∂φsim

∂L

)2

(�L)2 = 4

1 + (
S
L

)2

S

L2
�L, (65)

where �L = �β1β2/2 is the uncertainty in the measurement
of L, and the uncertainty in S has been neglected. Since the
interface width is a function of κ and m, we perform a series of
simulations to test the effects of κ and m on φsim. The results
and associated uncertainties are summarized in Table II. All
the listed values of φsim are in a reasonable range comparing
with their analytical counterparts.

Another two simulations are performed with different val-
ues of γαβ , and results are also included in Table II. Similar to
the previous cases, the dihedral angle measured in the simula-
tion differs slightly than that from energetic calculations, which
is due to the diffuse interface description in the phase-field
model as discussed above. From above simulation results, the
morphologies of the grain boundary allotriomorphs are well
captured in our multiphase grand-potential-based model, with
the predicted dihedral angles agreeing with classical geomet-
rical and energetic analyses within estimated measurement
uncertainty.

Another test case was conducted to demonstrate that the
model is able to capture the different morphologies of corner
(triple-junction) and edge (grain boundary) second-phase par-
ticles. In this simulation, a hexagonal matrix grain structure
with four different α-phase grains (order parameters) and
periodic boundary conditions in two dimensions was used. The
system size was 512 × 512, and initially circular β particles of
radius 15 were distributed on both grain boundaries and triple
junctions. It was assumed the interfacial and grain boundary
energies are equal, as may be encountered for incoherent α-β
interfaces and random high-angle grain boundaries between
α grains [56]. The same parameters summarized in Table I
were used, along with m = κ = 1.0 and γαβ = γαiαj = 1.5.
Uniform finite elements with�x = �y = 0.5 were used, since
converged particle morphologies were obtained for particles
with the same parameters and initial radius 10 previously in this
section. The α-phase matrix was supersaturated in the initial
conditions, with an initial composition cA = 0.15 compared
with the bulk equilibrium composition c

α,eq
A = c

α,min
A = 0.1,

while the β phase precipitates had initial composition cA = 0.9
equal to the bulk equilibrium composition for theβ phase. After
a short transient, the particles assume their expected shapes as
shown in Fig. 2(a). While edge particles have the expected
lenticular (consisting of two circular segments) shape, corner

particles have three circular segments with a triangular cross
section [57]. The shape of corner particles also stems from the
balance between interfacial and grain boundary energies that
requires grain boundaries to enclose equal dihedral angles and
form three tips [57].

Figures 2(b) and 2(c) show the continued evolution of the
microstructure. Both corner and edge particles initially grow
because of supersaturation. However, as supersaturation in
the matrix decays, the coarsening stage is entered and corner
particles start to grow at the expense of edge particles. This
preferential coarsening results from the curvature difference
that establishes a chemical potential gradient, driving matter
from edge particles to corner particles. This could have a strong
implication on grain growth kinetics in materials containing
second-phase particles since it has been shown that corner par-
ticles are more effective in pinning grains than edge particles
[58]. Hence, if coarsening of second-phase particles is active in
such systems, grain growth will be hindered, which will make
it difficult to achieve large grain sizes in such materials.

B. Stability of a two-phase interface

To verify that a two-phase interface is stable with respect
to the formation of a third phase at the interface, a one-
dimensional (1D) domain with the α, β, and δ phases is
considered. The 1D domain ranges from x = −15 to x = +15
and is discretized with uniform elements with �x = 0.5. A
uniform time step �t = 1 was used in this case. The initial
conditions are an α-β interface with some amount of the δ

phase present, as given by ηα1 = 1−λ
2 [1 − tanh ( x√

2
)], ηβ1 =

1−λ
2 [1 + tanh ( x√

2
)], and ηδ1 = λ, where 0 � λ � 0.1. The

initial condition for chemical potential was μ = 0 throughout.
We take κ = m = 1 and γα1β1 = γα1δ1 = γβ1δ1 = 1.5.

