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Knudsen numbers in slip-flow regime. II. Application to curved boundaries
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Gaseous flows inside microfluidic devices often fall in the slip-flow regime. According to this theoretical
description, the Navier-Stokes model remains applicable in bulk, while at solid walls a slip velocity boundary
model shall be considered. Physically, it is well established that, to properly account for the wall curvature, the wall
slip velocity must be determined by the shear stress, rather than the normal component of the velocity derivative
alone, as commonly applied to planar surfaces. It follows that the numerical transcription of this type of boundary
condition is generally a challenging task for standard computational fluid dynamics (CFD) techniques. This paper
aims to show that the realization of the slip velocity condition on arbitrarily shaped boundaries can be accomplished
in a natural way with the lattice Boltzmann method (LBM). To substantiate this conclusion, this work undertakes
the following three studies. First, we examine the conditions under which the generic reflection-type boundary
rules used by LBM become consistent models for the slip velocity boundary condition. This effort makes use
of the second-order Chapman-Enskog expansion method, where we address both planar and curved boundaries.
The analysis also clarifies the capabilities and limitations behind the considered reflection-type slip schemes.
Second, we revisit the family of parabolic accurate LBM slip boundary schemes, originally formulated in [Phys.
Rev. E 96, 013311 (2017)] on the basis of the multireflection framework, and discuss their characteristics when
operating on curved boundaries as well as the limitations of other less accurate LBM slip boundary formulations,
such as the linearly accurate slip schemes and the widely popular “kinetic-based” boundary schemes. In addition,
we also discuss the numerical stability of the parabolic slip schemes previously developed, providing an heuristic
strategy to improve their stable range of operation. Third, we evaluate the performance of the several slip boundary
schemes debated in this paper. The numerical tests correspond to two classical 2D benchmark flow problems of
slip over non-planar solid surfaces, namely: (i) the velocity profile of the cylindrical Couette flow, and (ii) the
permeability of a slow rarefied gas over a periodic array of circular cylindrical obstacles. The obtained numerical
results confirm the competitiveness of the LBM when equipped with slip boundary schemes of parabolic accuracy
as CFD tool to simulate slippage phenomena over arbitrarily non-planar surfaces. Indeed, although operating on
a simple uniform mesh discretization, the LBM yields a similar, or even superior, level of accuracy compared to
state-of-the-art FEM simulations conducted on hardworking body-fitted meshes. This conclusion establishes the
LBM as a very appealing CFD technique for simulating microfluidic flows in the slip-flow regime, a result that
deserves further exploration in future studies.
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I. INTRODUCTION

In microscale gaseous flows the degree of departure from
classical hydrodynamic theory is measured by the Knud-
sen number: Kn = λ/H , with λ the mean-free path of gas
molecules and H the characteristic length scale of the flow
system [1–4]. Based on Kn, it is commonly accepted the
existence of four physical regimes: (i) the hydrodynamic-
or continuum-flow regime (Kn � 0.001), (ii) the slip-flow
regime (0.001 < Kn � 0.1), (iii) the transition-flow regime
(0.1 < Kn � 10), and (iv) the free molecular-flow regime
(Kn > 10). This work focuses on the hydrodynamic- and slip-
flow regimes, since the interval Kn � 0.1 covers the generality
of microfluidic flow applications [5–9].

It is well established, e.g., Refs. [10,11], that the minia-
turization of fluidic processes produces a dramatic increase

*goncalo.nuno.silva@gmail.com

in the surface-to-volume ratio, which credits surface related
phenomena the dominant role. While this characteristic offers
many technological advantages, as exploited in microelec-
tromechanical systems (MEMS) [6,7,10], the scale reduction
also brings new challenges. A fundamental problem refers to
the interaction between the fluid flow constituents and the
bounding walls. With the growth of the Kn number, new
phenomenological features are expected to emerge due to an in-
sufficient number of gas molecules within the sampling region.
According to slip-flow theory, the scarcity of gas molecules is
only relevant at the walls’ vicinity. This hypothesis, therefore,
implies that the Navier-Stokes model remains valid in bulk,
whereas at boundaries the standard no-slip condition shall
be replaced by a slip one, e.g., Refs. [3,8,12–14]. Here, the
concept of slip boundary condition arises as a means to account
for the effects of the nonequilibrium Knudsen layer, which
forms adjacent to solid walls, but without explicitly resolving
it when solving for the velocity field. The idea is that, up to
Kn � 0.1, the Knudsen layer is sufficiently thin so that its
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TABLE I. Examples of slippage coefficient C values determined through different approaches; a more complete list can be found in
[8,9,12]. The parameter σv is the tangential momentum accommodation coefficient (TMAC). For most surfaces σv ∈ [0.6, 1] [9], where σv = 1
corresponds to fully diffusive walls. In bulk, the collision models considered are Hard Sphere (HS) and BGK models.

References C Collision model Approach

Wall’s Reflection Law: Specular (σv = 0) to Diffuse (σv = 1)

Maxwell (1987) [23] 2−σv

σv
– Elementary kinetic theory

Four moment approx. to
Gross et al. (1957) [24–26] 2−σv

σv
[ 5

8

√
π 3.193+σv

3.603+0.524σv
] HS

half-ranged moment method

Maurer et al. (2003) [27] 1 + 6 2−σv

σv
Kn – Experimental measurements

Struchtrup et al. (2008) [28–30] 2−σv

σv
[ (13−√

70π )σv+2
√

70π

(12−√
70π )σv+2

√
70π

] BGK R13 moment equations

Wall’s Reflection Law: Diffuse

Numerical quadrature
Cercignani (1968) [1,31,32] [0.962,1.019] Different models

and variational procedure

Willis (1691) [33], Kogan (1696) [3] 1.0122 BGK Integromoment method

Sone et al. (1969) [13,19,20,22] 0.98733 / 1.01619 HS / BGK Asymptotic theory

Loyalka et al. (1975) [2,26,34,35] 1.0161941832335 BGK Exact numerical calculations

effect may be assumed as compressed to a discontinuous jump
in the fluid/wall velocity accommodation [3,13,15]. Such a
description has a firm theoretical basis. For instance, it can
be systematically derived from an asymptotic analysis of the
Boltzmann equation, as explained in the classical textbooks
by Sone [13,15] and the complementary publications [16–22]
where this topic is discussed in depth.

This work focuses on single component gases under isother-
mal conditions. Such an assumption guarantees that no mass
diffusion and heat flow exist. On this basis, the generic
slip boundary condition formulates as the jump between the
tangential components of the fluid velocity �u and the wall
velocity �uw exclusively controlled by the shear stress τij at
the wall (where �n and �t are the normal and tangent unit vectors
at the surface): (

ui − uwi

)
ti = C λ

μ
τij ni tj . (1)

Here, we will consider Newtonian fluids, where the stress
tensor is given by τij = μ( ∂ui

∂xj
+ ∂uj

∂xi
). The other parameters

featuring in the slip model, Eq. (1), are the mean-free path λ,
the dynamic viscosity μ, and the slippage coefficient C; the
latter may take different values as illustrated in Table I. While
higher-order slip models have been developed for arbitrary
shaped solid surfaces [13,19,20], their application is usually
limited to planar walls. For example, the isothermal second-
order slip condition applied to curved walls introduces two
extra corrective terms, related to the surface curved, which
find no counterpart in the plane wall case, e.g., refer to
Eq. (3.61a) in Ref. [13]. So far, the gains attainable by
this added complexity have not been explored much. For
that reason, in this work, we shall not address the modeling
of higher-order slip models on curved surfaces, restricting
ourselves to the use of Eq. (1).

From the practical standpoint, the major asset of slip-flow
theory is the drastic simplification offered in the modeling of
finite Kn flows. Thanks to its self-consistent structure—i.e.,
the standard no-slip condition, (ui − uw i ) ti = 0, is retrieved

in the Kn → 0 limit—it naturally applies to the framework of
ordinary hydrodynamic-type equations, thus extending them
to finite Kn applications. Such a feature is particularly attrac-
tive for computational fluid dynamics (CFD) studies. In this
context, most of literature related to the numerical simulation
of the Navier–Stokes equations with slip boundary conditions
is based on the finite element method (FEM); see Refs. [36,37].
Yet, in this study we focus on an alternative CFD perspective:
the lattice Boltzmann method (LBM). The justification for the
LBM choice in the context of slip-flow problems shall be the
main topic of this work. To support this choice, the relative
accuracy between LBM and FEM will also be examined in
this work.

In the recent years the LBM has attracted much attention in
the modeling and simulation of a variety of fluid flow problems,
examples can be found in Refs. [38–41] and references therein.
A key reason for the LBM success lies in the simplicity
of its working principle. The stream-and-collide structure of
the standard LBM algorithm runs on an uniform Cartesian
mesh, thus rendering the meshing of complex geometries
straightforward. The flipside is that the information on the
wall shape must be incorporated in the LBM boundary rule.
Therefore, how accurate complex shapes can be represented
within the LBM discretization comes dictated by the accuracy
of the LBM boundary condition. This explains the large body of
literature published on the topic of LBM boundary conditions,
e.g., Refs. [40,42–48].

At the present, the implementation of the no-slip condition
by LBM boundary schemes is well developed for generic,
planar, and curved geometries; this fact is illustrated by the
extensive reference list given at the end of the previous
paragraph. In a different manner, the treatment of slip walls
has received considerable less attention. So far, the majority
of LBM studies [49–60] that have addressed this topic ex-
plored the relationship between the LBM equation and the
Boltzmann-BGK equation. By doing so, they have attempted
to derive LBM discrete analogues of boundary schemes per-
taining to the kinetic theory of gases. Unfortunately, the slip
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prescribed by these “kinetic-based” schemes is contaminated
by unavoidable discrete lattice effects [61–64]. Aiming at
overcoming this deficiency, dedicated studies [55,62,65–67]
have proposed an a priori calibration of the numerical co-
efficients of these “kinetic-based” schemes. The idea is to
“absorb” into physical terms the numerically generated slip.
However, this procedure lacks generality, being limited to
straight, lattice-aligned channel-like configurations, where an
exact solution of the numerical scheme is available. As shown
in our previous study [68], it suffices inclining the straight
wall with respect to the lattice to observe the breakdown of
these calibrated solutions and the consequent inconsistency of
the aforementioned “kinetic-based” LBM schemes as slip-flow
models, i.e., they do not converge towards the physical slip
condition when the mesh size tends to zero, regardless the
calibration procedure employed. Additional evidence of this
defect will be reported in this paper. For more details on this and
other shortcomings we refer to Section IV of [68]. The other
perspective adopted by the LBM community aims at modeling
the slip velocity condition directly at LBM discrete level, i.e.,
without invoking any relationship to kinetic-based equations,
e.g., Refs. [69–72]. So far, the LBM slip boundary schemes
based on this reasoning have met partial success. Although for
straight, lattice-aligned walls they are capable of supporting
the slip velocity condition in a satisfactory manner, and exempt
from calibration requirements [70], when applied to nonmesh
aligned walls their performance seems more limited. That is,
while they improve the consistency attained by kinetic-based
schemes, their accuracy level never exceeds the first order
in nonmesh aligned configurations, e.g., Refs. [69,71]. One
of the objectives of this study is to point out the source of
this limitation and to propose improved schemes that support
the slip condition with second-order accuracy at arbitrary
curved walls. To do so, we will follow the multireflection
approach, originally developed by Ginzburg and coworkers
[46,47] for no-slip walls, and extend it to the slip velocity
condition. The choice behind the multireflection framework is
twofold. First, for theoretical reasons, as the multireflection
rests on a clear and precise working principle, the formulation
of slip schemes can be executed rather straightforwardly, i.e.,
essentially through the same steps of the no-slip case, as ex-
plained in Appendix A of this manuscript. Second, for practical
reasons, as this similitude can be explored by LBM users,
particularly those already running LBM codes operating with
no-slip multireflection schemes, as the extension to incorporate
slip can be achieved with minimal changes, i.e., other than
modifying the multireflection coefficients, the essence of the
multireflection no-slip algorithm remains unchanged.

This work continues the study developed in Ref. [68]
dedicated to the consistent LBM modeling of the slip-flow
regime. In our early contribution [68], we have shown that
the LBM provides a rather natural groundwork to model the
slip-flow regime owing to the similarities between the closure
relation of the LBM reflection-type boundary schemes, e.g.,
multireflection ones, and the “physical” slip velocity boundary
condition, as both share a similar structure in terms of Taylor
series of the fluid velocity at the wall. In this paper, we
extend [68] with respect to the following three points. First, we
demonstrate that the LBM closure relation, originally derived
in Ref. [68] for the case of plane boundaries, also applies to

curved walls. This equivalence is not a priori evident given
that for curved surfaces the wall velocity slip depends on
the shear stress, as given in Eq. (1), rather than the wall
normal component of the velocity gradient alone, as originally
considered in Ref. [68]. For illustration purposes, we limit
this exposition to 2D geometries; yet the extension to 3D is
straightforward. Second, we propose a strategy to preserve
the numerical stability of the LBM slip boundary schemes,
which may be impaired when slippage coefficients have large
magnitude. In this respect, we also extend the modeling of
low-speed (linear) Stokes flows, as considered in Ref. [68], to
(nonlinear) Navier-Stokes flows. Third and final, we assess the
conjecture made in Ref. [68] concerning the competitiveness
of LBM as an effective CFD approach for the slip-flow regime.
To this end, we compare the accuracy of different groups of
slip boundary schemes operating on the LBM uniform mesh
discretization against FEM simulations conducted on state-of-
the-art body-fitted meshes. The LBM is implemented in our in-
house code, while FEM is run with the COMSOL commercial
code [73]. For the numerical tests we choose two classical
fluid dynamics 2D problems, which are typically applied to
the study of isothermal slippage phenomena over nonplanar
surfaces, namely: (i) the cylindrical Couette flow [74–77] and
(ii) the square array of circular cylinders crossed by a gaseous
slow flow in the slip-flow regime [78–82]. Given that both
benchmarks have been computed already within the LBM
framework, namely case (i) by Refs. [67,71,83,84] and case
(ii) by Refs. [71,82,85–87], the performance improvements
of our LBM slip boundary schemes can be established more
clearly. We note that the relevance of these tests goes beyond
academic interest. They illustrate two application scenarios
where the slip-flow theory has been receiving significant
attention throughout the past few years, namely: case (i) for gas
lubrication applications in microbearings [74–76]; and case (ii)
for the shale gas exploitation in small pore size rocks [78–82].

