
PHYSICAL REVIEW E 98, 023301 (2018)

Complex saddle trajectories for multidimensional quantum wave packet and coherent state
propagation: Application to a many-body system
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A practical search technique for finding the complex saddle points used in wave packet and coherent state
propagation is developed which works for a large class of Hamiltonian dynamical systems with many degrees of
freedom. The method can be applied to problems in atomic, molecular, and optical physics and other domains. A
Bose-Hubbard model is used to illustrate the application to a many-body system where discrete symmetries play
an important and fascinating role. For multidimensional wave packet propagation, locating the necessary saddles
involves the seemingly insurmountable difficulty of solving a boundary value problem in a high-dimensional
complex space, followed by determining whether each particular saddle found actually contributes. In principle,
this must be done for each propagation time considered. The method derived here identifies a real search space of
minimal dimension, which leads to a complete set of contributing saddles up to intermediate times much longer
than the Ehrenfest timescale for the system. The analysis also gives a powerful tool for rapidly identifying the
various dynamical regimes of the system.
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There are numerous motivations for studying the propaga-
tion of multidimensional Gaussian wave packets in quantum
systems. Particularly noteworthy are their intimate connec-
tions to coherent states and thus many-body bosonic sys-
tems [1], coherent state representations of path integrals [2],
molecular spectroscopy [3,4], femtochemistry [5], attosecond
physics [6], far out-of-equilibrium dynamics in bosonic many-
body systems [7–9], and studies of the quantum-classical
correspondence and Ehrenfest timescales [10,11]. The Ehren-
fest timescale plays a particularly significant role in scram-
bling [12] and many-body quantum interference properties [9].

In principle, in the highly excited system regimes alluded
to above, precisely where quantum dynamics methods may be
effectively impossible to carry out, a time-dependent semiclas-
sical theory can provide both a very accurate approximation
to wave packet propagation up to intermediate timescales [13]
and a very physical interpretation of the results. Indeed, ex-
amples of simple chaotic dynamical systems, which have their
own challenges, were treated successfully roughly 25 years
ago [14–16]. The theoretical foundations for such wave packet
dynamics have existed even longer under various guises [17],
i.e., semiclassical approximations to coherent state Feynman
path integrals [18], generalized Gaussian wave packet dy-
namics (GGWPD) [19], and a complexification of Maslov’s
version of time-dependent Wentzel-Kramers-Brillouin (WKB)
theory [20].

Nevertheless, applications to physical systems possessing
more than a couple degrees of freedom are largely absent,
and extensions must be developed in order to apply these
methods in the domain of many-body physics; see, for exam-
ple, Refs. [21–24]. In the Maslov version of time-dependent
WKB [20], an initial state is associated with a Lagrangian
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manifold of phase points, which must be propagated classically
for a time t and then intersected with another manifold
associated with a final state. The intersection points identify
trajectories, whose initial conditions are points on the initial
manifold that propagate to points on the final manifold. They
are the stationary phase points upon which the theory rests. Nu-
merically solving for these trajectories is tantamount to solving
a boundary value problem, which rapidly becomes prohibitive
to solve as the number of degrees of freedom increases.

Confronted with this situation, many studies, particularly
in the domain of molecular spectroscopy, have focused on
working around its solution. For example, a number of methods
convert the problem to an initial value representation and then
run ensembles of trajectories [25–29]. Recently, along this vein
there have been some ideas posited for dealing with multidi-
mensional systems, such as running initial conditions just along
the phase space direction leading to the most unstable dynam-
ics [30,31] and a “divide and conquer” scheme [32]. However,
there is a more comprehensive version of the most unstable
direction idea within a general framework, not initially moti-
vated by wave packet or coherent state propagation [33]. This
approach, called the anisotropic method, was introduced for
classically chaotic systems with multiple positive Lyapunov
exponents. It can be modified and adapted for our purposes.

In this paper, the focus is on developing techniques for
solving the boundary value problem for multidimensional
Gaussian wave packets. The technique is applied in the context
of propagating a bosonic many-body coherent state, although
it could have just as easily been applied to a multidimensional
Hamiltonian of the type used to describe molecular dynamics
or other systems. It gives an account of the calculation methods
used in Refs. [9,34,35]. For wave packets, the Lagrangian
manifolds necessarily contain complex momenta and positions
and thus the intersections are complex saddle points [19],
whose properties are determined by their respective saddle
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trajectories. Thus, the full phase space of a system with N

degrees of freedom is 2N complex dimensions (4N parameters
to define a phase point). The Lagrangian manifold of a Gaus-
sian wave packet is known to be an N -dimensional complex
hyperplane [19]. The boundary value problem to be solved first
requires the determination of the remaining 2N free parameters
that define each solution point on the manifolds satisfying the
boundary conditions. Then, from the set of solutions (typically
infinite), only the subset of saddles with physical relevance are
to be kept, and the rest must be thrown away.

Even though it is more or less hopeless to perform a
full many-dimensional “blind” search for solutions, it can
be extremely helpful to account for the asymptotic structure
in the flow of Hamiltonian dynamical systems. This enables
one to orient the search in such a way as to rely on a much
lower dimensional subspace of the full system as in the spirit
of Refs. [30,31,33]. The approach derived below is similar
to the method of decomposing the tangent space used in
numerical calculations of Lyapunov exponents [36,37]. It relies
on the stability matrix of a wave packet’s central trajectory,
its transpose, and the shape parameters of the wave packet.
The result gives a spectrum (eigenvalues) of expansion and
contraction rates and their directions (eigenvectors) in the
space of initial conditions. The method works regardless of
the nature of the dynamics, be they integrable, chaotic, or some
mixture.

For Hamiltonian dynamical systems, this process immedi-
ately identifies half of the spatial dimensions as being irrelevant
due to their contractional behavior; i.e., trajectories whose
initial conditions are aligned along these directions approach
each other as they propagate and cannot be responsible for
different sets of saddles or provide any new information. The
remaining eigenvectors form a reduced dimensional initial
condition search space containing all the saddles. For large
classes of dynamical systems, it is possible to continue this
analysis and further reduce the search space dimensionality.

For example, consider the eigenvectors ordered by their
rate of expansion (according to their associated eigenvalues)
proceeding from greatest to least. For systems with many
degrees of freedom, a significant gap in the expansion rates
between the most unstable eigenvectors and all the rest may
appear. If so, it turns out to be possible to locate the earliest
arriving relevant saddle trajectories using initial conditions
aligned along just the most rapidly expanding directions.
Symmetries can play an important role, leading to rather
interesting behaviors, that also lead to further reductions in
the search space necessary to find all the relevant saddles.