For the case λ = 0, the initial conditions are equivalent
to the steady-state equilibrium interfacial profile given by
Eqs. (35) and (36) with no δ phase present. It was verified that
ηδ1 remained at 0 as the system evolved in time, as expected
from Sec. II C. The cases λ = 0.005, 0.05, and 0.1 were
also simulated, corresponding to a small perturbation in ηδ0

in the initial conditions. In each case, ηδ0 rapidly decreased
to 0 throughout. An example of the evolution of the order
parameters for the case λ = 0.1 is shown in Fig. 3. Thus, for
the materials parameters considered here, the α-β interface is
stable with respect to formation of the δ phase.

C. Kinetics

To verify the kinetic behavior of the model, the growth of a
precipitate phase from a supersaturated matrix is simulated.
Two geometries are considered for the kinetic verification:
the growth of a plate of β phase from supersaturated α (1D
configuration) and the growth of a spherical particle of β from
supersaturated α [three-dimensional (3D) configuration]. In
the 1D configuration, one-half of a growing plate of the β

phase is simulated in a 1D domain ranging from x = 0 to
x = 5000. The initial half-thickness T of the plate is 100.
In the initial conditions, ηβ1 = 1

2 [1 − tanh ( x−x0√
2

)] and ηα1 =
1
2 [1 + tanh ( x−x0√

2
)], where x0 = 100. The initial chemical po-

tential is given by μA = 1
4 [1 + tanh ( x−x0√

2
)], corresponding
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FIG. 2. Snapshots of growth and coarsening of β-phase particles from a supersaturated (c = 0.15) polycrystalline matrix. Simulation times
are (a) t = 50, (b) t = 100, (c) t = 150. Corner (triple-junction) particles grow at the expense of edge (grain boundary) particles because of
the effect of curvature. The color bar represents the value of

∑
i η

2
αi and is used to provide a visualization of the microstructure. The color bar

is applicable to each subfigure.

to cA = 0.9 in the precipitate and cA = 0.15 in the matrix.
This supersaturation causes the precipitate to grow in the +x

direction. No-flux boundary conditions are used on both ends
of the domain.

The results of the 1D simulations are shown in Fig. 4(a).
An analytical solution is available for this configuration [59],
which predicts T = α1

√
Dt , where t is the time and

α1 = K1

(
cm
A − cα

A

)
(
c
β

A − cm
A

) 1
2
(
c
β

A − cα
A

) 1
2

, (66)

where cα
A = 0.1 is the atomic fraction of A in the α phase

at the α − β interface, c
β

A = 0.9 is the atomic fraction of A

in the β phase at the α − β interface, and cm
A = 0.15 is the

atomic fraction of A in the supersaturated matrix far from the
interface. K1 is a numerical constant with a value of 1.13 for
the values of cα

A, c
β

A, and cm
A used.

As shown in Fig. 4(a), the expected linear relationship
between T and

√
t is observed for �x = 1 (the characteristic

interface thickness used in these simulations was �α1β1 =
2.82). The slope of a least-squares fit to this data was 0.073 ±
8.0 × 10−5, in good agreement with the prediction of the
analytical solution of α1

√
D = 0.073.

To quantify the effect of mesh resolution on the ac-
curacy of the results, the simulations were repeated with
coarser mesh spacings. As shown in the inset to Fig. 4(a),
when �x = �α1β1/2 = 1.41, T begins to deviate from linear
behavior with respect to

√
t , showing periodic increases
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FIG. 3. Simulation of the evolution of a nonequilibrium α-β interface with ηδ1 = 0.1 in the initial conditions. Simulation times are
(a) t = 0, (b) t = 1, (c) t = 2, (d) t = 5. ηδ1 decreases to 0 and the α-β interface evolves to the equilbrium interfacial profile, demonstrating
that for the materials parameters considered here, the α-β interface is stable with respect to formation of a third phase.

and decreases in the growth rate as the interface between
phases becomes insufficiently resolved. When �x = 2, the
magnitude of oscillations in growth rate increases, and
the deviation of T from the �x = 1 simulation becomes
significant.