The rest of the paper is organized as follows. Section II
briefly presents the LBM scheme, operated on the basis of the
two-relaxation-time (TRT) collision operator [47,88–92] and
revises the relation between LBM and the target macroscopic
hydrodynamic equations. Section III discusses the prescription
of the slip velocity boundary condition over planar and curved
surfaces. First, we revise the mathematical structure of these
conditions, and second we demonstrate how they are approx-
imated by generic reflection-type boundary schemes in LBM,
according to their microscopic closure relations. Section IV
addresses different classes of LBM reflection-type boundary
schemes designed to model the slip velocity condition. In com-
plement, we comment on the accuracy/consistency of low- and
high-order LBM boundary schemes when approximating ei-
ther no-slip or slip boundary conditions, and finalize with a dis-
cussion on the stability of these boundary schemes. Sections VI
and VII contain the numerical results, where the main focus
is given on the accuracy performance of LBM and FEM.
Here, two benchmarks slip-flow problems are considered: the
velocity profile of the cylindrical Couette flow in the slip-flow
regime in Sec. VI; and the permeability measure of a slow
rarefied gas crossing a periodic array of circular cylinders
in the slip-flow regime in Sec. VII. Section VIII concludes
the paper with a summary of the main results. The paper is
further supplemented with two appendix sections. Appendix A
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details the formulation of the parabolic slip schemes studied
in this work, outlining the main steps in the derivation of
the multireflection schemes [46,47]. Appendix B provides a
complementary discussion on the reference solution adopted
in Sec. VII.

II. TWO-RELAXATION-TIME LATTICE BOLTZMANN
METHOD

The LBM [38–41] describes the evolution of populations
fq (�x, t ), defined on space �x and time t , along a discrete velocity
set, called lattice, which features one immobile �c0 = �0 and
Qm = Q − 1 nonzero velocity vectors �cq per grid node. The
first Qm/2 velocity vectors �cq are set diametrically opposite
to the other Qm/2 vectors �cq̄ = −�cq , where the pair {�cq, �cq̄}
is referred to as a link. Here, we employ the d-dimensional
lattice with Q velocities given by d = 2 and Q = 9, called
d2Q9 model [39,41,93].

In terms of working principle, the LBM executes a succes-
sion of streaming and collision steps, Eqs. (2). The streaming
step, Eq. (2a), performs a simple shift of populations to neigh-
boring nodes. The collision step, Eq. (2b), is operated with
the two-relaxation-time (TRT) model [41,47,88,89,91,92,94].
This collision model is constructed on the symmetry argu-
ment �cq̄ = −�cq . On this basis, populations are decomposed
into symmetric f +

q = 1
2 (fq + fq̄ ) and antisymmetric f −

q =
1
2 (fq − fq̄ ) components, with immobile population f +

0 = f0.
Accordingly, the relaxation process is controlled by two
collision eigenvalues, {s+, s−} ∈]0, 2[, for symmetric and
antisymmetric modes, respectively [91,94]. They define two
eigenfunctions �± = ( 1

s± − 1
2 ), whose product � = �+�−

is known to control nondimensional steady-state solutions
[47,89,90]. This structural invariance is the key element of
the TRT scheme and what makes it a superior choice over the
popular BGK scheme. The application of other LBM collision
operators to the simulation of isothermal, low-speed flows in
the slip-flow regime have been discussed in Appendix A of
Ref. [68].

The update rule of the TRT-LBM [47,88,89], for streaming
and collision steps, reads:

fq (�x + �cq, t + 1) = f̃q (�x, t ), q = 0, 1, ...,Q − 1, (2a)

f̃q (�x, t ) = [fq + g+
q + g−

q ](�x, t ), q = 0, 1, ...,
Qm

2
,

(2b)

f̃q̄ (�x, t ) = [fq̄ + g+
q − g−

q ](�x, t ), q = 1, ...,
Qm

2
,

where f̃q denotes the post-collision state of populations fq ,
with g±

q = −s± (f ±
q − e±

q ).
We consider the modeling of Navier-Stokes equations

(NSE), with the force density �F . In the TRT scheme the NSE
equilibrium [47,88] may be written as

e+
q = P �

q + E�
q, (3a)

e−
q = j�

q + �− F�
q , (3b)

where

P �
q = t�q P , P = c2

s ρ, e+
0 = e0 = ρ − 2

Qm/2∑
q=1

e+
q ,

j �
q = t�q jq, jq = �cq · �j, F �

q = t�q Fq, Fq = �cq · �F,

E�
q = t�q

3 j 2
q − ‖�j‖2

2ρ̄
. (4)

Note that several equivalent procedures exist to add forces in
LBM as discussed in Sec. 2.2 of Ref. [47]. Here, we choose
to include �F inside the equilibrium, as given by Eq. (3b), in
line with past studies [47,88,89]. This choice helps simplifying
the theoretical derivations, as sketched in Appendix A. As for
the equilibrium, we adopt the incompressible model [95,96],
where density is split into an arbitrary ground state density
ρ̄ = constant and a varying mass density field ρ. The c2

s

in the equation of state P = c2
s ρ is a free parameter, limited

by stability bounds, e.g., c2
s ∈]0, 3

5 ] in the d2Q9 [91,92].
Additionally, t�q refers to isotropic hydrodynamic weights

[39,41,93], with {t�(I )

q , t�
(II )

q } = { 1
3 , 1

12 } in the d2Q9 model.
These lattice weights cope with the two constraints for standard
lattices: 2

∑Qm/2
q=1 t�q cqαcqβ = δαβ and 6

∑Qm/2
q=1 t�q c

2
qαc2

qβ = 1 +
2δαβ , where δαβ is the Kronecker δ.

The LBM solves for the macroscopic quantities, mass
density ρ, and momentum density �j , through the zeroth-
and first-order velocity moments, determined on f +

q and f −
q ,

respectively, as follows:

ρ = f0 + 2
Qm/2∑
q=1

f +
q , �J = 2

Qm/2∑
q=1

f −
q �cq, �F = 2

Qm/2∑
q=1

Fq �cq,

�j = �J + 1

2
�F . (5)

The macroscopic conservation laws for the mass and momen-
tum balance are established by

Q−1∑
q=0

g+
q = 0, (6a)

2
Qm/2∑
q=1

g−
q �cq = �F . (6b)

The explicit form of the macroscopic conservation laws can
be determined through the second-order Chapman-Enskog
expansion method [38,46,89,95]. Based on this procedure
the steady-state structure of the nonequilibrium post-collision
quantities g±

q can be proven [89] to be

g±
q = ∂q (e∓

q − �∓∂qe
±
q ) + O(ε3), (7)

where ∂q = �cq · �∇ expresses the lattice-projected directional
derivative. In this study �± is held spatially uniform.

Then, if we substitute Eqs. (7) into Eqs. (6), and take into
account the form of equilibrium, Eqs. (3) and (4), together with
the definitions of the velocity moments, given in Eq. (5), we
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arrive at the expected steady-state incompressible NSE:

�∇ · �u = 0, �u =
�j
ρ̄

, (8a)

�∇ · (�u ⊗ �u) = 1

ρ̄
( �F − �∇P ) + ν��u, ν = 1

3
�+, (8b)

where the second-order derivatives of pressure and nonlinear
terms have been neglected in consistency with the second-order
scaling of the Chapman-Enskog expansion [38,46].

Remark. The Chapman-Enskog expansion unfolds the con-
tent of the nonequilibrium quantities, through a perturbative
approximation method, controlled by the ε smallest parameter
[38,46,89,95]. It is important to note that, in the LBM context,
the ε parameter expresses the ratio of the lattice unit to the
characteristic length scale of the problem [47,68,88,95], and
shall not be confused with the Kn number [58,61,63,66].
That is, while ε is a grid scale parameter, Kn is a nondi-
mensional group that controls the problem physical regime.
By conducting the second-order Chapman-Enskog analysis,
the procedure consists of substituting Eqs. (8) into Eqs. (6),
with assumption | �F | = O(ε) [41,97–99], so that we end up
recovering Eqs. (8) with a O(ε2) residue. This means the error
in the LBM approximation toward the intended PDE system is
second-order in the mesh spacing [89,90]. Along these lines,
higher-order terms in ε shall be interpreted as the truncation
terms in the numerical model, rather than related to physically
based Kn corrections to the NSE framework. In other words,
they do not describe Burnett or super-Burnett fluxes [100],
but simply the discretization errors brought with the numerical
approximation.

III. SLIP VELOCITY BOUNDARY CONDITION

A. Hydrodynamic theory: Boundary closure relations

In this section we briefly revise the structure of the slip
velocity boundary condition. To begin with, let us outline
the main working hypotheses taken in the course of this
study. In bulk, we assume a single component fluid under
isothermal conditions, with Newtonian stress tensor given by
τij = μ( ∂ui

∂xj
+ ∂uj

∂xi
). At boundaries, we assume a smooth solid

surface (i.e., corners are excluded) with rigid and impermeable
walls that may undergo a solid-body motion with velocity
�uw. As for the fluid-wall interaction, we assume a slip ve-
locity model according to Eq. (1). Altogether, the boundary
conditions for the normal and the tangential fluid velocity
components read

(
ui − uwi

)
ni = 0, (9a)(

ui − uwi

)
ti = − C λ

(
∂ui

∂xj

+ ∂uj

∂xi

)
ni tj . (9b)

Here, Einstein tensorial notation is employed, with repeated
indices implying summation, e.g., uiti = ∑

i ui ti = �u · �t . As
for sign convention, we define �n to be the normal unit vector,
pointing along the wall normal outward direction (which
explains the minus sign here) and �t the tangent unit vector,
pointing along the positive axis of the coordinate system.

Our objective is to investigate under which circumstances a
boundary rule formulated in LBM is capable of approximating
Eqs. (9) within the same level of accuracy of the LBM
approximation of the NSE in bulk, as discussed in Sec. II.
We note that this question has been the subject of past studies
concerning the operation of the no-slip velocity condition
[41,46,101,102]. Yet, the numerical implementation of Eqs. (9)
brings new additional challenges. First, compared to the no-slip
case, which prescribes a Dirichlet (specified value) boundary
condition, the slip condition is of Robin-type, Eq. (9b), which
requires dealing with the relation between the boundary value
and its gradient. Second, since the normal velocity condition
remains of Dirichlet-type, Eq. (9a), the numerical boundary
model must be able to deal with the different mathematical
nature of each velocity component simultaneously, whereas in
the no-slip case both velocity components are of Dirichlet-type
at the boundary. These two issues will be addressed next.

For the sake of illustration, let us consider the slip velocity
boundary condition, Eqs. (9), at two particular 2D coordinate
systems.

(1) The Cartesian coordinate system �x 
→ (s, n), whose
components s and n locally align to the surface tangential and
normal vectors, respectively. That is, ti = is and nj = −in, so
that Eqs. (9) become

un − uwn
= 0, (10a)

us − uws
= C λ

(
∂us

∂n
+ ∂un

∂s

)
. (10b)

(2) The polar coordinate system �x 
→ (r, θ ), whose compo-
nents r and θ locally align to the surface normal and tangential
vectors, respectively. That is, ti = iθ and nj = −ir , so that
Eqs. (9) become

ur − uwr
= 0, (11a)

uθ − uwθ
= C λ

(
∂uθ

∂r
− uθ

r

)
. (11b)

B. Lattice Boltzmann theory: Boundary closure relations

In standard LBM the geometry is discretized on an uni-
form Cartesian mesh. Consequently, arbitrary boundaries will
necessarily fall outside the lattice nodes. This demands the
careful characterization of the nodes inside the fluid domain,
where two groups of nodes can be identified [41]: (i) Fluid
nodes which are sites where the LBM update rule, Eq. (2),
applies; (ii) Boundary nodes �xb which are sites also belonging
to the fluid region but with, at least, one link connected to the
solid domain, i.e., �xb + �cq ∈ solid; see Fig. 1. For that reason,
the solution at boundary nodes must undergo a different update
rule, as will be addressed in Sec. IV and derived in Appendix A.
With the knowledge of the wall cut-link distance δq , the wall
location gets determined as �xw = �xb + �cq δq ; see Fig. 1. Below,
we will examine the structure of the LBM closure relation set
by generic linkwise boundary schemes and how this closure
relation approximates the slip velocity boundary conditions
given by Eqs. (10) or (11); the way to recover this closure
relation with typical multireflection schemes [46,47,68] is
deferred to Appendix A.

023302-5



GONCALO SILVA PHYSICAL REVIEW E 98, 023302 (2018)

FIG. 1. Discretization of a curved wall on the uniform mesh of
the LBM operating on d2Q9 lattice.