Furthermore, it seems to happen that even highly unstable
directions do not necessarily lead to the creation of additional
saddles. In some cases, the trajectories can separate rapidly,
yet not lead to additional transport pathways on the timescales
in which one can follow the stability of the trajectories
accurately. Each unstable direction can be checked individually
to determine whether to retain it in the search space, and
thus, combined with the previous condition, the minimum
dimensional search space accounts only for those eigenvectors
corresponding to the greatest instability (above any gap that
may exist) and those that create additional pathways.

The further complicating factor of determining whether a
solution to this boundary value problem should be kept can be

connected with the ability of complex classical mechanics to
create the possibility of “runaway” trajectories, i.e., trajectories
that attain infinite momentum in finite time [19]. They are
responsible for branch cuts in action functions and it is
necessary to throw away solutions on the wrong side of the
cuts, a Stokes phenomenon in which the saddle contributions
are diverging and unphysical. Progress has been made on this
issue and we follow the technique described in Ref. [38].
That work showed that the contributing saddle points could be
put into a one-to-one correspondence with individual bundles
of similarly behaving real trajectories that represent unique
transport pathways. Choosing one representative trajectory
from each bundle as a seed trajectory coupled with a Newton-
Raphson method quickly converged to the set of contributing
complex saddle trajectories.

This has three very desirable features. First, it allows one
to work in a 2N -dimensional real phase space to search
for transport pathways instead of with an N -dimensional
complex manifold embedded in a 2N -dimensional complex
phase space. Second, it provides a criterion for how to cut
off the phase space volume necessary to search. The saddles
associated with the region exterior to this domain contribute as
negligibly as one chooses, depending on the volume cutoff.
This reduces the problem to one in which intuition and
knowledge of real classical dynamics is sufficient eventually
to solve the complex boundary value problem. Finally, all the
saddles found this way contribute, thus entirely avoiding the
necessity of a scheme or criterion to determine whether a saddle
must be kept and the problem of wasting effort on saddles that
must be thrown away.

This paper is structured as follows: The next section intro-
duces the Gaussian wave packets, their Lagrangian manifolds,
and their Wigner transforms and summarizes the Newton-
Raphson scheme that allows one to focus on real classical
transport. The following section discusses the theory behind
reducing the dimensionality of the search to a manageable
level. After that, a Bose-Hubbard model system with several
degrees of freedom is introduced and saddle trajectories are
identified. The role of symmetries is discussed. Next it is shown
that the above-mentioned stability spectrum and associated
eigenvectors are indicators of the nature of the dynamics in
different parts of the available phase space. For a given wave
packet as a function of system parameters, level crossings and
abrupt spectral changes make the various possible dynamical
regimes of the system readily visible. The summary and
conclusions consider the strengths and difficulties associated
with the method.

I. GAUSSIAN WAVE PACKETS AND COHERENT STATES:
SADDLE POINT CONDITIONS

As mentioned briefly in the introduction, multidimensional
Gaussian wave packets show up in many subfields of physics
and have become extremely important tools for understanding
a wide range of phenomena. In addition, the projection into
configuration space of a coherent state describing a bosonic
many-body system of the form

|z〉 = exp

(
−|z|2

2
+ zâ†

)
|0〉 (1)
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results in a Gaussian wave packet [1], and the parameters of
the coherent state are straightforwardly mapped onto those
of the wave packet; see the appendix. As Gaussian wave
packets are extremely important in and of themselves, the
development of the theory ahead is given in terms of the most
general wave packet. If needed, translating all of the results
back into the language of coherent states is possible in a
straightforward way; i.e., z can be mapped onto momentum
and position centroids, and the ground state determines the
shape parameters.

A. Gaussian wave packets

A Gaussian wave packet has a number of parameters needed
in order to specify it uniquely; we label the entire set with a
Greek letter, such as α or β. Thus, the real mean momenta
and positions are labeled ( �pα, �qα ), and the matrix bα describes
all the possible shape parameters. It must be a symmetric ma-
trix diagonalizable by an orthogonal matrix with eigenvalues
whose real parts are positive in order to be square integrable.
If bα is complex, then the wave packet is sometimes called a
“chirped” wave packet, i.e., one in which the speed of phase
oscillations linearly increases or decreases across its width. We
choose the phase convention and h̄ dependence such that

φα (�x) = exp

[
−(�x − �qα ) · bα

2h̄
· (�x − �qα ) + i �pα

h̄
· (�x − �qα )

]

× N0
α

(
N0

α =
[

Det (bα + b∗
α )

(2πh̄)N

]1/4
)

, (2)

which represents a different phase convention than that implied
by Eq. (1), but that is accounted for properly when applied to
the Bose-Hubbard model ahead. Implicitly the right vectors
are column vectors and the left vectors are row vectors. The
h̄ scaling chosen ensures that h̄ determines the volume
occupied by the wave packet, and its overall shape is
completely independent of h̄. The dual of this wave packet
follows the complex conjugation of bα and the sign change
in front of the momentum term. The notation for an evolving
wave packet follows as φα (�x; t ), but for any system with
nonlinearities in Hamilton’s equations it ceases to maintain a
Gaussian form for t > 0.

Assume the existence of a classical Hamiltonian, which can
be analytically continued to complex phase space variables
H = H (�p, �q; t ), and a well-defined corresponding quantum
Hamiltonian, Ĥ = Ĥ ( h̄

i
∂/∂ �x, �x; t ). They govern the classical

and quantum dynamics, respectively. Two very basic dynami-
cal quantities of interest are given by the evolving wave packet
itself, φα (�x; t ), and so-called correlation functions

Aβα (t ) =
∫ ∞

−∞
d �x φ∗

β (�x)φα (�x; t ),

(3)
Cβα (t ) = |Aβα (t )|2,

where, if the set of parameters labeled by β and α are equal,
then Cαα (t ) has been called by many names, i.e., autocorre-
lation function, survival probability, return probability, and
even Lohschmidt echo in some many-body contexts. A matrix
element of the Feynman path integral in a coherent state

representation would be equivalent to the amplitude, Aβα (t ),
of a correlation function.