In the 3D configuration, a spherical β particle of initial
radius r0 = 100 grows into the supersaturated α matrix. The
simulation domain is spherical, ranging from R = 0 to R =
5000, and symmetric spherical coordinates are used. No-flux
boundary conditions are used. The initial conditions used
hyperbolic tangent functions as in the 1D configuration, and
the matrix composition was again supersaturated to cA = 0.15.

The results of the 3D simulations are shown in
Fig. 4(b). For growth of a spherical precipitate, the an-
alytical solution [59] predicts particle radius r = α3

√
Dt ,

where

α3 = K3

(
cm
A − cα

A

) 1
2(

c
β

A − cm
A

) 1
2

. (67)

The initial particle radius of 100 is large enough that the Gibbs-
Thomson effect on equilibrium compositions can be neglected,
and again cα

A = 0.1, cm
A = 0.15, and c

β

A = 0.9. For these values,
K3 = 1.59.

As shown in Fig. 4(b), after an initial transient, the expected
linear relationship between r and

√
t is observed. Consistent

with the results of Ref. [13], the initial transient for 3D
simulations was much longer than for the 1D simulations. A
least-squares fit to the data for

√
t > 400, �x = 1 had slope

0.413 ±2.7 × 10−5, in good agreement with the prediction
of α3

√
D = 0.410 from the analytical solution. When coarser

meshes were used, oscillations in growth rate were observed
as in the 1D case, although their magnitude was smaller. Based
on the 1D and 3D results, a ratio of interface thickness to
mesh spacing of approximately 3 or greater is recommended,
although it should be noted that the interfaces considered in
this section had either zero or relatively low curvature (for
1D and 3D cases, respectively). It should also be noted that
identical results were obtained for Lα1β1 = L

eq
α1β1 = 0.21 and

Lα1β1 = 1. In Ref. [13] instability in the order parameters
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FIG. 4. Simulations of growth of β phase from supersaturated α phase (parameters given in Table I, with cA = 0.9 in the β phase and
cA = 0.15 in the α phase). (a) Growth of a plate of β phase (1D geometry). (b) Growth of a spherical precipitate of β phase (3D geometry).
The fit is to the linear portion of the �x = 1 results, and in each case the slope of the fit line is in good agreement with the analytical prediction.
The inset shows the effect of decreasing mesh resolution to the point where the interface is no longer adequately resolved.

and detachment of the order parameters from the composition
profiles was observed for Lα1β1 > L

eq
α1β1. These phenomena

were not observed here. This may be due to the fact that equal
diffusivities were used in each phase, in contrast to Ref. [13],
where the diffusivities in different phases varied by several
orders of magnitude.

IV. PHASE SEPARATION

In this section we consider the capability of grand-potential
based phase-field models to model phase separation. The phase
stability can be examined using linear stability analysis of the
phase-field kinetic equations. For the case where concentration
is used as the sole phase-field variable (Cahn-Hilliard model),
it is well known that spinodal instability takes place when the
second derivative of the free energy becomes negative. This
analysis has been generalized by San Miguel et al. [60] to sys-
tems with different types of phase transitions and where both
conserved and nonconserved order parameters are coupled.
Instead of repeating the linear stability analysis here for the
grand-potential formulation, we transform the grand-potential
model back to the classical free energy formulation and use the
results of San Miguel to deduce its stability. Note that such a
transformation always exists, but it can be derived analytically
only for the special cases of parabolic or dilute solution free
energies where concentration can be directly expressed in
terms of chemical potential and phase-field variable [32].