We consider a generic linkwise LBM boundary scheme
operating at �xb and assume it obeys the LBM closure relation
for the slip velocity boundary condition applied at �xw (recall,
�xw = �xb + �cq δq) in terms of the Taylor-type approximation

along each wall-cut link q, according to Ref. [68]:

jq (�xb) + α+
q ∂qjq (�xb) + α−

q ∂2
q jq (�xb) + O(ε3) = jq w(�xw),

α+
q := (δq + C λq ), α−

q :=
(

δ2
q

2
+ C λq δq

)
,

λq := λ

�q

, �q := (�cq · �n), �xw = �xb + �cq δq . (12)

Note, the coefficients α+
q and α−

q may also depend on the
spatial location �xb (besides the linkwise dependence q already
expressed); yet, to alleviate notation, this �xb dependence on α±

q

will be omitted throughout the manuscript.
Next, we will demonstrate that Eq. (12) contains both

the Robin- and Dirichlet-type velocity boundary condition
components, as reported in Sec. III A, and it approximates them
as a second-order Taylor series about point �xb with the wall cut-
link distance δq as increment. This proof will be sketched below
for a 2D geometry, considering plane and curved boundaries
separately; the 3D extension is straightforward.

1. Plane boundaries

The case of plane boundaries is more conveniently dealt with in a Cartesian coordinate system. On this basis, the LBM closure
relation given by Eq. (12) writes as follows:

(cqs js + cqn jn) + (δq + C λq )

[
c2
qs

∂js

∂s
+ cqscqn

(
∂js

∂n
+ ∂jn

∂s

)
+ c2

qn

∂jn

∂n

]
+

(
δ2
q

2
+ C λq δq

)

×
[
c3
qs

∂2js

∂s2
+ c2

qscqn

(
∂2jn

∂s2
+ 2

∂2js

∂s∂n

)
+ cqsc

2
qn

(
∂2js

∂n2
+ 2

∂2jn

∂s∂n

)
+ c3

qn

∂2jn

∂n2

]
+ O(ε3) = cqs jws

+ cqn jwn
. (13)

It is useful to reorganize Eq. (13) into tangential and normal components:

cqs

[
js + (δn + C λ)

(
∂js

∂n
+ ∂jn

∂s

)
+

(
δ2
n

2
+ C λ δn

)(
∂2js

∂n2
+ ∂2jn

∂s∂n

)
− jws

]
︸ ︷︷ ︸

=2nd−order Taylor Expansion of Eq.(10b)

+ cqn

[
jn + δn

∂jn

∂n
+ δ2

n

2

∂2jn

∂n2
− jwn

]
︸ ︷︷ ︸
=2nd−order Taylor Expansion of Eq.(10a)

+ Error = 0. (14)

Above, we have used the definitions �q := cqn and δn := δq cqn. Furthermore, the Error in Eq. (14) is given by

Error = cqs

[
(δq + C λq )cqs

∂js

∂s
+

(
δ2
q

2
+ C λq δq

)(
c2
qs

∂2js

∂s2
+ c2

qn

∂2jn

∂s∂n

)]

+ cqn

[
C λq cqn

∂jn

∂n
+ (C λq δq )c2

qn

∂2jn

∂n2
+

(
δ2
q

2
+ C λq δq

)
c2
qs

(
∂2jn

∂s2
+ 2

∂2js

∂s∂n

)]
+ O(ε3). (15)

Clearly, to guarantee that Eq. (14) reproduces Eq. (10) as a second-order Taylor series approximation, the residue in Eq. (15)
must be reduced to Error = O(ε3). Yet, to satisfy this condition a few estimates must be invoked. The first one refers to the
state of slip at the boundary, which shall be constant or otherwise not too far from this condition. The use of this assumption
is not an exclusive from our approach, e.g., Reis and Dellar [70] have also used it when formulating their LBM slip boundary
schemes (cf. Sec. V in Ref. [70]). We note that, while theoretically this assumption may appear too restrictive, our numerical
results (alongside with those reported in Ref. [70]) confirm that accurate solutions can still be reached, even at more general
slip scenarios, providing slip variations are slow. The satisfaction with the constant slip velocity condition permits establishing
∂js

∂s
= 0 along the plane wall. The second approximation is more general and refers to the fact that the boundary condition is

prescribed at �xw while Eq. (15) applies at �xb, where the difference is (�xb − �xw) · �n = δn. For general flows, and bearing in mind
that we have assumed a smooth boundary, the difference between evaluating ∂js

∂s
at �xb rather than at �xw is small. Therefore, we

may still conjecture ∂js

∂s
= 0, which is an approximation ubiquitous to linkwise boundary schemes, even those concerned with the

no-slip condition, e.g., Refs. [42,43,45,46]. Obviously, in the case of streamwise invariant flows, the condition ∂js

∂s
= 0 becomes

exact, a result that also comprises the constant slip condition. In fact, these two approximations end up being somehow related.
Assuming their validity, we work out the ∂js

∂s
= 0 assumption together with the flow incompressibility condition to establish the
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additional simplifications: ∂jn

∂n
= − ∂js

∂s
= 0, ∂2jn

∂s∂n
= − ∂2js

∂s2 = 0 and ∂2js

∂s∂n
= − ∂2jn

∂n2 = 0. Everything considered, the closure relation
given by Eq. (12) is proven to prescribe the slip velocity condition at plane walls in the following form:

cqs

[
js + (δn + C λ)

∂js

∂n
+

(
δ2
n

2
+ C λ δn

)
∂2js

∂n2
− jws

]
+ cqn

[
jn + δn

∂jn

∂n
+ δ2

n

2

∂2jn

∂n2
− jwn

]
+ O(ε3) = 0. (16)

Equation (16) corresponds to the second-order Taylor series approximation, about �xb with increment δn, of the slip condition
previously developed in [68], referring to planar walls. Equation (16) reveals that for a wall-cut link where the LBM boundary
scheme satisfies Eq. (12), then both the Robin-type boundary condition in the tangential component and the Dirichlet-type
boundary condition in the normal component, see Eq (10), are established within the same level of accuracy.

2. Curved boundaries

The case of curved walls is more involving. Here, it is convenient to express Eq. (12) in the polar coordinate system:

(cqθ jθ + cqrjr ) + (δq + C λq )

[
c2
qθ

{
1

r

∂jθ

∂θ
+ jr

r

}
+ cqθ cqr

(
∂jθ

∂r
+

{
1

r

∂jr

∂θ
− jθ

r

})
+ c2

qr

∂jr

∂r

]
+

(
δ2
q

2
+ C λq δq

)

×
[
c3
qθ

{
1

r2

∂2jθ

∂θ2
+ 2

r2

∂jr

∂θ
+ 1

r

∂jθ

∂r
− jθ

r2

}
+ c2

qθ cqr

({
1

r2

∂2jr

∂θ2
+ 1

r

∂jr

∂r
− 2

r2

∂jθ

∂θ
− jr

r2

}

+
{

2

r

∂2jθ

∂r∂θ
− 2

r2

∂jθ

∂θ
+ 2

r

∂jr

∂r
− 2jr

r2

})
+ cqθ c

2
qr

(
∂2jθ

∂r2
+

{
2

r

∂2jr

∂r∂θ
− 2

r

∂jθ

∂r
− 2

r2

∂jr

∂θ
+ 2jθ

r2

})
+ c3

qr

∂2jr

∂r2

]
+ O(ε3) = cqθ jwθ

+ cqrjwr
, (17)

where λq := (�cq · �n) = λ/�q , with �q := cqr . Once again, it is useful to reorganize Eq. (17) into circumferential and radial
components:

cqθ

[
jθ + (δr + C λ)

(
∂jθ

∂r
+

{
1

r

∂jr

∂θ
− jθ

r

})
+

(
δ2
r

2
+ C λ δr

)(
∂2jθ

∂r2
+

{
1

r

∂2jr

∂r∂θ
− 1

r

∂jθ

∂r
− 1

r2

∂jr

∂θ
+ jθ

r2

})
− jwθ

]

+ cqr

[
jr + δr

∂jr

∂r
+ δ2

r

2

∂2jr

∂r2
− jwr

]
+ Error = 0, (18)

where δr := δq cqr and the Error is given by

Error = cqθ

[
(δq + C λq )cqθ

{
1

r

∂jθ

∂θ
+ jr

r

}
+

(
δ2
q

2
+ C λq δq

)(
c2
qθ

{
1

r2

∂2jθ

∂θ2
+ 2

r2

∂jr

∂θ
+ 1

r

∂jθ

∂r
− jθ

r2

}

+ c2
qr

{
1

r

∂2jr

∂r∂θ
− 1

r

∂jθ

∂r
− 1

r2

∂jr

∂θ
+ jθ

r2

})]
+ cqr

[
C λq cqr

∂jr

∂r
+ (C λq δq ) c2

qr

∂2jr

∂r2
+

(
δ2
q

2
+ C λq δq

)

× c2
qθ

({
1

r2

∂2jr

∂θ2
+ 1

r

∂jr

∂r
− 2

r2

∂jθ

∂θ
− jr

r2

}
+

{
2

r

∂2jθ

∂r∂θ
− 2

r2

∂jθ

∂θ
+ 2

r

∂jr

∂r
− 2jr

r2

})]
+ O(ε3). (19)

The last step consists in demonstrating that Eq. (18) corresponds to the second-order Taylor expansion of Eq. (11), which is
equivalent to demonstrating that Eq. (19) reduces to Error = O(ε3). This is proven by invoking the same kind of assumptions
adopted in the plane wall case, in particular the constant slip velocity condition. When transcribed to the curved boundary
case, these assumptions lead to ∂jθ

∂θ
= 0 along the curved wall. Based on this result, the analysis proceeds with the flow

incompressibility condition: ∂jr

∂r
+ 1

r

∂jθ

∂θ
+ jr

r
= 0, which permits working out in polar coordinates the equivalent of the conditions

∂jn

∂n
= − ∂js

∂s
= 0, ∂2jn

∂s∂n
= − ∂2js

∂s2 = 0 and ∂2js

∂s∂n
= − ∂2jn

∂n2 = 0, as follows: ( ∂jr

∂r
+ jr

r
) = − 1

r

∂jθ

∂θ
= 0, ( 1

r

∂2jr

∂r∂θ
− 1

r

∂jθ

∂r
− 1

r2
∂jr

∂θ
+ jθ

r2 ) =
−( 1

r2
∂2jθ

∂θ2 + 2
r2

∂jr

∂θ
+ 1

r

∂jθ

∂r
− jθ

r2 ) = 0 and ( 1
r

∂2jθ

∂r∂θ
− 1

r2
∂jθ

∂θ
+ 1

r

∂jr

∂r
− jr

r2 ) = − ∂2jr

∂r2 = 0, respectively. The substitution of these results
into Eq. (19) leads to the conclusion that, indeed, Error = O(ε3). Everything considered, Eq. (18) simplifies to

cqθ

[
jθ + (δr + C λ)

(
∂jθ

∂r
− jθ

r

)
+

(
δ2
r

2
+ C λ δr

)(
∂2jθ

∂r2
− 1

r

∂jθ

∂r
+ jθ

r2

)
− jwθ

]
︸ ︷︷ ︸

=2nd−order Taylor Expansion of Eq.(11b)

+cqr

[
jr + δr

∂jr

∂r
+ δ2

r

2

∂2jr

∂r2
− jwr

]
︸ ︷︷ ︸
=2nd−order Taylor Expansion of Eq.(11a)

+ O(ε3) = 0. (20)

Equation (20) proves that the LBM closure relation, Eq. (12), indeed satisfies the slip velocity condition at curved walls,
Eq. (11), as a second-order Taylor series approximation, about �xb with increment δr , of the Robin-type boundary condition
in the circumferential component and the Dirichlet-type boundary condition in the radial component. The above theoretical
conclusions will be numerically verified in Secs. VI and VII.
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TABLE II. LBM boundary schemes: coefficients of interpolation together with correction parameters F p.c.
q and α(u) in Eq. (21), where

coefficients are α+
q := (δq + C λq ) and α−

q := (
δ2
q

2 + C λq δq ). When the slippage correction vanishes, the α±
q coefficients take the form of the

no-slip schemes previously reported in Refs. [46,47].

Kinetic schemes Linear schemes Parabolic schemes

DBB CLI slip MGULI slip MGDLI slip MR(kq ) slip MR1 slip MGMR(C) slip

κ1
3ν−Cλ

3ν+Cλ
1 2α+

q
1

2α+
q

2α+
q +2α−

q −kq

1+kq
1

1+2α+
q +2α−

q +2C�−

1+2α+
q +2α−

q −2C�−

κ0 0
1−2α+

q

1+2α+
q

1 − κ1 0
3
2 −3α+

q −4α−
q +2kq

1+kq

1−2α+
q −4α−

q

1+2α+
q +2α−

q

1−2α+
q −4α−

q −4C�−

1+2α+
q +2α−

q −2C�−

κ̄−1 0 −κ0 0 1 − κ1

1
2 −α+

q +2kq

1+kq
−κ0

−1+2α+
q +4α−

q −4C�−

1+2α+
q +2α−

q −2C�−

κ−1 0 0 0 0
− 1

2 +α+
q +2α−

q −kq

1+kq

2α−
q

1+2α+
q +2α−

q

2α−
q +2C�−

1+2α+
q +2α−

q −2C�−

κ̄−2 0 0 0 0
− 1

2 +α+
q −kq

1+kq
−κ−1

−2α−
q +2C�−

1+2α+
q +2α−

q −2C�−

α(u) 2 κ1
4

1+2α+
q

2 1 − κ1
2

1+kq

4
1+2α+

q +2α−
q

4
1+2α+

q +2α−
q −2C�−

F p.c.
q (1 − κ1) eq (ρw, �jw ) (1 − κ1)g−

q α(u)�−(g−
q − F �

q )

IV. SLIP VELOCITY BOUNDARY SCHEMES IN LBM

In LBM, the problem with the implementation of boundary
conditions boils down to finding the post-streaming state of
incoming boundary populations which reproduces the intended
hydrodynamic boundary condition, up to the desired accuracy.
A natural way to accomplish this goal is through some suitable
linear combination of known populations so that the boundary
update rule matches the target closure relation, here given by
Eq. (12). To execute this task, we will consider three classes
of boundary schemes, called: kinetic, linear, and parabolic
schemes. They represent a trade-off between complexity and
accuracy, as explained ahead.