B. Lagrangian manifolds

The Lagrangian manifold for a wave packet is the set of
all complex positions and conjugate momenta (�p, �q) (the font
change indicates complex values) satisfying the equations [19]

bα · (�q − �qα ) + i(�p − �pα ) = 0. (4)

Notice that the manifold has no dependence on h̄. Thus, the
parametrization choice with respect to h̄ in Eq. (2) leads to
saddle trajectories that are entirely independent of h̄. This
gives an important practical simplification to the solution of the
boundary value problem. However, the shape of the saddles,
i.e., how rapidly they fall off away from their saddle points,
does depend on h̄, as does the magnitudes and phases of
their contributions, so there is still a strong h̄ dependence in
the system dynamics. Furthermore, as h̄ shrinks, so does the
phase space volume which must be searched, which means
that saddles at the outer edges of the wave packet’s position
and momentum ranges disappear first with decreasing h̄.

A dual wave packet with a possibly different parameter set
leads to the modified Lagrangian manifold equations

b∗
β · (�q − �qβ ) − i(�p − �pβ ) = 0, (5)

which differs in form only by the sign change of the momentum
term and complex conjugation, b∗

β . The semiclassical approxi-
mation [20] relies on saddle points whose properties are given
by trajectories with initial conditions, (�p0, �q0), that lie on the
initial manifold and after propagation of a time t, (�pt , �qt ), end
up on the final manifold. Thus for correlation functions, the
boundary value problem is to find all contributing solutions of
the equations

bα · (�q0 − �qα ) + i(�p0 − �pα ) = 0,
(6)

b∗
β · (�qt − �qβ ) − i(�pt − �pβ ) = 0

as a function of t . If interest is in the evolving wave packet in the
configuration space representation, then the final Lagrangian
manifold must be the one associated with 〈�x|, and the second
set of equations is replaced by

�qt = �x, (7)

where �pt can be anything.
Generally speaking, excluding harmonic oscillators (or

rather systems with linear Hamilton’s equations), there appear
to be an infinity of solutions to these equations, almost all
of which either must be excluded for reasons mentioned in
the introduction, or are irrelevant because they contribute so
little that they are vastly smaller than the errors involved in
making a semiclassical approximation. The goal then is to find
all the saddle trajectories that must be included and contribute
sufficiently. The number of relevant saddles grows at least
linearly with increasing time for integrable dynamical systems
and exponentially for chaotic ones. If for no other reason,
this gives a practical upper limit to the length of propagation
time conceivable with semiclassical methods. The proliferation
rates imply that the domain of convergence around each
saddle point for which the Newton-Raphson scheme can work
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must shrink accordingly. At long timescales, a search for the
complete set of relevant saddles has to be carried out on a scale
too fine to be practical. In this sense, a practical implementation
of semiclassical propagation is limited to an “intermediate”
time scale, one in which finding more than a few thousand
saddles (with none missing) becomes increasingly difficult.

Interestingly, for Gaussian wave packets, any initial condi-
tion (�p0, �q0) on the Lagrangian manifold can play the role of
the real centroid ( �pα, �qα ) in Eq. (2), i.e., the interchange leaves
the spatial dependence of the wave packet invariant. However,
the normalization constant has to be redefined to

N0
α =

[
Det(bα + b∗

α )

(2πh̄)N

]1/4

exp

[
i

h̄
(�p0 · �q0 − �pα · �qα ) + �q0

·bα

2h̄
· �q0 − �qα · bα

2h̄
· �qα

]
(8)

in order to preserve the normalization and phase convention.
The similar substitution for correlation functions of the trajec-
tory endpoint is given by

Nt
β =

[
Det(bβ + b∗

β )

(2πh̄)N

]1/4

exp

[
− i

h̄
(�pt · �qt − �pβ · �qβ ) + �qt

·b∗
β

2h̄
· �qt − �qβ · b∗

β

2h̄
· �qβ

]
. (9)

This substitution and modified normalization constants can be
used to simplify the final form of the semiclassical (saddle-
point) approximation.

C. Real classical transport and saddle trajectories

It was shown in Ref. [38] that there is a one-to-one corre-
spondence between real classical transport pathways (bundles
of like-behaving trajectories) and the relevant complex saddle
trajectories. It suffices to start with a seed trajectory given by a
single representative trajectory for a specific pathway and use
a Newton-Raphson scheme to locate the corresponding and
contributing saddle trajectory. This scheme has the three highly
desirable main consequences mentioned in the introduction.

Here, we give for completeness the equations that arise
in the Newton-Raphson scheme [38]. Considering the phase
space in the neighborhood of a seed trajectory, it is useful to
define δ�pt = �p − �pt and δ�qt = �q − �qt . The stability matrix Mt

describes how neighboring trajectories shift relative to this seed
trajectory. Thus,(

δ�pt

δ�qt

)
=

(
M11

M21

M12

M22

)(
δ�p0

δ�q0

)
. (10)

The seed orbit most likely does not satisfy the boundary value
problem and in the case of correlation functions instead gives

bα · (�q0 − �qα ) + i(�p0 − �pα ) = �c0,
(11)

b∗
β · (�qt − �qβ ) − i(�pt − �pβ ) = �ct .

Combining these and the stability equations, Eq. (10), it is
possible to solve for the change in initial conditions needed to
approach the saddle trajectory. This gives

�p0
′ = �p0 + ibα · D · [

(b∗
β · M22 − iM12) · b−1

α · �c0 − �ct

]
,
(12)

�q0
′ = �q0 − D · [(M11 + ib∗

β · M21) · �c0 + �ct ],

where

D−1 = M11 · bα + b∗
β · M22 + ib∗

β · M21 · bα − iM12. (13)

If the interest is in calculating the propagating wave packet
itself in configuration space, as opposed to some correlation
function, the equations are slightly simplified to give

�p0
′ = �p0 + ibα · D · [

M22 · b−1
α · �c0 − �ct

]
,

(14)
�q0

′ = �q0 − D · [iM21 · �c0 + �ct ],

with

D−1 = M22 + iM21 · bα, �qt − �x = �ct . (15)

It is possible to also give the equations for the momentum space
representation of a propagating wave packet, but it is similar in
form and not given here. These equations are used iteratively
to converge to a contributing saddle point. It suffices to find a
single point within the domain of convergence for each saddle,
which is what the seed trajectories provide.

D. Saddle families

In a continuous time dynamical system, i.e., as opposed to
dynamical mappings, each saddle gives rise to a one-parameter
family of saddles labeled by time. As t changes continuously,
the saddle trajectory’s initial conditions change continuously
as well. Barring orbit bifurcations and crossing Stokes surfaces
(which becomes exceedingly unlikely in the h̄ → 0 limit), it
is possible to predict how the initial conditions change using
Eq. (6) and Hamilton’s equations. Consider a saddle trajectory
that contributes at exactly time t , thus satisfying Eq. (6). Its
initial condition lies on the initial Lagrangian manifold, and
its propagation end point on the final one. If however, the
propagation time is slightly (differentially) altered, the end
point is no longer on the final manifold. Using Hamilton’s
equations for a time shift δt , the altered end point is located at

�qt+δt = �qt + ∂H

∂�pt

δt,

(16)

�pt+δt = �pt − ∂H

∂�qt

δt.