For simplicity, we first consider phase separation by spin-
odal decomposition in a two-phase binary system. In this case,
a single phase-field variable (order parameter) η is sufficient
to distinguish between the phases, i.e., η equals 0 in the matrix
or parent phase (α) and 1 in the precipitate or second phase
(β). Similar to the original work by Plapp [32], the total grand
potential can be expressed as

� =
∫

V

[ωint (η,∇η) + ωbulk (μ, η)] dV. (68)

In the above, the interfacial grand potential has the regular
form,

ωint (η,∇η) = m η2(1 − η)2 + κ

2
|∇η|2, (69)

and the bulk grand potential takes on the form

ωbulk = h(η)ωβ (μ) + [1 − h(η)]ωα (μ), (70)

where the interpolation function has to satisfy the following
conditions:

h(η = 0) = 0, (71)

h(η = 1) = 1, (72)

dh

dη

∣∣∣∣
η=0

= dh

dη

∣∣∣∣
η=1

= 0. (73)

A few interpolation functions have been proposed in literature.
However, as we will demonstrate below, the exact form of this
function determines whether or not phase separation can be
simulated. We assume here that the free energies of the phases
have parabolic dependence on concentration as in the cases
presented above. In this simple case, the solute concentration
is related to the chemical potential and phase-field variable by
[32]

c = ceq(η) + μ[h(η)/kβ + (1 − h(η))/kα]. (74)

The first term on the right-hand side is the equilibrium con-
centration profile given by ceq(η) = h(η)cβ + [1 − h(η)]cα .
Therefore, if one is to construct a free energy-based phase-field
model consistent with the grand-potential formulation above,
the chemical potential dependence on concentration and phase-
field variable must satisfy Eq. (74), that is, it has to take on the
form

μ(c, η) = c − ceq(η)

h(η)/kβ + [1 − h(η)]/kα

. (75)
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The total free energy can then simply be deduced by integrating
∂fbulk

∂c
= μ(c, η) with respect to c using Eq. (75) and noting that

the constant of integration is simply given by Eq. (69). This
results in

fbulk (c, η) = [c − ceq(η)]2

2 {h(η)/kβ + [1 − h(η)]/kα} , (76)

and the total free energy is

F =
∫

V

ftot (η,∇η, c) dV

=
∫

V

[fint (η,∇η) + fbulk (c, η)] dV, (77)

where

fint (η,∇η) = m η2(1 − η)2 + κ

2
|∇η|2. (78)

One must keep in mind that the resulting free energy-based
model derived here will also have the advantage of decoupling
interfacial energy from bulk energy. In other words, there is
only one unique way of interpolating the free energies of the
phases [Eq. (76)] that guarantees this feature.

Before we present the stability analysis of the model
discussed above, we simplify things further by requiring,
without loss of generality, that the free energy parabolas of
the two phases to have the same curvature kα = kβ = ε, and
the solute concentration to be normalized such that c = 1 in
the precipitate phase and c = 0 in the matrix phase. After such
simplification, Eq. (76) becomes

fbulk (c, η) = ε

2
[c − h(η)]2. (79)

According to the linear stability analysis of San Miguel
[60], the chemical spinodal instability can be inferred from the
Hessian matrix of the total free energy density. Particularly,
spinodal decomposition will proceed if the value of the deter-
minant of the Hessian matrix calculated for the initial state is
negative:

det H (ftot ) = ∂2ftot

∂c2

∂2ftot

∂η2
−

[
∂2ftot

∂c∂η

]2

< 0. (80)

Now if we consider the initial state to be a supersaturated
matrix (η = 0, 0 < c < 1) and taking into account the specific
total free energy density of Eq. (77) and the requirements of
Eqs. (71)–(73) on the interpolation function, the stability limit
can be expressed as

2m − ε
d2h

dη2

∣∣∣∣
η=0

c = 0. (81)

In other words, phase separation via spinodal decomposition
takes place if the concentration is higher than the critical
spinodal concentration:

c > cs = 2m

ε d2h
dη2

∣∣
η=0

. (82)

According to Eq. (82), the interpolation function has then a
profound effect on the phase separation stage. For instance, if
one considers the two most common forms used in literature,
the results are completely different. The first commonly used

form is

h(η) = 3η2 − 2η3 (83)

for which the spinodal concentration is cs = m
3ε

. On the other
hand, for the form

h(η) = η3(6η2 − 15η + 10) (84)

the spinodal concentration is infinite since the second order
derivative vanishes, which means that this specific form cannot
be utilized to describe phase separation.