Now, we briefly revise the operation principle underlying
these LBM boundary schemes. Let us consider the boundary
node �xb, where �xb + �cq is a solid node and �xb − �cq is the
nearest fluid node. We propose to implement the slip boundary
condition following the generic boundary update rule:

fq̄ (�xb, t + 1) = κ1f̃q (�xb, t ) + κ̄−1f̃q̄ (�xb, t ) + κ0fq (�xb, t + 1)

+ κ−1fq (�xb − �cq, t + 1) + κ̄−2f̃q̄ (�xb − �cq, t )

+ F p.c.
q (�xb, t ) − α(u)j�

q w(�xw, t ), (21)

with

j�
q w = t�q jq w, jq w = �cq · �jw. (22)

The structure of Eq. (21) follows the general multireflec-
tion approach [46,47]. Here, for convenience, the unknown
incoming boundary populations, specified after propagation,
are determined through the linear combination of the known
post-collision populations evaluated at time step t and the
known outgoing populations evaluated at the state after the
propagation step, i.e., at time step t + 1. This form of multire-
flection algorithm employs the same structure of the standard
no-slip multireflection one [46–48,68]. Namely, it consists
of the interpolation coefficients {κ1, κ0, κ̄−1, κ−1, κ̄−2} further
supplemented by the correction parameters F

p.c.
q and α(u) with

the Dirichlet correction j�
q w given by Eq. (22). The form of

these terms for the slip boundary case and the different classes

of slip boundary schemes considered herein is detailed in
Table II; they all reduce to known no-slip formulas when the
slippage contribution vanishes. Below, we will discuss how ac-
curate they prescribe the no-slip and the slip velocity conditions
at arbitrarily curved walls. Other geometrical features, such as
corners, are not addressed in this work. For those special sites,
as preliminary approach, we suggest the use of the no-slip
condition, e.g., by means of the local boundary rule given by
Eq. (5.26) in Ref. [47].

A. Parabolic schemes

Parabolic schemes make full use of Eq. (21). Thereby,
they operate in a nonlocal manner, requiring a two-node
implementation. This disadvantage is strongly compensated
by their ability to reproduce the slip closure relation given
by Eq. (12). As a result, parabolic schemes support the
second-order accuracy of the LBM in both no-slip and slip
boundary problems. Moreover, their operation principle is
consistent with the bulk TRT invariance property, popularized
in LBM jargon as the “viscosity-independent” property [90],
cf. Sec. II. This feature should not be taken for granted. By
default, several interpolation-based LBM boundary schemes,
e.g., Refs. [43–45,103], fail to satisfy this invariance property,
even when running on the TRT framework

In terms of implementation, the family of parabolic schemes
is chosen to be constructed through the multireflection (MR)
formulation [46,47]. This choice takes advantage of the trans-
parent working principle of the MR framework, making it
readily applicable for our intents; derivations are sketched
in Appendix A, more details are given in Refs. [46,47]. In
Ref. [68], we have developed three different sets of MR
coefficients for the slip case, namely: the general MR(kq )
family and the two particular cases MR1 and MGMR(C) sub-
families; they are displayed in Table II. The general parameter
kq recovers the MR1 and MGMR(C) schemes as follows:
kq = (− 1

2 + α+
q + α−

q ) in MR1 and kq = (− 1
2 + α+

q + α−
q −

C�−) in MGMR(C), where C and �− are both free tunable.
Notice that the free numerical coefficient C parametrizing
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the MGMR(C) scheme should not be confused with C the
physical slippage coefficient, which parameterizes the α+

q

and α−
q coefficients. While the role of these free numerical

parameters views primarily stability purposes, they also lead to
slight differences in terms of accuracy, due toO(ε3) differences
in the closure relations of the parabolic schemes. Yet, these
differences are beyond the order of accuracy of this study.
The ensemble of these topics is deferred for a future work.
In this work, we will restrict the study of parabolic schemes to
the simple MR1 slip scheme. From the structural standpoint,
we outline that the input parameters of the slip parabolic
schemes are α+

q and α−
q , in agreement with the closure relation

they support, Eq (12). Here, α+
q and α−

q are only limited
to the nonnegativity condition. Consequently, they may take
arbitrarily large values, a feature that may impact the numerical
stability of the LBM evolution process as will be discussed in
Sec. V, where a general solution method will be proposed.
We will distinguish with a (�) indicator the parabolic schemes
subjected to a stabilization treatment.

B. Linear schemes

Linear schemes use only the information available at the
boundary node �xb in Eq. (21). That is, they exclude the terms
corresponding to the nearest fluid sites �xb − �cq , which is
done by setting κ−1 = κ̄−2 = 0 in Eq. (21). This makes their
operation principle local. The disadvantage is that their closure
relation only partially satisfies Eq. (12) on arbitrary shaped
wall. Their generic closure relation is shown in Eq. (23),
according to the derivation performed in Ref. [68]. Based
on Eq. (23), it is clear that linear schemes do not support
the term accounting for the velocity profile curvature, i.e.,
the term weighted by α−

q in Eq. (12). The classical example
of the impact of this deficiency is found in Poiseuille flow
simulations [46,102,104]. Although the Poiseuille parabolic
profile is exactly captured by the LBM in bulk, it fails to be
accommodated with the same level of accuracy on boundaries.
The corresponding boundary error scales with the square of

the grid spacing for no-slip walls, i.e.,
δ2
q

2 ∂2
q jq ∼ O(ε2), refer

to Refs. [48,68,88]. This O(ε2) scale is denoted in the Error
term of Eq. (23). However, this accuracy degrades to first-order
when slip is considered. Given that λ scales with H (with Kn
fixed), i.e., λ = Kn/ε ∼ O(ε−1), the neglect of the presence
of slip in the accommodation of the profile curvature ∂2

q jq

will render the accuracy of the slip boundary scheme formally
first-order due to the order of magnitude of the unaccounted
term being C λq δq ∂2

q jq ∼ O(ε). This is denoted in the Error
term of Eq. (23):

jq (�xb) + α+
q ∂qjq (�xb) + Error = jq w(�xw)

with Error =
{
O(ε2) no − slip

O(ε) slip
,

α+
q := (δq + C λq ),

λq := λ

�q

, �q := (�cq · �n), �xw = �xb + �cq δq . (23)

The above discussion explains why the previous attempts to
implement the slip velocity boundary condition in LBM have

shown limitations. Due to their inability to accommodate the
velocity curvature, the supported accuracy with respect to the
slip boundary condition became restricted to first-order terms
in the Taylor series approximation. As a result, in general,
only first-order accuracy can be achieved, which is evident
from the numerical results shown in previous work, e.g.,
Refs. [68,69,71]. Still, if the first order accuracy is acceptable,
then the class of linear schemes here presented remains
appealing, specially due to its local operating principle. The
compliance of the boundary scheme with the bulk invariance
property of the TRT steady-state solutions is other favorable
characteristic supported by the linear schemes here proposed;
a feature shared with the parabolic schemes given above.
This parametrization attribute is important for consistency
purposes. It guarantees that numerical solutions are fixed by
the nondimensional groups that control the problem physics,
such as Re or Kn.

In terms of implementation, the family of linear schemes
is formulated based on the CLI and the MGULI/MGDLI
frameworks [47,48]; their parameters are displayed in Table II.
Note, they only use α+

q as input parameter, which means their
closure relation only supports α+

q as discussed in the two
previous paragraphs and shown in coefficients of Table II.
The main difference among these schemes lies in the α+

q

range of admissibility: (i) α+
q � 0 in CLI; (ii) 0 � α+

q � 1
2

in MGULI; and α+
q � 1

2 in MGDLI. Once again, we refer
to Refs. [46,47,88] for more details on the differences and
similarities among them.

C. Kinetic schemes

Kinetic schemes use only the information available at the
boundary node �xb in Eq. (21). Thus, similarly to linear schemes,
they operate locally. The main difference is that: (i) they resort
to less information from known populations and (ii) their
coefficients do not support any linkwise dependence (although
exceptions exist, as discussed at the end of this section). A
dedicate analysis to the performance and limitations of these
kinetic schemes can be found in Sec. IV of Ref. [68]. Still,
it is worth it to reconsider them in this context as they are
frequently applied to problems with curved boundaries as well,
e.g., Refs. [67,71,82–87].

In the no-slip limit the limitations of the kinetic schemes are
well-established as they reduce to the bounce-back rule when
Kn → 0. Because of the midlink boundary location prescribed
for each wall cut-link, i.e., δq = 1

2 ∀ wall cut-links, the no-slip
condition will be necessarily established in a staircase fashion
for nonmesh aligned geometries. The impact of this issue on
the accuracy of the boundary condition is revealed by the
incomplete closure relation displayed in Eq. (24). As shown,
only the zeroth-order term in the Taylor series approximation is
captured, while the next order term is not supported, meaning
kinetic schemes fail to accommodate the velocity profile slope
(and obviously the velocity curvature too) at arbitrary wall
cut-link distances. In practice, for an arbitrarily located no-slip
condition, they will introduce a residue of δq ∂qjq ∼ O(ε)
in the Taylor series approximation, which explains the first
order accuracy in this case. However, in the slip case, this
accuracy further deteriorates, as revealed by the leading order
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residue in the Taylor series approximation which now scales
as C λq ∂qjq ∼ O(1), since λ = Kn/ε ∼ O(ε−1). In general
nonmesh aligned configurations the term scaling with λ cannot
be fixed. At best, calibrations to correct this term can be made
available only for lattice-aligned geometries [46–48,68,88].
Therefore, the leading-order error is indeed O(1), which signi-
fies that kinetic schemes are nothing but zeroth-order accurate
approximations to the desired slip velocity condition. That is,
kinetic schemes, while first-order accurate towards the no-slip
condition, are inconsistent slip models at curved walls. This
conclusion is not surprising as any numerical approximation
that fails to accommodate the slope of the velocity solution will
necessarily fail to represent the slip velocity condition, since
the latter requires the capturing of the velocity derivatives on
the wall. This rational, previously put forward on theoretical
grounds, will be confirmed numerically in Secs. VI and VII.

jq (�xb) + Error = jq w(�xw),

with Error =
{
O(ε) no − slip

O(1) slip
,

�xw = �xb + �cq δq . (24)

In terms of implementation, the family of kinetic schemes
may be realized by different formulations. Yet, despite their
algorithmic differences, they satisfy the same closure relation
as pointed out in Refs. [62,65,68]. For illustrative purposes,
here we will consider the diffuse bounce-back (DBB) scheme
[55,56,66], whose coefficients are given in Table II. More
details on the implementation of the DBB scheme can be found
in Refs. [55,68].

Before concluding this section, it is worth commenting on a
recent “improvement” proposed by Ref. [67], which attempts
to extend the DBB operation principle over curved boundaries.
The idea consists in equipping the DBB coefficients with the
wall cut-link distance information. Yet, in Ref. [67] those
new coefficients are derived for an unidirectional flow along
a planar horizontal wall, so that the wall cut-link distance �,
while variable, takes the same value for all wall cut-links; see
Sec. III in Ref. [67] and Appendix B in Ref. [68]. Obviously,
this procedure lacks generality in describing curved geome-
tries, where the wall cut-link distances varies link per link;
see Fig. 1. To further complicate matters, Ref. [67] extended
DBB scheme also leads to a loss of rotational invariance of
the LBM bulk solution. It suffices rotating the wall parallel
to the diagonal lattice links in a channel flow, a case where
an analytical solution is also available as shown in Ref. [68],
to confirm that the Ref. [67] strategy is indeed anisotropic.
While, in principle, this could be cured by using different
calibration coefficients according to the wall orientation, in
practice, for nonmesh aligned walls a link per link calibration
is not feasible as previously indicated, and further explained
in Ref. [68]. Thereby, the Ref. [67] “improved” DBB scheme
necessarily introduces angular dependent numerical artefacts;
a numerical proof of this defect can be seen in Fig. 9 of
Ref. [68]. Besides the accuracy issues previously reported, the
“improved” DBB strategy [67] also evidences a rather unstable
behavior, since the calibration terms proposed in Ref. [67]
often lead to singular coefficients in the boundary scheme
algorithm. Other particularly harmful defect refers to the use

of viscosity as a calibration parameter in the kinetic boundary
algorithms, which inevitably leads to the breakdown of the
“viscosity-independent” property of the numerical solutions,
even when running on the TRT framework. Because of the
aforementioned list of defects, in this study we will limit
ourselves to the traditional DBB scheme, e.g., Refs. [55,56,66],
which we will take as a representative member of the family
of kinetic-based slip schemes with applicability in LBM.