The Newton-Raphson scheme of the previous section can be
applied to find the shift in initial conditions that would restore
the saddle point conditions for the new time. The initial point
begins on the initial manifold, �c0 = 0, but the shift of the final
point means that �ct 	= 0. Following the same kind of algebra
leading to Eq. (12) gives the initial condition expressions for
the saddle trajectory, which contributes at t + δt ,

�p{t+δt}
0 = �p{t}

0 − ibα · D · b∗
α ·

(
∂H

∂�pt

+ i
∂H

∂�qt

)
δt,

(17)

�q{t+δt}
0 = �q{t}

0 − D · b∗
α ·

(
∂H

∂�pt

+ i
∂H

∂�qt

)
δt.

A similar expression results for the case in which the quantity
of interest is the propagating wave function in configuration
space with the matrix b∗

α replaced by unity and the simpler
determinant D of Eq. (15). The structure of these equations
involving the gradient of the Hamiltonian is linked to the fact
that the direction of initial condition variation is along the
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FIG. 1. Typical saddle family characteristics. The oscillating
curve in the upper panel is the real part of A(t ) for one particular
saddle family, and the envelope is the absolute value. There is a
faster phase oscillation at short times decreasing as time increases
corresponding to changes in the complex saddle trajectory with time.
Each saddle family member has an energy and total particle number
(nT ) surface to which it belongs. At short times, the real parts of
the energy and particle number of the saddle trajectory are greater
than the energy and particle number expectation values of the wave
packet, and at longer times they are less than the expectation values.
The saddle family’s peak contribution occurs near where the real parts
of the energy and nT equals the energy and total particle number (here
〈nT 〉 = 40) expectation values of the wave packet. This saddle family
is taken from an example of the Bose-Hubbard model defined ahead
in Sec. III.

maximal change of (perpendicular to) the energy surface in
an autonomous dynamical system.

The modified initial conditions of Eq. (17) can be used as a
seed for the Newton-Raphson scheme of the previous section
to construct the entire saddle trajectory family that forms
a continuous time contribution to the evolving wave packet
or correlation function. An example from the Bose-Hubbard
model introduced in Sec. III is shown for illustration purposes
in Fig. 1. Generally speaking, there is a peak contribution
time for a saddle family corresponding to a saddle trajectory
possessing an energy and particle number close to the mean
of the initial wave packet. Earlier and later in time, the
saddle trajectory moves further away from this energy and
particle number surface and the contribution decays, thus
creating a time window in which it contributes significantly.
It suffices to search for a single real transport pathway seed
on the energy and particle number surface of the trajectory

defined by ( �pα, �qα ), locate a saddle, and from there obtain
the contribution of the entire family through repeated use of
Eq. (17). In practice, the convergence appears to be superior
(computationally faster and fewer convergence problems) if
constructing the entire saddle family this way than to find real
seed trajectories as a continuous function of time.

II. IDENTIFYING REAL CLASSICAL TRANSPORT
PATHWAYS

A. Wigner transform

The key for identifying classical transport pathways is to
start with the phase space image of a wave packet under the
Wigner transform. This gives a positive definite multidimen-
sional Gaussian density of phase points in a classical phase
space to consider. This image is given by

W( �p, �q ) = 1

(2πh̄)N

∫ ∞

−∞
d �x ei �p·�x/h̄φα

(
q − �x

2

)
φ∗

α

(
q + �x

2

)

= (πh̄)−N exp

[
−( �p − �pα, �q − �qα )

· Aα

h̄
· ( �p − �pα, �q − �qα )

]
, (18)

where Aα is

Aα =
(

c−1 c−1 · d
d · c−1 c + d · c−1 · d

)
Det[Aα] = 1, (19)

with the association

bα = c + id. (20)

The 2N × 2N dimensional matrix Aα is real and symmetric.
If bα is real, there are no covariances between �p and �q
(d vanishes); i.e., the wave packet is not chirped. The off-
diagonal blocks of the matrix Aα disappear.

Ahead, it is very useful to know that Aα can be inverted
analytically. The inverse is given by [39]

A−1
α =

(
c + d · c−1 · d −d · c−1

−c−1 · d c−1

)
. (21)

Since it is necessary to calculate c−1 to determine Aα , its
inverse is determined with no further effort.

B. Local evolution of Gaussian densities

Consider any constant density contour of the Wigner trans-
form of the initial wave packet as a set of initial conditions. It
must have some kind of hyperelliptical shape described by the
equation

r2 = (δ �p0, δ�q0) · Aα

h̄
· (δ �p0, δ�q0), (22)

where (δ �p0, δ�q0) = ( �p0 − �pα, �q0 − �qα ), where ( �p0, �q0) be-
long to a set of points on the hyperelliptical surface satisfying
the equation. Locally, within a linearizable regime (small
enough r), the dynamics to time t distorts the hyperellipse
to a new one:

r2 = (δ �pt , δ�qt ) · Aα (t )

h̄
· (δ �pt , δ�qt ). (23)
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Recalling the information given by the stability matrix of the
central trajectory ( �p0, �q0) = ( �pα, �qα ) identifies the evolution
of Aα with t . Inserting unity of the form 1 = M−1

t Mt and its
transpose appropriately into Eq. (22) gives

r2 = (δ �p0, δ�q0) · MT
t · M−1

t

T · Aα

h̄
· M−1

t · Mt · (δ �p0, δ�q0)

= (δ �pt , δ�qt ) · M−1
t

T · Aα

h̄
· M−1

t · (δ �pt , δ�qt ), (24)

and, thus, necessarily one has the identification

Aα (t ) = M−1
t

T · Aα · M−1
t . (25)

This is a real symmetric matrix (also with unit determinant)
which can be diagonalized by an orthogonal transformation.
Its eigenvalues and eigenvectors contain all the information
necessary to enable a targeted search for saddle trajectories.
For convenience, we work with the inverse, which has the exact
same set of eigenvectors, i.e.,

� = OA−1
α (t )O−1 = OMt · A−1

α · MT
t O−1 (26)

and the set of inverse eigenvalues, {λj,±}. The determinant of
A−1

α (t ) is unity and the eigenvalues come in pairs here labeled
by j = 1, . . . , N , one expanding, λj,+ > 1, one contracting,
λj,− < 1 (λj,+ = λ−1

j,−). Similar constructs have been used
in the calculation of the various Lyapunov exponents of a
multidimensional chaotic dynamical system, where the process
is discussed as a decomposition of the tangent space [36,37].