Based on our analysis presented above, we conduct simu-
lations of phase separation using a grand-potential phase-field
model. We implement the two-phase grand-potential model
described by Eqs. (68)–(70) and use the interpolation function
given by Eq. (83). The kinetic equations are the same as the
ones that appear in the original work by Plapp [32] and are
solved using MOOSE as summarized in Sec. III.

Two simulations for two different spinodal decompositions
were carried out. Note that for the simplified model we use
here, the chemical potential and concentration are related by
μ(c, η) = ε[c − h(η)] via Eq. (79). Hence, the critical chemi-
cal potential that corresponds to the spinodal concentration is
simply given by

μs(cs, η = 0) = εcs. (85)

In the first simulation, we use m = 1.5, ε = 1.0, and hence
μs = cs = 0.5, while in the second simulation we use m =
0.5, ε = 1.0, and hence μs = cs = 0.167. In both simula-
tions, the initial configuration was a supersaturated matrix
close to the spinodal instability, i.e., η = 0, and μ = μs + δ,
where δ is a random fluctuation given by a uniform random
number between −0.1μs and +0.1μs . This corresponds to
fluctuations in the range 0.45 � c � 0.55 for cs = 0.5 and
0.1503 � c � 0.1837 for cs = 0.167. The magnitude of ini-
tial composition fluctuations in physical systems undergoing
spinodal decomposition may vary widely depending on the
materials system and processing conditions; however, unstable
fluctuations will grow regardless of their initial amplitude in
spinodal decomposition [61], so the choice of initial magnitude
should not change whether spinodal decomposition occurs in
the present simulations. Snapshots of the phase separation
process in these systems are shown in Fig. 5. For the case
of high spinodal concentration (upper row), the emerging
second phase has the usual lamellar structure, while for the
low spinodal concentration (lower row), the emerging phase
has a circular shape. The dependence of the morphology of
the precipitates on spinodal concentration has been reported in
literature before [62].

While the analysis presented here is for the simple case
of a two-phase system, it can be adapted for a multiphase
system using the formulation presented earlier in the paper. To
demonstrate this, without loss of generality, we also consider
a binary two-phase system. However, now there are two order
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FIG. 5. Simulations of phase separation in a two-phase binary
system using a grand-potential-based phase-field model with a single
order parameter. Simulation times are (a),(c) t = 0; (b),(d) t = 200.
The left column represents the initial configurations of the supersatu-
rated matrix (see text), and the right column shows the concentration
map after phase separation is complete. The upper row shows the
morphology of second phase developed during separation for the case
of high spinodal concentration (cs = 0.5), and the lower row captures
the morphology developed for the case of low spinodal concentration
(cs = 0.167).

parameters representing the two phases, ηβ (the precipitate)
and ηα (the matrix). Therefore the total grand potential is now
given by

� =
∫

V

[
ωint (ηβ, ηα,∇ηβ,∇ηα ) + ωbulk (μ, ηα, ηβ )

]
dV.

(86)

The interfacial and bulk grand-potential densities now have the
forms

ωint (ηβ, ηα,∇ηβ,∇ηα )

= m

[
1

4
+ η4

β

4
− η2

β

2
+ η4

α

4
− η2

α

2
+ γαβη2

αη2
β

]

+ κ

2
[|∇ηα|2 + |∇ηβ |2], (87)

ωbulk = hβ (ηβ, ηα )ωβ (μ) + hα (ηβ, ηα )ωα (μ), (88)

hα (ηβ, ηα ) = η2
α

η2
β + η2

α

, (89)

hβ (ηβ, ηα ) = η2
β

η2
β + η2

α

. (90)

Now, following the same procedure described earlier in Sec. IV
to derive the corresponding free energy consistent with this
grand potential, one arrives at

F =
∫

V

ftot (c, ηβ, ηα,∇ηβ,∇ηα )dV

=
∫

V

[fint (ηβ, ηα,∇ηβ,∇ηα ) + fbulk (c, ηα, ηβ )] dV, (91)

fint (ηβ, ηα,∇ηβ,∇ηα )