V. STABILITY OF PARABOLIC SLIP SCHEMES

As outlined in Sec. IV, cf. Table II, the input parameters of
the parabolic slip schemes are α+

q and α−
q . Thus, in principle,

they may take arbitrary positive values. Yet, according to
previous heuristic stability recommendations [46], also con-
firmed in this study, in the boundary update rule, Eq. (21),
the coefficients from κ1 to κ̄−2 shall remain approximately
bounded to [−1, 1]. Unfortunately, this may lead to conflicting
requirements as frequently the magnitude of α+

q and α−
q grows

into much larger values thanks to the slippage contribution.
As a result, the MR interpolation coefficients may be pushed
outside the aforementioned stability intervals. This kind of
instability may therefore restrict the suitability of the LBM
slip schemes proposed here to a narrow range of application.
In this section a solution to this issue will be presented.

Incidently, we note that [72] also identified their slip
LBM boundary schemes to become more unstable than the
no-slip ones. Although, in terms of order of accuracy, the
Ref. [72] schemes are only roughly comparable to our linear
slip schemes. Possibly, it is the over-dissipation caused by their
lower order accuracy the reason why the remedy proposed by
[72] to improve stability, which is based on relaxation rate
limiters, works for them while it is generally insufficient to
stabilize our parabolic slip schemes (which evolve according
to a higher order operation principle). For that reason, in this
section we propose a different and more general strategy,
which ensures the stability of our parabolic slip schemes over
a broader range of numerical parameters.

Before focusing on the main task of this section, we note that
the effect of boundary conditions on the stability of numerical
solutions is a rather complicated topic to investigate on a
theoretical basis [105]. At best, this task may be attainable
under very idealized conditions, as discussed in standard
CFD textbooks [106,107]. In the LBM field the study of
stability turns out to be even more complex due to the higher
number of degrees of freedom available; this aspect of LBM
is explained in Chapter 4 of Ref. [41], and apart from a few
exceptions, e.g., Ref. [108], the majority of LBM stability
studies have been developed on infinitely periodic domains,
e.g., Refs. [91,94,109]. Thus, for the purposes of our work,
an alternative stability analysis must be pursued, viewing the
effect of boundaries.

Here, we have followed a heuristic route to find a way to
preserve the stability of the parabolic (MR) slip schemes in the
presence of large slippage coefficients. To this end, we have
conducted an extensive series of numerical experiments and
they all agreed on the conclusion that the instability source,
within this problem class, comes from the incoming boundary
populations, which are constructed to satisfy the boundary
condition for the velocity, but are also employed, via Eq. (5),
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FIG. 2. Cylindrical Couette flow. Panel (a): Problem geometry. Panel (b): LBM discretization. Panel (c): FEM discretization.

to compute the density/pressure at those boundary sites. It
is this last feature what will trigger instabilities in our case.
Indeed, the problem with the pressure field in reflection-based
LBM boundary schemes is not a new issue, and has motivated
the development of specific strategies, most notably the non-
reflecting boundary conditions, see Chapter 12 in Ref. [41]
and references therein. However, these strategies substantially
enlarge the complexity of the boundary scheme algorithm.
Furthermore, their operation principle fundamentally concerns
with the suppression of spurious reflection phenomena that
may contaminate the acoustic field. Given that these features
go beyond our needs, we opt to follow a simpler route and
recompute ρ(�xb), at each time step, via extrapolation from
bulk. This strategy offers a reliable way to suppress the
instability phenomena plaguing the MR slip schemes and, at
the same time, is proven to maintain the accuracy of the velocity
boundary condition, without adding much complexity to the
overall numerical algorithm.

It is well understood from previous LBM works based
on extrapolation strategies, e.g., in moving boundary [110]
or in mesh refinement problems [111], that the extrapolation
of fluid properties, while only affecting a small portion of
the computational domain, may have a critical impact on the
overall accuracy of the LBM solution. Still, it is recognized
[110,111] that a quadratic extrapolation preserves the second-
order accuracy of the LBM scheme. Thereby, in this work the
reconstruction of the boundary pressure, P (�xb) = c2

s ρ(�xb),
is performed with a quadratic extrapolation scheme, whose
formulation is based on Lagragian shape curves, where data
points are set along the wall normal direction, according to
the procedure explained in Ref. [44]. As this procedure is not
new, we refer further details to the above cited literature, e.g.,
Section 3 of Ref. [44], Table 2 of Ref. [110], or Sections 3
and 4 of Ref. [112]. To differentiate the original parabolic slip
schemes [68] from these new ones with enhanced stability
characteristics, i.e., subjected to the pressure reconstruction
at boundary node �xb, these latter are marked with a “(�).” In
Secs. VI and VII we will confirm the good overall stability and
accuracy characteristics of the parabolic (�) schemes.

VI. NUMERICAL TEST I: CYLINDRICAL COUETTE
FLOW IN SLIP-FLOW REGIME

A. Problem formulation and analytical solution

Consider the steady and incompressible viscous motion
of a Newtonian fluid caused by the relative rotation of two

concentric circular cylinders. The inner and outer cylinders
have radii R1 and R2 and rotate at angular velocities �1 and
�2; see Fig. 2(a). This setup is representative of gas lubrication
applications, where the interest in the slip-flow regime has
been gaining particular relevance, see Refs. [74–76]. In this
flow the inertial terms are nonzero and are exactly balanced by
the radial pressure. As for the circumferential component, the
general solution of the velocity profile is given by

uθ (r ) = a

r
+ b r, (25)

with R1 � r � R2. At the inner and outer cylinder surfaces the
slip boundary conditions hold:

uθ (R1) = �1 R1 + C1 λ

(
∂uθ

∂r
− uθ

r

)∣∣∣∣
r=R1

, (26a)

uθ (R2) = �2 R2 − C2 λ

(
∂uθ

∂r
− uθ

r

)∣∣∣∣
r=R2

. (26b)

By solving Eq. (25) subjected to Eqs. (27), the integration
constants a and b are obtained:

a = − R3
1 R3

2 (�2 − �1)

R1 R2
(
R2

2 − R2
1

) + 2 λ
(
C2 R3

1 + C1 R3
2

) , (27a)

b = R1 R2
(
R2

2 �2 − R2
1 �1

) + 2 λ
(
C2 R3

1 �1 + C1 R3
2 �2

)
R1 R2

(
R2

2 − R2
1

) + 2 λ
(
C2 R3

1 + C1 R3
2

) .

(27b)

Figure 3 illustrates typical velocity profiles of the cylindrical
Couette flow solution, given by Eq. (25) with Eqs. (27). Two

(a) (b)

FIG. 3. Cylindrical Couette flow velocity profiles as function of
Kn = λ

R2−R1
, for R1/R2 = 1/2, C1 = C2 = 1. Panel (a): �1 = 0.001

and �2 = 0 (ūθ = uθ/(�1 R1) and r̄ = r/R2). Panel (b): �1 = 0 and
�2 = 0.001 (ūθ = uθ/(�2 R2) and r̄ = r/R2).
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(a) (b)

FIG. 4. Cylindrical Couette flow velocity profiles as function of
{C1, C2}, for R1/R2 = 1/2 and Kn = λ

R2−R1
= 0.1. Panel (a): �1 =

0.001 and �2 = 0 (ūθ = uθ/(�1 R1) and r̄ = r/R2). Panel (b): �1 =
0 and �2 = 0.001 (ūθ = uθ/(�2 R2) and r̄ = r/R2).

cases are considered: (a) inner cylinder rotates and outer
cylinder is at rest; and (b) inner cylinder is at rest and outer
cylinder rotates. It is well-established [113] that the influence
of the geometry curvature on slip may differ significantly over
concave and convex surfaces. In this sense the cylindrical
Couette flow is particularly revelent as it contains both concave
and convex surface shapes. The characteristic geometrical
parameter defining this problem is given by the ratio R1/R2.
Without loss of generality, we will fix it to R1/R2 = 1/2. The
fundamental nondimensional group governing this problem
is the Knudsen number. We define it as Kn = λ

H
, where

H := (R2 − R1).
As shown in Fig. 3, at Kn = 0.01 the slippage effect is nearly

negligible, and the velocity profile approximately matches
the no-slip case Kn = 0, except close to walls (particularly
the convex one). However, at Kn = 0.1 the slip phenomenon
becomes noticeable everywhere.

Besides the Knudsen number, the other important parameter
determining the shape of velocity profiles refers to the slip
coefficients. Under certain slippage conditions, the rotating
case �1 
= 0 and �2 = 0 may lead to a nonintuitive phe-
nomenon called velocity inversion [74–76]. Following [76],
the necessary condition for the velocity profile to become
inverted is C2 > R2

λ
, whereas the stronger requirement for the

full velocity profile to be inverted is C2 > R2
2 λ

[1 + ( R2
R1

)
2
]; both

conditions hold ∀ C1. In the opposite rotating case, i.e., when
�1 = 0 and �2 
= 0, the conventional velocity profile is always
recovered, meaning no velocity inversion can possibly occur
∀ {C1, C2} [76]. Figure 4 illustrates these two rotation scenarios,
considering R2/R1 = 1/2 and Kn = 0.1 (with λ = 0.05).
When �1 
= 0 and �2 = 0, three different profiles are possible:
(i) conventional atC2 = 1, (ii) partially inverted atC2 = 30, and
(iii) fully inverted at C2 = 60. We note that the case of large
slippage coefficients is representative of walls where specular
reflection dominates over diffuse reflected particles [9,12], i.e.,
σv → 0 as displayed in Table I. The other rotating case �1 = 0
and �2 
= 0 always feature conventional velocity evolutions
∀ {C1, C2}. All cases discussed here will be numerically studied
below.

The accuracy of the numerical solutions uθ , is measured
with respect to the analytical solution, u(exact)

θ , given by Eq. (25)

TABLE III. Specification of the boundary schemes used in this
numerical test. Each boundary class groups boundary schemes of
identical order of accuracy, according to the description given in
Sections IV A, IV C, and IV B; the theoretical order of accuracy of
the FEM [Linear] and FEM [Parabolic] is second- and third-order
[107,114], respectively. This table summarizes the specific boundary
schemes, i.e., algorithms, pertaining to each class.

Boundary class Specific boundary scheme

Kinetic Diffuse bounce-back scheme (DBB)
Linear Central linear scheme (CLI)
Parabolic Multireflection scheme (MR1)

Multireflection scheme (MR1)
Parabolic (�)

with pressure reconstruction
FEM [Linear] Linear shape functions
FEM [Parabolic] Quadratic shape functions

with Eqs. (27). Here, the error measure is computed as

|Eu| =
√√√√∑(

uθ − u
(exact)
θ

)2∑(
u

(exact)
θ

)2 , (28)

where sums are taken over all grid points.

B. Numerical implementation

For the numerical study, we investigate the accuracy of
LBM and FEM in simulating the cylindrical Couette flow
along three fluid-wall interaction regimes: (i) no-slip Kn = 0,
(ii) moderate slip Kn = 0.01, and (iii) large slip Kn = 0.1.
We adopt the standard LBM-TRT technique, which operates
on a uniform Cartesian mesh (built on the d2Q9 lattice
model), and we examine three groups of boundary schemes:
(a) kinetic schemes (modeled with DBB rule [55,67,68,85]),
(b) linear schemes (modeled with CLI slip scheme [47,48,68]),
and (c) parabolic schemes (modeled with MR1 slip scheme
[46,47,68]); this information is compiled in Table III with
mathematical details found in Table II. FEM operates on
rectangular elements, structured on a body-fitted mesh [73],
see Fig. 2(c), where we follow the isoparametric formulation
[107,114] using: (a) linear elements (denoted as linear FEM),
and (b) quadratic elements (denoted as parabolic FEM); their
theoretical order of accuracy is, respectively, second- and
third-order [107,114]. Figures 2(b) and 2(c) illustrate the
geometry discretization using LBM and FEM, respectively.
In both LBM and FEM, simulations are initialized for a
rest state �u = �0 and an uniform pressure field P = 1/3 (in
numerical units). In LBM the populations are initialized to their
equilibrium state. The steady-state is assumed to be reached: (i)
in LBM for the magnitude of the relative difference in velocity
|uθ (t )/uθ (t − ta ) − 1| < 10−10, with ta = 102 simulation time
steps; (ii) in FEM for the magnitude of the relative residual
smaller than 10−10 in the GMRES iterative solver of COMSOL
software [73]. The numerical study focuses on the following
three points: (i) the effect of grid resolution; (ii) the effect of
TRT relaxation parameter �; and (iii) the effect of slippage
coefficients.
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(a) (b) (c)

FIG. 5. Cylindrical Couette flow with �1 = 0.001 and �2 = 0. Accuracy |Eu| as function of grid resolution H (note, H := R2 − R1),
where R1/R2 = 1/2 and � = 3/16 are fixed. Convergence rates are quantified in Table IV. Panel (a): No-slip flow regime (Kn = 0). Panel (b):
Moderate slip-flow regime (Kn = 0.01, C1 = C2 = 1). Panel (c): Large slip-flow regime (Kn = 0.1, C1 = C2 = 1).

1. Effect of grid resolution

Figures 5 and 6 present mesh refinement tests for the
different numerical schemes considered in this work. Their
convergent rates are quantified in Tables IV and V, respectively.
These numerical outcomes refer to the simulation of the
velocity plots shown in Fig. 3. Next, we will discuss each case
individually.