C. Asymptotic structure

For a large class of systems and initial states, it will turn
out that most of the degrees of freedom do not need to be
part of the search. Dynamical systems have a great deal of
structural organization in their phase spaces that is revealed
asymptotically in time by the A−1

α (t ) matrix. Denote the
eigenvectors corresponding to the set of λj,+ as (δ �pt , δ�qt )j .
Each eigenvector signifies the final direction of a set of initial
conditions along a line, which separated at the rate λj,+.
One wishes to know which set of initial conditions in the
neighborhood of ( �pα, �qα ) ends up evolving into the eigenvector
(δ �pt , δ�qt )j . Using the definition of the stability matrix, it turns
out to be the direction of initial conditions given by(

δ �p0

δ�q0

)
j

= M−1
t

(
δ �pt

δ�qt

)
j

. (27)

The vector of initial conditions depends on the length of
propagation time used to generate the A−1

α (t ) matrix. However,
for large times, each vector of initial conditions converges to a
stable direction and becomes essentially independent of time.
If a propagation time is selected that is too short, then the
initial condition vectors will not have stabilized, i.e., converged
to the directions of interest. On the other hand, propagation
that covers too long a time period risks losing accuracy and
will eventually cause numerical problems. Here, we construct
A−1

α (τ ), t = τ , for a long intermediate timescale within the
appropriate time range and use its eigenvectors to determine
the most important degrees of freedom to sample. This is done
once at the very beginning to initiate the process of finding
real seed trajectories as a function of time. An indication of

how to arrive at a reasonable timescale τ is given in the next
subsection.

Only the N eigenvectors associated with the eigenvalues
greater than unity need to be considered. Trajectories linked
by a contracting direction only approach each other and evolve
similarly. If a trajectory belongs to a bundle corresponding
to a classical pathway, so will all of its neighbors along the
N contracting degrees of freedom, i.e., the N -dimensional
manifold described by the N contracting eigenvectors.

D. Distinguishing shearing and exponential stretching,
and a reasonable value of τ

It is not necessary to search in the direction that maximizes
the change of energy. This is related to the saddle families
discussed in Sec. I D and this direction is already accounted
for by the technique described in that section. Thus, a targeted
search for seed trajectories can be immediately reduced to an
N − 1 dimensional parameter search of initial conditions in
a real phase space without any loss of generality (assuming
the omission of contracting directions). The associated eigen-
vector needs to be identified in order to avoid sampling in
that direction. As it must be associated with a shearing in
the dynamics, it cannot be associated with the exponential
stretching of instability.

There is a simple trick that often suffices to identify this
eigenvector quickly, and which helps identify whether one has
reached a sufficiently asymptotic propagation time, τ (this does
not work for a harmonic oscillator where there is no shearing in
the dynamics). The logic follows by considering free particle
motion in a single degree of freedom. Let Aα and the mass be
unity and irrelevant for this purpose. The stability matrix times
its transpose is

Mτ · MT
τ =

(
1 0
τ 1

)
·
(

1 τ

0 1

)
=

(
1 τ

τ 1 + τ 2

)
(28)

with large eigenvalue

λ+(τ ) = 1 + τ 2

2
+ 1

2

√
τ 4 + 4τ 2 ≈ τ 2, (29)

where the approximate result applies only if τ is large
enough. In a multidimensional system with more complicated
dynamics, quadratic dependence of this eigenvalue is an
indicator that the asymptotic structure of its Hamiltonian flow
has emerged. Therefore, if one calculates the spectrum, {λj,±},
for time τ and 2τ sufficiently large, there must be an eigenvalue
for which λj,+(2τ ) = 4λj,+(τ ). If there is only one, then
its eigenvector must be perpendicular to the energy surface.
If there are none, then one has not reached the asymptotic
regime desired and τ must be increased. If there are multiple
eigenvalues respecting this relation, then one can calculate the
energy along the associated multiple eigenvectors to determine
which maximally shifts the energy or calculate the gradient of
the Hamiltonian at the wave packet centroid and compare to
the relevant eigenvectors.

Unstable degrees of freedom behave very differently. As
their eigenvalues behave exponentially in time, one expects
fully unstable directions to satisfy λj,+(2τ ) = λ2

j,+(τ ). In
practice, one finds a factor of unity (no stretching at all)
or square relations as limiting possibilities, and the various
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eigenvalue behaviors lie in between these cases. In fact, in the
calculations performed ahead, only one eigenvalue followed
the factor four relation and it was unnecessary to calculate the
gradient of the energy surface and compare it to an eigenvector.

E. Determining the initial condition sampling space

Of the remaining N − 1 dimensional phase space of initial
conditions of relevance to searching for classical transport
pathways, consider the the largest eigenvalue first, denote it
λ1,+ and its associated vector of initial conditions (δ �p0, δ�q0)1.
It gives a very particular coordinate direction of initial condi-
tions in which to search for the earliest appearing real transport
pathways. It should be emphasized that the range of initial
conditions along this vector are chosen to fully span the breadth
of the initial wave packet’s Wigner transform Gaussian density,
i.e., as many standard deviations as desired. They are not
limited to the linearizable regime used to identify this direction.
The line of initial conditions is propagated long enough in time
to become highly stretched, nonlinear, and repeatedly folded
into an extremely complicated shape; i.e., it is used far beyond
the linearizable regime that was used to identify the direction.

If the second largest eigenvalue λ2,+ is not too much smaller
than λ1,+, then it is likely necessary to add another search direc-
tion for saddle trajectories, i.e., the phase space plane of initial
conditions defined by the first and second vectors (δ �p0, δ�q0)1

and (δ �p0, δ�q0)2. One could continue in this way to successively
higher dimensions until the most relevant initial conditions are
included in the search. However, it appears that sometimes an
unstable direction does not generate additional saddles for the
dynamical quantity of interest. For example, concerning the
autocorrelation function, this would mean that even though the
various initial conditions lead to rapidly separating trajectories,
away from the central trajectory along this direction, they
do not result in additional returning trajectories within the
time frame of interest. In fact, for the Bose-Hubbard model
of Sec. III, in some cases even when combined with another
part of the subspace, which does generate transport pathways
leading to saddles, new saddles seem not to appear. This could
be true for other dynamical systems as well. Therefore, one
can check each expanding direction individually as an indi-
cator of which collection of eigenvectors (subspace of initial
conditions) is absolutely necessary for an exhaustive saddle
search and one can use this as a starting point for a minimal
search subspace. However, we are not currently aware of any
guarantee that this is always going to turn out to be sufficient.