= m

[
1

4
+ η4

β

4
− η2

β

2
+ η4

α

4
− η2

α

2
+ γαβη2

αη2
β

]

+ κ

2
[|∇ηα|2 + |∇ηβ |2], (92)

fbulk (c, ηβ, ηα ) = [c − ceq(ηβ, ηα )]2

2 [hβ (ηβ, ηα )/kβ + hα (ηβ, ηα )/kα]
,

(93)

ceq(ηβ, ηα ) = hβ (ηβ, ηα )cβ + hα (ηβ, ηα )cα. (94)

FIG. 6. Simulations of phase separation in a two-phase binary system using a grand-potential-based phase-field model with ηα = 1, ηβ = 0
representing the α phase, and ηα = 0, ηβ = 1 representing the β phase. (a) The initial condition of c (t = 0); (b) c after phase separation is
complete (t = 600). The average concentration cavg = 0.5 is above cs = 0.4, so the system phase separates and forms a lamellar microstructure.
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Moreover, the bulk free energy density can be simplified further
if one follows the same assumptions that led to Eq. (79), i.e., the
same curvature of parabola for the two phases and normalized
concentration, and notes that hα (ηβ, ηα ) = 1 − hβ (ηβ, ηα ).
Specifically, Eq. (93) becomes

fbulk (c, ηβ, ηα ) = ε [c − hβ (ηβ, ηα )]2

2
. (95)

The stability can then be determined from the Hessian matrix
of the free energy as described previously in the current section,
though the Hessian matrix here is a 3 × 3 matrix. The stability
condition for an initially supersaturated matrix (ηβ = 0, ηα =
1, 0 < c < 1) is

c > cs = m (2γαβ − 1)

2 ε
. (96)

To demonstrate phase separation using the multiphase model,
3D simulations were performed of an α-β system with ε = 1
and normalized concentration, so that cs is given by Eq. (96).
Other parameters were m = 0.4 and γαβ = 1.5, resulting in
cs = 0.4, and κ = 1. The initial conditions for the order pa-
rameters were ηα = 1 and ηβ = 0, and the initial condition for
μ was 0.5 + δ, where in this case δ is a uniform random number
between −0.1 and 0.1. This corresponds to fluctuations in the
range 0.4 � c � 0.6. The system size was 270 × 270 × 270,
with a uniform element size �x = �y = �z = 1.5. The initial
condition and microstructure after phase separation is shown in
Fig. 6. Consistent with Fig. 5, the higher average composition
cavg = 0.5 results in a lamellar microstructure.

V. CONCLUSIONS

In this work, a multiphase, multi-order-parameter model
has been developed based on a grand-potential functional. The
advantages of this model are:

(1) It removes the chemical energy contribution to interfa-
cial energy, simplifying parametrization.

(2) It decouples interfacial energy and interfacial thickness,
allowing the use of increased interface thickness and therefore
improving computational efficiency.

(3) It prevents the spurious formation of additional phases
at two-phase interfaces due to stability against third-phase
perturbations.

(4) Additional phase concentration variables are not re-
quired as in the KKS approach, simplifying implementation.

It is limited in the forms of chemical free energy that can
be used, but this is not a severe limitation since parabolic
functions can be used in this model, and more complex free
energy functions are often approximated using such parabolic
functions in phase-field modeling.

The equilibrium behavior of the model was verified by com-
paring the simulated morphologies of second-phase particles
at grain boundaries and triple junctions to the morphologies
expected from the balance of interfacial and grain boundary
energies. The kinetic behavior of the model was verified by
comparing simulation results to the analytical solution for
second-phase growth from a supersaturated matrix in 1D
(plate morphology) and 3D (spherical morphology). Finally,
we showed that phase-field models based on a grand-potential
functional are capable of simulating phase separation and
derived the conditions under which this is possible. Since this
model is formulated for an arbitrary number of phases, grains,
and chemical species, it is expected to be useful for simulating
a broad range of materials systems.
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