The first case, Kn = 0, corresponds to the modeling of
no-slip walls. As expected, kinetic schemes reduce to the
bounce-back rule in this case. Thus, only first-order accuracy
is supported. Linear schemes are second-order accurate with
respect to the no-slip condition. Parabolic schemes improve
this accuracy to almost third-order, and further reduce the
overall error magnitude. Linear FEM, which operates on linear
elements, also supports the second-order accuracy, but it tends
to produce larger errors than LBM with boundary schemes of
identical order of accuracy. The reason has been identified in
previous works, e.g., Refs. [115,116], and it lies on how each
numerical scheme handles the boundary condition. In LBM the
boundary condition is established implicitly, through a Taylor
series approximation, which permits a smooth accommodation
of the velocity profile on the wall (although at costs of a
truncation error in the boundary condition prescription due
to the finite Taylor series approximation). Differently, FEM

explicitly enforces the boundary condition to be exact at the
boundary nodes. Yet, when the bulk solution is not sufficiently
accurate, rather than beneficial, the constraint to exactly satisfy
the boundary condition may lead to the distortion of the
velocity profile in the attempt to accommodate it. This explains
the smaller errors of the LBM linear schemes compared to
linear FEM, although both are formally second-order accurate.
Obviously, this weakness can be improved with the use of more
accurate discretizations in FEM. For instance, parabolic FEM,
which employs quadratic elements, provides a better fit of the
velocity solution. This improvement is reflected in smaller
numerical errors and close to fourth-order convergence rate
in the numerical accuracy. The price to pay is the substantial
increase in the complexity and computational cost of the algo-
rithm; while linear elements (linear FEM) lead to a triadiagonal
system, the system to solve with quadratic elements (parabolic
FEM) is pentadiagonal [107].

The second case, Kn = 0.01, considers a small slip mag-
nitude, so that the no-slip profile is almost replicated. This
scenario permits verifying the previous discussion on the
source of inaccuracy of linear FEM solutions being caused by
the stiffer profile accommodation. Here, due to the prescription
of slip on the boundary condition, the degree of constraint gets
weakened. Therefore, for a velocity profile alike the no-slip

(a) (b) (c)

FIG. 6. Same as Fig. 5, but with �1 = 0 and �2 = 0.001. Panel (a): No-slip flow regime (Kn = 0). Panel (b): Moderate slip-flow regime
(Kn = 0.01, C1 = C2 = 1). Panel (c): Large slip-flow regime (Kn = 0.1, C1 = C2 = 1).
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TABLE IV. Quantification of convergence rates in Fig. 5, obtained
through linear regression.

Convergence rates

Numerical schemes (a) Kn = 0 (b) Kn = 0.01 (c) Kn = 0.1

Kinetic scheme −1.22 −0.83 −0.09
Linear scheme −2.28 −1.25 −0.98
Parabolic scheme −2.81 −2.61 Unstable
Parabolic (�) scheme −2.59 −2.36 −1.99
FEM [Linear] −2.18 −1.01 −0.99
FEM [Parabolic] −3.71 −2.14 −2.01

case, much smaller numerical errors can be recovered with
linear FEM, as visible in Figs. 5(b) and 6(b). Yet, the con-
vergence rate is inevitably degraded to the first order. Similar
conclusions on the order of convergence are obtained with the
LBM equipped with linear slip schemes, which comply with
the theoretical analysis conducted in Sec. IV; see Eq. (23).
However, LBM equipped with parabolic slip schemes support
the same accuracy characteristics of the no-slip condition,
further competing with the accuracy of the parabolic FEM,
which is formally higher-order accurate.

The third and final case, Kn = 0.1, addresses the large slip
regime. Here, the global velocity solution gets dominated by
the gas-surface interactions. Therefore, the modeling of the
slip condition plays the dominating role on the accuracy of
the numerical simulations. Consequently, this large Kn test
provides an unambiguous validation exercise to the theoretical
analysis developed in Sec. IV, concerning the accuracy of the
LBM slip boundary schemes in the slip regime. As expected,
kinetic schemes (whatever calibration is used) are zeroth-order
accurate, and therefore inconsistent as slip velocity boundary
models. Slightly better performance is achieved by linear
slip schemes, which are bounded to first-order accuracy, the
same accuracy reproduced by the linear FEM in the slip-flow
regime. Parabolic slip schemes reach the highest exactness.
Yet, traditional parabolic schemes may also become unstable
at large Kn due to the large slippage contribution which may
largely increase the magnitude of the MR coefficients, recall
discussion in Sec. V. Nonetheless, stability can be guaranteed

TABLE V. Quantification of convergence rates in Fig. 6, obtained
through linear regression.

Convergence rates

Numerical schemes (a) Kn = 0 (b) Kn = 0.01 (c) Kn = 0.1

Kinetic scheme −1.21 −0.69 0.29
Linear scheme −2.29 −1.25 −0.97
Parabolic scheme −2.88 −2.64 Unstable
Parabolic (�) scheme −2.68 −2.42 −1.99
FEM [Linear] −2.19 −1.02 −1.01
FEM [Parabolic] −3.72 −2.15 −2.03

with the procedure suggested in Sec. V, whose schemes are
denoted by parabolic (�). They support the same level of
accuracy of traditional parabolic schemes in a stable manner,
and their accuracy even matches that of parabolic FEM with
slip boundary conditions, which are formally of higher-order
accuracy.

The ensemble of numerical tests reported here attests the
superiority of the LBM parabolic schemes, from no-slip to
large slip regimes. Most notably, this advantage tends to be
more significant in the slip-dominated regimes. In fact, the
second-order accuracy of the LBM becomes even comparable
to FEM adopting formally higher-order accurate discretiza-
tions performed over state-of-the-art body-fitted meshes. For
that reason, due to the ease of implementation offered by the
LBM uniform mesh discretization combined with the superb
level of accuracy here demonstrated, it can be stated that
LBM is indeed an appealing route to simulate geometrically
nontrivial flows pertaining to the slip-flow regime.

2. Effect of TRT relaxation parameter �

The accuracy of LBM solutions can be further improved
by exploring the additional collision degree of freedom �,
which comes available with the TRT scheme. We recall that �

expresses the product of symmetric �+ and antisymmetric �−
eigenfunctions, where the former is determined by viscosity
while the latter is free to adjust. Figures 7 and 8 illustrate
the impact of � on the accuracy of the solutions presented
in Figs. 5 and 6, respectively. We restrict this study to a

(a) (b) (c)

FIG. 7. Cylindrical Couette flow with �1 = 0.001 and �2 = 0. Accuracy |Eu| as function of �, with H = 15 fixed (note, H := R2 − R1)
and R1/R2 = 1/2. Panel (a): No-slip flow regime (Kn = 0). Panel (b): Moderate slip-flow regime (Kn = 0.01, C1 = C2 = 1). Panel (c): Large
slip-flow regime (Kn = 0.1, C1 = C2 = 1).

023302-14



CONSISTENT LATTICE … . II. APPLICATION TO ... PHYSICAL REVIEW E 98, 023302 (2018)

(a) (b) (c)

FIG. 8. Same as Fig. 7 but with �1 = 0 and �2 = 0.001. Panel (a): No-slip flow regime (Kn = 0). Panel (b): Moderate slip-flow regime
(Kn = 0.01, C1 = C2 = 1). Panel (c): Large slip-flow regime (Kn = 0.1, C1 = C2 = 1).

coarse mesh scenario, where the flow is resolved by H =
15 computational cells along the cylinders gap (H := R2 −
R1). Numerical evidence indicates that conclusions remain
qualitatively equivalent on finer meshes. The comparison of
Fig. 7 against Fig. 8 suggests that the � effect on accuracy
is qualitatively identical whether we have {�1 = 0,�2 
= 0}
or {�1 
= 0,�2 = 0}. The main difference is quantitative and
refers to the order of magnitude of the error, generally smaller
when {�1 = 0,�2 
= 0}. For LBM users, the main interest of
this study lies in the provision of guidelines on the optimal
� choice; i.e., the � value which makes |Eu| minimum.
In principle, the best � choice is expected to vary with
the physical regime, owing to the associated variations that
the flow features undergo. In the process of capturing them,
the order of accuracy of the boundary scheme is also expected
to impact the influence of � on the solution. This test reveals
that, for the low-order slip schemes (i.e., kinetic and linear
schemes) the optimal � is shifted toward larger values when
Kn increases, while with parabolic schemes the optimal �

remains fixed, around � = 3/8. From the above exposed, the
value � = 3/8 is recommended as a good starting point to
tackle this kind of flow, where solution evolves according to
circular streamlines.

3. Effect of slippage coefficients

Finally, the study shown in Fig. 9 illustrates how the
accuracy of the numerical schemes is affected by the magnitude
of the slippage coefficients. Here, we keep the same simulation

(a) (b)

FIG. 9. Cylindrical Couette flow accuracy |Eu| at Kn = 0.1 as
function of slippage coefficients, with � = 3/16, H = 15 (note,
H := R2 − R1), and R1/R2 = 1/2 fixed. Panel (a): �1 = 0.001 and
�2 = 0 with C1 = 1 and C2 ∈ [0, 100]. Panel (b): �1 = 0 and �2 =
0.001 with C1 ∈ [0, 100] and C2 = 1.

parameters used before in the � study. Figure 9(a) addresses
the case where the velocity solutions experience the more
drastic changes, namely: a normal profile at C2 ∈ [0, 20[, a
partially inverted profile at C2 ∈ [20, 50[, and a fully inverted
profile at C2 ∈ [50,∞[. Despite these profile differences, we
note that the more regular case, given by Fig. 9(b) where the
velocity profile holds invariant characteristics ∀ C1, displays a
qualitatively similar error behavior. In general, the maximum
error magnitude is reached at intermediate slip values. This
corresponds to the case where the interplay between bulk and
boundary undergoes a more delicate balance, and as such it
becomes more sensitive to the numerical scheme accuracy.

VII. NUMERICAL TEST II: PERMEABILITY ACROSS
PERIODIC ARRAY OF CIRCULAR CYLINDERS IN

SLIP-FLOW REGIME

A. Problem formulation and reference solution

Consider the steady and incompressible viscous motion of a
Newtonian fluid across a square periodic array of solid circular
cylindrical obstacles. This setup is a typical benchmark in the
validation of computer models in porous media, where the
interest in the slip-flow regime has been gaining particular
relevance, e.g., Refs. [78–82]. The geometry of this problem is
illustrated in Fig. 10(a). The fluid motion is assumed to develop
in the linear (creeping flow) regime, i.e., inertial effects are
excluded in the hydrodynamic equations. Depending on the
Kn regime, the cylinders surfaces are subjected to either the
no-slip or the slip conditions. In this latter case, the complexity
of this test is intensified by the breakdown of the constant slip
condition, meaning ∂jθ

∂θ
= 0 no longer holds, which was a re-

quirement invoked during the formulation of our slip boundary
schemes, recall Sec. III. The relevant governing parameters
controlling this problem are: (i) the Knudsen number, defined
as Kn := λ

R
, (ii) the slippage coefficient C at the surface of

the solid obstacles, and (iii) the concentration of the cylinders
embedded in the flow environment, defined as p := π R2

H 2 , see
Fig. 10(a). In this work we will focus on the case of dilute solid
volume fractions, i.e., p � 1, and, without loss of generality,
take p = 0.2 for the rest of this study, as followed in previous
studies [46,116,117].

While this problem is not accessible to exact closed-
form solutions for the local velocity and pressure fields, the
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FIG. 10. Periodic array of solid cylindrical obstacles. Panel (a): Problem geometry. Panel (b): LBM discretization. Panel (c): FEM
discretization.

computation of the global permeability of the system keff is
available via semi-analytical methods. In the no-slip case, i.e.,
Kn = 0, we use the reference permeability solutions, k

(ref)
eff ,

presented in Table VI of Ref. [46]. The slip case often uses, as
semi-analytical method, the cell model [118–120] to determine
the reference permeability solutions, e.g., Refs. [71,85,87].
Yet, as explained in Appendix B, they tend to be not sufficiently
accurate for benchmark purposes. For that reason, in the slip-
flow regime, we adopt as reference solution, k(ref)

eff , the outcome
of FEM simulations run on extremely fine meshes (using up to
400 grid nodes along the half gap distance in between adjacent
cylinders), with P3/P2 elements in the discretization of the
velocity/pressure solution. Giving the reference permeability,
k

(ref)
eff , we measure the accuracy of the numerical solutions as

∣∣Ekeff

∣∣ =
∣∣∣∣∣ keff

k
(ref)
eff

− 1

∣∣∣∣∣, keff = ν 〈jx〉
Fx

. (29)

Note, the fluid viscosity ν and the external body force Fx are
input parameters. The volume averaged momentum 〈jx〉 corre-
sponds to the outcome of numerical solutions [46,92]. That is,
〈jx〉 is obtained as a post-processing quantity through numeri-
cal quadratures; specifically, the mid-point rule in LBM and the
“trapezoidal” rule in FEM. While we acknowledge numerical
integration errors are introduced, see Refs. [92,116,117], this
error source becomes unimportant in this study since we are
interested in relative differences between schemes, i.e., its
effect cancels out.