We recognize that in practice it may not really be all that
practical to continue beyond, say, three dimensions. Neverthe-
less, for a broad class of dynamical systems and wave packets,
even possessing many degrees of freedom, this is sufficient for
the purpose of constructing the semiclassical prediction for
correlation functions. Some examples with up to eight degrees
of freedom are shown in Sec. III.

F. Finding seed trajectories

With the sampling space determined, the goal is reduced to
identifying a single seed trajectory for each unique pathway.
One simple idea is to define a function of the initial conditions
in the sampling space for which one can search for local

minima. Consider the correlation function as a concrete ex-
ample. The Wigner transform of the final state has a centroid
( �pβ, �qβ ) and shape given by Aβ . A distance function can be
defined that measures the number of standard deviations that
the end point of a trajectory is away from the final wave packet
centroid. It is given by

fβ ( �p0, �q0; t ) = (δ �pt , δ�qt ) · Aβ · (δ �pt , δ�qt ), (30)

where (δ �pt , δ�qt ) = ( �pt − �pβ, �qt − �qβ ). The trajectory end-
point ( �pt , �qt ) clearly is a function of the initial conditions.
As ( �p0, �q0) is varied, each isolated minimum corresponds to
a unique classical pathway. However, these minima come in
one-parameter families with time and one only needs the local
minima in time on the central energy surface, as previously
discussed.

An excellent predictor of how much a saddle can contribute
to a correlation function is given by this distance function.
Considering the sum of the initial and final distances of a seed
trajectory, γ ,

Dγ = fα ( �pγ

0 , �qγ

0 ; 0) + fβ ( �pγ

0 , �qγ

0 ; t ). (31)

Thus, all the hard work of finding complex saddle trajectories
is reduced to finding the local minima of Dγ in the reduced
dimensional space determined by the properties of A−1

α (τ ) and
M−1

τ .
For the seed trajectories identified by the minima of Dγ ,

the function e−Dγ /h̄ gives a fairly good rough estimate of
the suppression of the semiclassical contribution due to the
associated saddle trajectory’s mismatch with the real centroids
of the initial and final wave packets. Therefore, the matrices
Aα and Aβ can be used to cut off the search space domains.
Typically it is found that the chirp given by a saddle family’s
contribution tends to be rather insignificant if Dγ /h̄ � 10.
Notice that this provides a cutoff criterion that does not increase
with N increasing. This has the consequence that for each
single degree of freedom, the phase space coordinate of a
relevant saddle trajectory tends to get closer to the central
trajectory as N increases.

G. The role of symmetry

The symmetries of a quantum Hamiltonian lead to an impor-
tant role for the irreducible representations of the associated
groups with respect to the properties of the eigenvalues and
eigenfunctions. The Hilbert space can be represented by a
basis which separates into subspaces, each having specific
transformation properties with respect to the actions of the
associated symmetry group operators. If an initial state respects
at least some part of the dynamical or fundamental symmetries
of the system, it necessarily can be constructed from a subspace
of the full Hilbert space. Quantities such as the autocorrelation
function, Eq. (3), must have enhanced long time averages as a
result. The enhancement depends on the ratio of the full Hilbert
space dimensionality relative to the appropriate subspace.

This, of course, must be reflected in the semiclassical theory.
The dynamical effects are accounted for by the transformation
properties of the saddle trajectories. It suffices to consider the
saddle trajectories’ initial conditions and how they transform
under the group operations. If an operation returns the same
initial condition, no multiplicity is implied; otherwise there
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must be a replica of the saddle trajectory given by the par-
ticular operation. Hence the rule that highly symmetric saddle
trajectory initial conditions lead to low multiplicities and lower
symmetry initial conditions lead to higher multiplicities.

Depending on the Hamiltonian and initial and final states
then, there will be a symmetry-reduced fundamental domain
in the phase space, which can be used to search for saddles.
The saddles within the other domains follow by a symmetry
operation. The precise domain boundaries depend on the
subspace, i.e., set of necessary search directions,{(

δ �p0

δ�q0

)
j

}
. (32)

They collectively define a volume, which can be decomposed
into fundamental domains.

This imposes a certain structure on the eigenvectors giving
the search directions. If the search domain is composed of a
single eigenvector, and hence the eigenvalue is nondegenerate,
then the symmetry operation applied to the vector has to
return the negative of the vector. The symmetry-imposed
eigenvector structure in such a case is immediately visible
with a cursory glance. However, in higher dimensional search
spaces and especially if there are search directions associated
with degenerate eigenvalues (equal stretching rates, λj,+), it
may happen (as seems rather likely) that the structure of the
eigenvectors is somewhat hidden from view and it can be rather
difficult to identify fundamental domain boundaries. In such
a case, a rotation of the degenerate search directions can aid
immensely their identification and the structure imposed on
the eigenvectors. A nontrivial example is shown in Sec. III D,
where there is a sixfold symmetry in a two-dimensional space,
but the fundamental domain cannot be selected as just any 60◦
wedge in the plane. The eigenvectors that emerge from the
stability analysis have to be rotated to identify the boundaries.
Once the analysis is completed and the boundaries are properly
identified though, the reduced domain can be used to accelerate
the saddle search and the construction of a semiclassical
approximation.

As a final remark, note that there are significant symmetry
effects on the dynamics of multidimensional quantum systems,
which semiclassical theory is entirely capable of addressing
in detail. In particular, they affect the far-out-of-equilibrium
dynamics of a many-body system such as represented by the
Bose-Hubbard model discussed in Sec. III, some of which is
addressed in detail there.