B. Numerical implementation

Due to the periodic arrangement of this problem, the
geometry simulated is reduced to one unitary cell with periodic
boundary conditions all over; see Fig. 10(a). The flow is
generated by an applied body force Fx and the steady-state
criterion is determined by |keff (t )/keff (t − ta ) − 1| < 10−10,
with ta = 102 simulation time steps. As in Sec. VI, the LBM
discretization is performed on the d2Q9 uniform mesh, see
Fig. 10(b), while the FEM discretization adopts a high quality
body-fitted structured mesh, as shown in Fig. 10(c). Again,
the following LBM boundary schemes are considered: (a)
kinetic schemes (modeled with DBB rule [55,67,68,85]), (b)
linear schemes (modeled with CLI slip scheme [47,48,68]),
and (c) parabolic schemes (modeled with MR1 slip scheme

[46,47,68]); see Table VI for a summary and Table II for
the mathematical details. Once again, we consider two types
of parabolic schemes: the standard ones (simply denoted
as parabolic) and those with enhanced stability [denoted as
parabolic (�)]. However, due to the particular nature of this
flow problem, we observed that the single use of parabolic
(�) schemes, while notably improving stability, might com-
promise the accuracy of solutions. Therefore, we apply an
hybrid strategy, called mix parabolic (�). According to this
implementation, boundary nodes located close to the cylinder
stagnation region operate with the parabolic (�) strategy, while
the remaining ones continue to run with the standard parabolic
scheme. We find that this mixed-type strategy preserves both
stability and accuracy. The rest of the numerical implemen-
tation follows the steps explained in Sec. VI. As before, we
examine the accuracy of the boundary schemes with respect
to two fluid-wall interaction regimes: (a) no-slip Kn = 0, and
(b) large slip Kn = 0.1. In both situations we will evaluate the
following numerical aspects: (i) the effect of TRT relaxation
parameter �; and (ii) the effect of slippage coefficients C.

1. Effect of TRT relaxation parameter �

It is worth reassessing the effect of � on the solution
accuracy, since the present test displays a different flow
structure compared to the cylindrical Couette flow case, i.e.,
now there are stagnation streamlines. With this study, we aim
at identifying general qualitative features of the free-parameter
�, given by � = �+�−, and its impacts on the permeability
solutions in no-slip and slip-flow regimes. Here, we limit the

TABLE VI. Summary of the boundary schemes used in this
numerical test. More details given in caption of Table III.

Boundary class Specific boundary scheme

Kinetic Diffuse bounce-back scheme (DBB)
Linear Central linear scheme (CLI)
Parabolic Multireflection scheme (MR1)

Multireflection scheme (MR1)
Mix Parabolic (�) mixing standard scheme

with pressure reconstruction one
FEM [Linear] Linear shape functions
FEM [Parabolic] Quadratic shape functions
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(a) (b)

FIG. 11. Permeability of a creeping flow across a periodic array of
cylindrical obstacles at low volume fraction p = 0.2. Accuracy |Ekeff |
as function of �, with H = 33 fixed [H is defined on Fig. 10(a)].
Panel (a): No-slip flow regime (Kn = 0). Panel (b): Large slip-flow
regime [Kn = 0.1, C = 1)].

subsequent discussion to coarse grid resolutions. (Although,
we have numerical evidence that, at finer grids, the trends
reported here are very much alike.)

Figure 11 presents the results of this test in both no-slip and
slip-flow regimes. Despite the differences in the flow solution,
the comparison of Fig. 11 against Figs. 7 and 8 reveals that the
effect of � on accuracy holds approximately unchanged. As
before, the optimal � choice increases with Kn for low order
slip schemes, such as kinetic and linear schemes. Particularly,
for linear schemes the minimum in |Ekeff | usually swipes the
interval � ∈ [1/4, 3/4]. However, for parabolic schemes the
minimum in |Ekeff | holds constant and fixed around � ≈ 3/8,
regardless the Kn regime. This conclusion is consistent with
that in Sec. VI. Another general conclusion, also in agreement
with Sec. VI, refers to the exceptional performance of parabolic
slip schemes compared to linear FEM, and even parabolic
FEM. Overall, the accuracy of parabolic slip schemes, operat-
ing in the range � � 3/4, always supersedes that of linear
FEM. This observation holds for all Kn regimes tested. In
the slip-flow regime, the parabolic slip schemes operating
at � = 3/8 even reach the level of accuracy of parabolic
FEM (which is formally third-order accurate). The reason
why the numerical error of the LBM parabolic schemes in
these problem tests is consistently minimized around � = 3/8
holds unclear. Based on the small order of magnitude of the
numerical error, the answer to this question is expected to be
subtle. Namely, to depend on the interplay between bulk and
boundary numerical errors, rather than on a single numerical
source alone. Yet, before a proper theoretical explanation can
be devised, we believe that additional numerical support is
required.

In conclusion, this numerical test and the one reported in
Sec. VI confirm the competitiveness of LBM as a CFD tool
where, compared to FEM, the use of LBM appears particularly
interesting in the slip-dominated regimes.

2. Effect of slippage coefficients

In this section we investigate the impact of the slippage
magnitude on the accuracy of the numerical schemes. The
clarification of this issue is important as this problem does

FIG. 12. Permeability of a creeping flow across a periodic array
of cylindrical obstacles at low volume fraction p = 0.2, developing
in large slip-flow regime (Kn = 0.1). Accuracy |Ekeff | as function of
slippage coefficientC, with � = 3/16 and H = 33 fixed [H is defined
on Fig. 10(a)].

not exactly comply with the constant slip condition ∂jθ

∂θ
= 0,

which was invoked during the derivation of our slip schemes.
Figure 12 illustrates this study, employing H = 33 com-

putational cells, i.e., the same mesh size adopted before, and
� = 3/16. The accuracy values here observed follow those
identified in Figs. 9(a) and 9(b) of Sec. VI. Namely, the
accuracy of parabolic slip schemes lies somewhere in between
linear FEM and parabolic FEM. However, taking as reference
Sec. VI, all numerical schemes here experience a clear loss of
accuracy (and also stability) with the increase of the slippage
magnitude. This negative feature may be explained by three
reasons. First, due to the existence of stagnation regions on
the cylindrical wall surface, the solution may be more prone to
instabilities with origin on the wall pressure, recall discussion
in Sec. V. Second, because the limit C � 1 produces a change
in the mathematical nature of the boundary condition, i.e.,
the slip velocity condition may tend to shift over a free-slip
condition. Consequently, the LBM modeling of the free-slip
requests a different type of linkwise boundary scheme, e.g.,
based on the specular reflection operation principle [47]. Third
and final, because ∂jθ

∂θ
= 0 is not exactly fulfilled in this test,

convergence towards this condition may be impaired. In spite
of that, the incompatibility with this last constraint may be
mitigated, e.g., by smoothing ∂jθ

∂θ
variations through mesh

refinement.

VIII. CONCLUSIONS

This work investigates the application of the lattice Boltz-
mann method (LBM) as a competent computional fluid dynam-
ics (CFD) tool to simulate gaseous isothermal flows in the slip-
flow regime. This demands the existence of consistent LBM
boundary schemes for the slip velocity boundary condition,
applicable at arbitrary curved walls. The goal is that slip
and no-slip boundary conditions can be used on an equal
footing in numerical implementations. However, this task is
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not straightforward for a number of reasons. First, compared
to the no-slip case, which imposes a Dirichlet (specified value)
boundary condition, the slip velocity condition is a Robin-
type boundary condition, defined as a mix of Dirichlet and
Neumann (specified gradient) boundary conditions. Second,
this mixed character may lead to a compatibility problem
between the numerical approximation of bulk and boundary
derivatives. Third, and related to this second point, is that
the boundary derivative is often implemented on discrete
operators with asymmetrical stencils, which for the same
accuracy demand a larger number of grid points and may
damage stability too. Fourth and final, the explicit form of these
terms is surface shape dependent, which means wall tangent
and normal directions must be locally determined to faithfully
reproduce the wall curvature (concave/convex) effects. Given
all these difficulties, this work has proposed exploring the
LBM particular characteristics to operate with a more favorable
numerical strategy.

Contrary to common practice, in this work we have not
searched for a relationship between LBM and kinetic theory
boundary conditions. Rather, we have made explicit use of
the working principle of typical LBM boundary schemes, i.e.,
based on reflection-type rules, and worked out the form of
their closure relations to approximate the intended physical
slip velocity condition, as given by Eq. (1). This task was
motivated by the fact that both frameworks evolve according to
a truncated Taylor series of the fluid velocity at the boundary.
Although this result was already given in Ref. [68], only planar
walls were addressed. In this paper we extend this result
to arbitrary curved surfaces, which is not trivial since, with
the addition of the surface curvature, the physical model to
take into account is given by a different relation. Namely, for
plane walls the slip condition is only dictated by the velocity
derivative normal to the wall, while for curved walls the full
shear stress tensor must be considered. Only the inclusion of
the stress tensor leads to the appearance of surface curvature
corrections in the wall slip model, which are fundamental to
correctly capture slippage phenomena specific of nonplanar
surfaces, such as the velocity inversion phenomenon in a
cylindrical Couette flow [76,77].

To evaluate the ability of the LBM slip boundary schemes
considered herein, our procedure includes the following three
steps. First, we theoretically assessed the relation between
the closure relation obeyed by generic LBM reflection-type
rules and the target slip velocity boundary condition, explicitly
formulating for the first time the main underlying assumptions.
Second, we revisited previous LBM implementations of slip
boundary schemes, with focus on the extension of the multire-
flection approach to handle the slip-flow regime [68]. Here,
we discussed the accuracy of different classes of boundary
schemes as slip boundary conditions. Moreover, the stability
topic was also discussed, attempting to clarify possible sources
of instability and presenting a general, but straightforward
remedy to enhance the numerical stability range of parabolic
slip velocity schemes. Third and final, we examined the quality
of the different LBM families of slip boundary schemes,
including comparisons with the well-established finite element
method (FEM), by simulating two classical benchmark flow
problems of slip over nonplanar solid surfaces, namely: (i)

the cylindrical Couette flow [74–77] and (ii) the square array
of circular cylinders traversed by a gaseous slow flow in the
slip-flow regime [78–82]. The numerical results supported
the theoretical conclusions, namely: when equipped with slip
boundary schemes of parabolic accuracy LBM is a competitive
second-order accurate CFD tool to simulate slippage phe-
nomena over arbitrarily nonplanar surfaces. The linear slip
schemes, while slightly degrading accuracy, are also appeal-
ing due to their improved stability characteristics and much
simpler operating principle, using one node only. Overall,
these conclusions establish the LBM as a very attractive CFD
technique for simulating isothermal microfluidic flows in the
slip-flow regime, a result that shall be further explored in future
studies. In this respect, we believe that the present results can
be further improved by removing the constant slip velocity
constraint, e.g., by canceling the ∂jθ

∂θ
term directly with finite

differences as suggested in [70] or possibly through more
elegant approaches. In future studies we plan to investigate
alternative ways to correct this issue directly at the level of
the LBM populations, e.g., by reformulating the operation
principe of LBM boundary schemes with respect to the way
they handle normal and tangential components. For this task, a
possible route may be exploring the ideas of Refs. [104,121] or
[47,122–124], these latter originally proposed for Neumann-
and Robin-type conditions in advection-diffusion problems.
Also, for future work we plan to study the coupling of these
slip boundary schemes with extended hydrodynamic models,
where a Kn-based viscosity definition is incorporated in the
NSE formulation to mimic the Knudsen layer near wall effects,
e.g., Refs. [40,56,58,65]. Finally, to further consolidate the
state-of-the-art on this subject, we emphasize the need for
a critical assessment on the relative performance between
the two modeling perspectives currently competing in the
LBM simulation of the slip-flow regime, namely: the present
approach based on standard lattices with high accuracy slip
boundary schemes, e.g., Refs. [68–70] against those adopting
the transcription of kinetic-theory-based boundary schemes
over high-order LBM discretizations, based on high-order
lattices, e.g., Refs. [60,125–128].
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APPENDIX A: DERIVATION OF THE PARABOLIC SLIP
MULTIREFLECTION SCHEMES FOR THE SLIP

VELOCITY BOUNDARY CONDITION

The purpose of this Appendix is to outline the main steps
behind the derivation of multireflection schemes. Here, we
revisit the procedure originally put forward in Refs. [46,47]
and explain the derivation of the coefficients of the parabolic
slip schemes, as presented in Table II.
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1. Introductory material

Let us rewrite Eq. (21), the generic multireflection (MR)
update rule [46,47], to implement in the LBM algorithm:

fq̄ (�xb, t + 1) = κ1 f̃q (�xb, t ) + κ0 fq (�xb, t + 1)+κ̃−1 f̃q̄ (�xb, t )

+ κ−1 fq (�xb − �cq, t + 1)+κ̃−2 f̃q̄ (�xb − �cq, t )

+ Fp.c.
q (�xb, t ) − α(u)j�

q w(�xw, t ). (A1)

Recall, �xb is the boundary node and the wall located is at
�xw = �xb + δq �cq . The goal is to find adequate values for the

interpolation coefficients {κ1, κ0, κ̄−1, κ−1, κ̄−2}, together with
the correction parameters F

p.c.
q and α(u), so that the slip closure

relation, given by Eq. (12), is recovered, which we rewrite as
follows:

jq (�xb ) + α+
q ∂qjq (�xb ) + α−

q ∂2
q jq (�xb ) = jq w(�xw),

α+
q := (δq + C λq ), α−

q :=
(

δ2
q

2
+ C λq δq

)
,

λq := λ

�q

, �q := (�cq · �n), �xw = �xb + �cq δq . (A2)

2. Preliminary manipulations

The analysis start by expressing the LBM populations at both post-stream and post-collision states in the more convenient
form:

fq = e+
q + e−

q −
(

�+ + 1

2

)
g+

q −
(

�− + 1

2

)
g−

q , (A3a)

f̃q = e+
q + e−

q −
(

�+ − 1

2

)
g+

q −
(

�− − 1

2

)
g−

q . (A3b)

Recall, the post-collision components g±
q relate to the nonequilibrium n±

q = (f ±
q − e±

q ) by g±
q = −s± n±

q , where e±
q denotes

the (symmetric/antisymmetric) equilibrium components and s± the (symmetric/antisymmetric) relaxation rates of the collision
process. The associated relaxation eigenfunctions are defined as �± = ( 1

s± − 1
2 ).

Based on the above preparations, we substitute Eqs. (A3) into Eq. (A2), and obtain[
e+
q̄ + e−

q̄ −
(

�+ + 1

2

)
g+

q̄ −
(

�− + 1

2

)
g−

q̄

]
(�xb)

= κ1

[
e+
q + e−

q −
(

�+ − 1

2

)
g+

q −
(

�− − 1

2

)
g−

q

]
(�xb) + κ0

[
e+
q + e−

q −
(

�+ + 1

2

)
g+

q −
(

�− + 1

2

)
g−

q

]
(�xb)

+ κ̃−1

[
e+
q̄ + e−

q̄ −
(

�+ − 1

2

)
g+

q̄ −
(

�− − 1

2

)
g−

q̄

]
(�xb) + κ−1

[
e+
q + e−

q −
(

�+ + 1

2

)
g+

q −
(

�− + 1

2

)
g−

q

]
(�xb − �cq )

+ κ̃−2

[
e+
q̄ + e−

q̄ −
(

�+ − 1

2

)
g+

q̄ −
(

�− − 1

2

)
g−

q̄

]
(�xb − �cq ) + Fp.c.

q (�xb) − α(u)j�
q w(�xw). (A4)

As next step, we invoke the parity definitions, i.e., for any arbitrary ψq , we have ψ+
q = ψ+

q̄ and ψ−
q = −ψ−

q̄ , and group the
coefficients in each term to simplify:

A+ e+
q (�xb) + A− e−

q (�xb) + B+ g+
q (�xb) + B− g−

q (�xb) + C+ e+
q (�xb − �cq ) + C− e−

q (�xb − �cq ) + D+ g+
q (�xb − �cq )

+ D− g−
q (�xb − �cq ) + F p.c.

q (�xb) − α(u)j�
q w(�xw) = 0, (A5)

with

A+ = κ1 + κ0 + κ̃−1 − 1, A− = κ1 + κ0 − κ̃−1 + 1, B+ = (κ1 + κ̃−1) − (κ1 + κ0 + κ̃−1 − 1)

(
�+ + 1

2

)
,

B− = (κ1 − κ̃−1) − (κ1 + κ0 − κ̃−1 + 1)

(
�− + 1

2

)
, C+ = (κ−1 + κ̃−2), C− = (κ−1 − κ̃−2), D+ = −1

2
C− − �+ C+,

D− = −1

2
C+ − �− C−. (A6)

3. Chapman-Enskog expansion approximation

At this point, we unfold the content of equilibrium and nonequilibrium populations. We recall the equilibrium was written in
Eq. (3) and is given by

e+
q = t�q

(
P + 3 j 2

q − ‖�j‖2

2ρ̄

)
, (A7a)

e−
q = t�q (jq + �− Fq ), (A7b)
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where jq = �cq · �j and Fq = �cq · �F . As for the nonequilibrium post-collision quantities g±
q , we can express them in approximated

form, according to the second-order Chapman-Enskog expansion. We recall it was given in Eq. (7) as follows:

g+
q = ∂q (e−

q − �−∂qe
+
q ) � t�q ∂qjq, (A8a)

g−
q = ∂q (e+

q − �+∂qe
−
q ) � t�q ∂q

(
P + 3 j 2

q − ‖�j‖2

2ρ̄

)
− �+t�q ∂2

q jq . (A8b)

Note, Eqs. (A8) include a residue of O(ε3), which we omit to alleviate notation. In consistency with the scaling of this order of
approximation, we have neglected the second-order derivatives of pressure and nonlinear momentum terms (recall the derivation
of the NSE, cf. Sec. II). Moreover, we have also assumed a constant body force.

4. Taylor expansion approximation

Next, we approximate the content of e±
q and g±

q from sites �xb − �cq to �xb. To execute this task, the content of these terms is
approximated via the second-order Taylor expansion (again, using the fact that second-order derivatives of pressure and nonlinear
momentum terms are negligible, according to the O(ε3) scaling, and that the body force is constant):

e+
q (�xb − �cq ) � [e+

q − ∂qe
+
q ](�xb) � t�q

[(
P + 3 j 2

q − ‖�j‖2

2ρ̄

)
− ∂q

(
P + 3 j 2

q − ‖�j‖2

2ρ̄

)]
(�xb), (A9a)

e−
q (�xb − �cq ) �

[
e−
q − ∂qe

−
q + 1

2
∂2
q e−

q

]
(�xb) � t�q

[
jq + �− Fq − ∂qjq + 1

2
∂2
q jq

]
(�xb), (A9b)

g+
q (�xb − �cq ) � [g+

q − ∂qg
+
q ](�xb) � t�q

[
∂qjq − ∂2

q jq

]
(�xb), (A9c)

g−
q (�xb − �cq ) � g−

q (�xb) � t�q

[
∂q

(
P + 3 j 2

q − ‖�j‖2

2ρ̄

)
− �+ ∂2

q jq

]
(�xb). (A9d)

5. Intermediate manipulations

At last, we substitute Eqs. (A7), (A8), and (A9) into Eq. (A5), and obtain

A+
(

P + 3 j 2
q − ‖�j‖2

2ρ̄

)
+ A− (jq + �− Fq ) + B+ ∂qjq + B−

[
∂q

(
P + 3 j 2

q − ‖�j‖2

2ρ̄

)
− �+ ∂2

q jq

]

+ C+
[(

P + 3 j 2
q − ‖�j‖2

2ρ̄

)
− ∂q

(
P + 3 j 2

q − ‖�j‖2

2ρ̄

)]
+ C−

(
jq + �− Fq − ∂qjq + 1

2
∂2
q jq

)

+ D+ (
∂qjq − ∂2

q jq

) + D−
[
∂q

(
P + 3 j 2

q − ‖�j‖2

2ρ̄

)
− �+ ∂2

q jq

]
+ 1

t�q
F p.c.

q − α(u)jq w(�xw) = 0. (A10)

Due to the Taylor expansion approximation, all terms in Eq. (A10), except jq w(�xw), have been redefined over the �xb location,
and to alleviate notation we have dropped the dependency on �xb. The next step in the simplification routine takes into account
that D+ = − 1

2 C− − �+ C+ and D− = − 1
2 C+ − �− C−. Then, we collect the coefficients of identical terms as follows:

(A+ + C+)

(
P + 3 j 2

q − ‖�j‖2

2ρ̄

)
+ (A− + C−) (jq + �− Fq ) +

(
B+ − 3

2
C− − �+ C+

)
∂qjq +

(
B− − 3

2
C+ − �− C−

)

× ∂q

(
P + 3 j 2

q − ‖�j‖2

2ρ̄

)
+

(
−�+ B− + 3

2
�+ C+ + (1 + �) C−

)
∂2
q jq + 1

t�q
F p.c.

q − α(u)jq w(�xw) = 0. (A11)

At last, we re-express Eq. (A12) in a more convenient form, i.e., similar to Eq. (A2):

(A− + C−) jq +
(
B+ − 3

2
C− − �+ C+

)
∂qjq + C− ∂2

q jq − α(u)jq w(�xw) + (A+ + C+)

(
P + 3 j 2

q − ‖�j‖2

2ρ̄

)

− �−(A− + C−) Fq +
(
B− − 3

2
C+ − �− C−

) [
∂q

(
P + 3 j 2

q − ‖�j‖2

2ρ̄

)
− �+ ∂2

q jq

]
+ 1

t�q
F p.c.

q = 0. (A12)
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6. Final manipulations

The final step consists of determining the five inter-
polation coefficients {κ1, κ0, κ̄−1, κ−1, κ̄−2} present in the
{A±,B±, C±} terms, as given by Eq. (A6), plus the correction
F

p.c.
q as function of α(u) to recover the target closure relation

given by Eq. (A2). This procedure leads to the following six
conditions:

(1) The coefficient in jq must be: (A− + C−) = α(u).
(2) The coefficient in ∂qjq must be: (B+ − 3

2 C− −
�+ C+) = α(u) α+

q

(3) The coefficient in ∂2
q jq term must be: C− = α(u) α−

q .

(4) The coefficient in (P + 3 j 2
q −‖�j‖2

2ρ̄
) must nullify this

term, that is: (A+ + C+) = 0.

(5) The coefficient in [∂q (P + 3 j 2
q −‖�j‖2

2ρ̄
) − �+ ∂2

q jq] must

equal that of Fq , that is (B− − 3
2 C+ − �− C−) = −�−(A− +

C−) = −α(u) �−.
(6) The post-collision correction F

p.c.
q is used to cancel out

the last two terms, which recalling Eq. (A8b) and F�
q = t�q Fq ,

leads to F
p.c.
q = α(u) �−(g−

q − F�
q ).

The system is now closed, and solutions are parametrized
by α(u) [46,47]. A general methodology, called MR(kq ) family
[46], proposes to reparametrize the solutions in terms of a free
parameter kq . Following stability and accuracy arguments, the
original works [46,47] suggested to take α(u) = 2

1+kq
. Based

on this reparametrization, and after some simple algebraic
manipulations, the simultaneous solution of conditions from
(1) to (5) leads to the coefficients displayed in Table II. Then,
the particular choice of the kq parameter may produce different
multireflection subfamilies, such as kq = (− 1

2 + α+
q + α−

q ) for
MR1 and kq = (− 1

2 + α+
q + α−

q − C�−) for MGMR(C), as
pointed out in Sec. IV and detailed in Ref. [47].

To conclude, we reiterate that the procedure here
summarized corresponds to that developed in Refs. [46,47]
for the no-slip case. In fact, the original no-slip results
[46,47] are contained in our slip formulas by vanishing
the slippage contribution. Another way to view the
similitude between the slip and the no-slip multireflection
formulas is that one can be reduced to another through the

transformations: α+
q → δq and α−

q → δ2
q

2 . Explicitly, the
slip coefficients shown in Table II reduce to the no-slip
coefficients shown in Table II of Ref. [46] or in Table 2
of Ref. [47]. For the LBM users the major interest behind
this similitude lies in the possibility of reusing pre-existing
LBM codes already installed with no-slip multireflection
schemes [46,47] to model slip-flows. By simply re-expressing
the multireflection coefficients from no-slip to slip ones the
slip boundary conditions here derived can be made available,
while the rest of the numerical algorithm remains unchanged.

APPENDIX B: POSSIBLE ALTERNATIVE FOR
REFERENCE SOLUTION IN SECTION VII

The determination of the effective permeability keff of a slow
flow past a periodic array of cylinders has been tackled through
a number of mathematical techniques, which go from elliptic
functions in Ref. [129], to the collocation of harmonics in
Ref. [130], or the use of distributed singularities in Ref. [131].

Yet, most of these works have only been concerned with the
case of no-slip boundaries. To the best of our knowledge, the
extension of these techniques to the slip-flow regime has not
been reported, and the only results available have been obtained
with the cell model [118–120].

The cell model formulates in the low solid fraction limit,
whereby the system may be reduced to one representative cell
that encloses one solid obstacle. The effects of the neighboring
cells are exclusively accounted for on the cell outer boundary
condition. This last step is the key element of the method:
despite the considerably simplification over the underlying
analytical approach, it inevitably introduces some level of
approximation. Here, we follow Ref. [132], which proposed
extending the original Kuwabara cell model [118] to include
the slip boundary condition, Eq. (1). This procedure leads to
the following keff solution:

keff = 1

16 p2 (1 + 2 C λ)

[
4 (1 + 2 C λ) ln

(
1

p

)

− 3 − 2 C λ + 4 p2 − (1 − 2 C λ)p4

]
. (B1)

In the continuum limit λ → 0, Eq. (B1) reduces to the original
Kuwabara cell model solution [118] for no-slip cylinders:

keff = 1

16 p2

[
4 ln

(
1

p

)
− 3 + 4 p2 − p4

]
, (B2)

which establishes the self-consistency of the slip-flow solution,
Eq. (B1).

Although the cell model consists of an interesting theo-
retical tool, whether it yields sufficiently accurate solutions
for the purpose of code verification does require a more in
depth analysis. Given the lack of other reference solutions
in the slip-flow regime, next we critically discuss the no-slip
hydrodynamic regime, where rather accurate keff solutions are
available [129–131,133]. To this end, let us take as reference
the keff quasianalytical solution obtained with the modified
multipole procedure reported in Refs. [46,133]. By comparing
keff in Refs. [46,133] against keff predicted with the cell model,
Eq. (B2), we observe a relative difference of ≈0.33% at p =
0.2, which is a rather acceptable error. However, repeating this
comparison now between keff in Refs. [46,133] and FEM simu-
lations run on a rather coarse mesh (e.g., with 50 computational
cells along H and a discretization with quadratic elements) we
obtain a relative difference of ≈0.008% at p = 0.2. That is,
a relatively coarse FEM simulation manages to be about two
orders of magnitude more accurate than cell model predictions
(the same conclusion holds for LBM with parabolic schemes
used as reference solver). For that reason, rather than using
Eq. (B1) as keff reference solution, e.g., Refs. [71,81,85], we
prefer adopting FEM simulations1 run on finer meshes with
higher-order elements as a means to establish the reference
solution k

(ref)
eff to be used in Sec. VII; numerical details about

those FEM simulations are given in Sec. VII A.

1The same task could have been done with LBM. Yet, we find FEM
more appropriate for this task due to its role in this work. That is, FEM
is taken as a well-established and well-validated numerical solver,
whose solutions can be considered reference.
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