III. BOSE-HUBBARD MODEL SADDLE TRAJECTORIES

In recent studies calculating post-Ehrenfest quantum many-
body interferences [9,35] and coherence effects [34], this
method was used to find saddle trajectories for a Bose-Hubbard
model in a ring configuration. The quantum Hamiltonian
contains tunable nearest neighbor hopping and two-body
interaction terms, and can be expressed as

Ĥ = −J

N∑
j=1

(a†
j aj+1 + H.c.) + U

2

N∑
j=1

n̂j (n̂j − 1), (33)

where N is the number of sites in the ring and determines
the number of degrees of freedom. U is a measure of the

strength of the two-body interaction, which depends on the
s-wave scattering length. J controls the tunneling amplitude,
which depends on the well depth. There are two constants of the
motion, the energy and total number of particles, n̂T = ∑

j n̂j .
A mean field analysis [40,41] leads to a corresponding

classical Hamiltonian, which follows from the introduction of
the quadrature operators (q̂j , p̂j ) defined as

âj = q̂j + ip̂j√
2

,

â
†
j = q̂j − ip̂j√

2
.

and subsequent replacement by c numbers. After accounting
for operator ordering issues, this gives

Hcl = −J

N∑
j=1

qjqj+1 + pjpj+1 + U

2

N∑
j=1

(
q2

j + p2
j

2

)2

−U

N∑
j=1

q2
j + p2

j

2
. (34)

It is a quartic function of the phase space variables and
straightforwardly analytically continued to complex variables.
The second constant of the motion is given by

ncl =
N∑

j=1

q2
j + p2

j

2
(35)

and is the fixed total number of particles for a classical
trajectory.

A. Quantum and classical symmetries

This Bose-Hubbard model, Eq. (33), has the following dis-
crete symmetries: cyclic permutation, reverse index ordering
(clockwise-counterclockwise ring), and time-reversal invari-
ance. The first two symmetries lead to groups of order gN =
2N for N � 3. For N � 2, reversing the index ordering is iden-
tical to cyclic permutation and hence gN = N for N = 1, 2.

Furthermore, the model has a continuous symmetry, U (1),
in which multiplying the set {âj } by a phase eiθ , and hence the
{â†

j } by the complex conjugate phase, leaves the Hamiltonian
invariant. This is equivalent to the rotation of the quadrature
operators, (

p̂′
j

q̂ ′
j

)
=

(
cos θ − sin θ

sin θ cos θ

)(
p̂j

q̂j

)
(36)

and similarly for the c numbers. Thus, all these symmetries are
reflected in the classical dynamics and the initial conditions of
the saddle trajectories.

From a theoretical perspective, one can design a symmetry
group of interest quite easily for a many-body system of a type
akin to the Bose-Hubbard model of Eq. (33). For example, if
hopping connects all the sites equally, the maximum discrete
group of the Hamiltonian would be the permutation group (the
symmetry group), SN . The actual constructive interference and
long-time average enhancement factors would depend on the
symmetry properties of the initial and final states.
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B. Coherent state density waves

A coherent state density wave is a useful initial state for our
demonstration purposes [9,35]. Denote it

|n〉 =
N∏

j=1

exp

(
−|bj |2

2
+ bja

†
j

)
|0〉, (37)

where each site j of the ring potentially has a different
mean number of particles nj = |bj |2. A coherent state density
wave is populated as follows |n, 0, n, 0, . . . , n, 0〉, where n

represents the mean number of particles on that site (not to
be confused with a Fock state density wave). This notation is
incomplete in that the phase of each bj is not specified. Thus,
we assume that the {bj } are all chosen real and positive if not
indicated otherwise. An example of an initial state that does
have alternating phases of the {bj } is discussed near the end of
Sec. IV.

In a configuration representation, initial coherent states
appear as Gaussian wave packets

φα (�x) = π−N/4 exp

[
− (�x− �qα )2

2
+ i �pα· (�x − �qα ) + i

�pα· �qα

2

]
,

(38)

where √
2 �b = �qα + i �pα. (39)

This is in the form of Eq. (2) as it must be, except with
a different phase convention given by the last term of the
equation. Its Wigner transform is

W(�q, �p) = π−N exp

[
− (�q − �qα )2

2
− ( �p − �pα )2

2

]
. (40)

These equations define the wave packet centroid, phase con-
vention, shape matrices bα = 1, Aα = Aβ = 1, and h̄ = 1. If
the components of �b are chosen real and positive, there is just
a shift in the position centroids per site,

φα (�x) = π−N/4 exp

⎡
⎣−

N∑
j=1

(xj − √
2nj )2

2

⎤
⎦. (41)

This gives rise to the corresponding density operator Wigner
transforms,

W(�q, �p) = π−N

N∏
j=1

exp
[ − (qj − √

2nj )2 − p2
j

]
. (42)

C. Four-site coherent state density wave

Consider a four-site ring with initial coherent state density
wave |20, 0, 20, 0〉 (bj chosen real and positive), and let the
interaction strength be U = 0.5. There are two timescales in
the dynamics for the Bose-Hubbard model without hopping
given by

τ1 = 2π

Unj

= 0.63, τ2 = 2π

U
= 4π = 12.57, (43)

τ1 is a classical scale associated with first return of classical
trajectories, and τ2 is a quantum scale associated with the
revival of the initial quantum state [7].

We fix the hopping strength to be J =0.2, which perturbs
the dynamics but leaves the system in the strong interaction
regime. The autocorrelation function, Eq. (3), constructed
semiclassically using these saddles, is pictured in upper panel
of Fig. 1 of Ref. [9], where it is seen to have quite a compli-
cated set of oscillations. The revivals and fractional revivals
(1/2, 1/3, . . . ) are reduced but still visible; the semiclassical
saddle point formulas can be found there and are not repeated
here. They require a great deal of delicately balanced quantum
interference to reconstruct, but the semiclassical approxima-
tion does so. This could only happen if one has identified all
or nearly all of the contributing saddles.

1. Search directions

The first step is to construct and diagonalize the matrix
Mτ · MT

τ (since Aα = 1) of the initial condition ( �pα, �qα ) [wave
packet centroid] for a propagation time long enough that the
eigenvectors have converged to their asymptotic directions;
a value of τ on the order of (1.5 − 2) × τ2 was sufficiently
asymptotic. Of the four eigenvalues greater than unity, one
dominates, is at least somewhat exponentially unstable, and is
given by 5.8 × 1011 at t = 16. The next largest eigenvalue is
1.4 × 105 (106 times smaller), and its eigenvector is associated
with the direction of maximal change in energy, which as
pointed out in Sec. II D is not necessary to search. The final
two eigenvalues are nearly degenerate with value 1.8 and
are entirely irrelevant. Thus, this case can be reduced to a
one-parameter search for saddles without losing any dynamical
information on the time scale of one to two revivals, say, less
than 2τ2; the straightforward search dimensionality for this
case would have required eight parameters. The eigenvector
associated with the largest eigenvalue is used in conjunction
with Eq. (27) to determine the sole line of initial conditions
necessary to search for saddles.

2. Saddles

In Fig. 2, the points where the distance function, Dγ �
20, are blackened and plotted as a function of time and initial
conditions. The search direction is given by the vector (δ �p0

δ�q0
)
1

of Eq. (27). The propagation time and initial conditions of
each seed trajectory are selected by the one whose distance is
minimized within each isolated blackened region.

After using the Newton-Raphson scheme, each region leads
to a unique saddle trajectory family with a semiclassical
contribution to A(t ) similar to the one shown in Fig. 1. The
total number of saddles found as a function of time is illustrated
in Fig. 3. In this particular dynamical case, one can be fairly
certain that all the saddle trajectory families have been found
(up to a certain significance) due to the highly structured
locations of the distance minima. Despite the high degree
of instability in the largest eigenvalue, the saddle number is
increasing similarly to that of a system in a near-integrable
dynamical regime, i.e., a linearly increasing density of saddles
in time leads to a pure quadratic total count of saddles up
to some fixed time. If the system were behaving as a purely
chaotic dynamical system, the number of saddles found would
increase as an exponential function.

In addition, it is possible to see an approaching problem as
time increases. Above and below the central horizontal axis
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FIG. 2. View of seed trajectory locations in time and initial condi-
tions. For 4000 initial conditions, the distance function is calculated as
a function of time. The initial conditions are chosen uniformly along
the eigenvector mentioned in the text across the interval [−4σ, 4σ ]
corresponding to the Wigner transform of the coherent state density
wave. The points are blackened where Dγ � 20. The initial conditions
are labeled by an index on the y axis. The full discrete symmetry is
encapsulated by a reflection symmetry with respect to the x axis. The
multiplicity 1 saddles are found using the y = 0 line seed trajectories,
and the rest have multiplicity 2.

(0 line) are regions approaching each other in pairs, which
implies a coalescence of saddle points once they overlap.
Beyond a certain time, to avoid singularities in the semiclas-
sical theory the coalescing saddles will require a uniformized
approximation of the kind discussed in Ref. [42].

If one uses the second largest eigenvector, (δ �p0
δ�q0

)
2
, one finds

only the symmetric saddles that can be found using the single
trajectory with initial condition ( �pα, �qα ). As this vector is
associated with the normal to the energy surface, this direction
preserves the symmetries of the central trajectory, and it does
not lead to any new saddles beyond those found with the central
trajectory; rather it just generates the families of each of the
saddles which are fully symmetric.

 0

 200
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 800

 0  2  4  6  8  10  12  14  16
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t

FIG. 3. Total number of saddles as a function of time. The saddles
counted are those found with seed trajectories with a Dγ � 20. A
dashed quadratic curve is shown as a guide.

FIG. 4. Equivalent of Fig. 2 for the eigenvector perpendicular to
the energy surface. This eigenvector is associated with the second
largest eigenvalue. For 1000 initial conditions, the distance function
is calculated as a function of time. The initial conditions are chosen
uniformly along the eigenvector across the interval [−4σ, 4σ ] corre-
sponding to the Wigner transform of the coherent state density wave.
The points are blackened where Dγ � 20. The initial conditions are
labeled by an index on the y axis.

It is interesting, however, to illustrate this point. This
vector’s equivalent of Fig. 2 is shown in Fig. 4. In the strong
interaction regime, there is strong shearing perpendicular to
the energy surface and this makes each saddle trajectory
family contribute over a wide range in time; recall Fig. 1. It is
possible to deduce from this figure the width of semiclassically
contributing time window for any particular symmetric saddle.
Select one of the contiguous blackened regions and fix any time
that intersects it. There will be a minimum distance trajectory
for that fixed time, somewhere near the middle of the fixed time
vertical line’s intersection with the region. It can be used to
locate some particular symmetric saddle. If one differentially
shifts the time back and forth enough to intersect the entire
chosen region, the continuous collection of saddles forms a
saddle family exactly as discussed in Secs. I D and II D. In
fact, one could construct a saddle family this way with a large
number of real seed trajectories, one for each fixed time, but
the method discussed in Secs. I D and II D is much more reliable
and faster. It is better not to use this direction in the saddle
searches as mentioned earlier.

The time interval that intersects the chosen region is the
contributing time window of a saddle family, just as pictured
in Fig. 1. Therefore, the regions further to the right (increasing
time), corresponding to later arriving saddle families, which are
more horizontally tilted, have corresponding saddle families
that contribute to the autocorrelation function over wider time
windows. It suffices to project any particular region seen in
Fig. 4 onto the time axis to read off the width of that saddle
family’s contribution in time.

3. Symmetries

The initial condition associated with the coherent state
density wave centroid, �pα = �0 and �qα = (

√
40, 0,

√
40, 0), is

invariant under some of the symmetry operations that leaves
the Bose-Hubbard model invariant, i.e., a double-hop cyclic
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permutation and time-reversal invariance. These symmetries
have a number of consequences for the autocorrelation function
defined in Eq. (3).

Two consequences are handled quickly. First, time-reversal
invariance ensures that A(−t ) = A∗(t ), but does not other-
wise lead to symmetry-related saddles (multiplicity greater
than 1) forward in time. Second, any choice of rotation via
Eq. (36) acting on the variables of ( �pα, �qα ) of Eq. (39) leaves
the autocorrelation function invariant. This is reflected in a
symmetry of the classical trajectories, whereby a rotation of
initial conditions of this sort leads to a trajectory linked to the
former by rotation.

The remaining cyclic permutation and index reversal sym-
metry does lead to symmetry related saddles and this is visible
in the symmetry of Fig. 2. For this case, a saddle may be
unique or duplicated elsewhere in phase space by the double
cyclic permutation. To be unique, the initial condition of the
saddle trajectory must have the same symmetry as ( �pα; �qα ).
In other words, if the initial condition position is the same
for sites 1 and 3 (the full symmetry is there, but observing
just those two site positions identifies it), it has multiplicity 1,
and if they are different, then it has multiplicity 2. All of the
initial conditions in the neighborhood of ( �pα; �qα ) have lower
symmetry than it does (excluding the direction of maximal
change in energy). Thus, the only multiplicity 1 saddles arise
in the Newton-Raphson search from seed trajectories found
using the initial condition ( �pα, �qα ); this is effectively a zero
parameter search of initial conditions. The regions straddling
the central horizontal axis have multiplicity 1. The rest of
the saddles have multiplicity 2 and in this case arise from
a one-parameter search. In fact, one can reduce the search
regime to the region above the central axis and multiply the
contributions of the saddles to A(t ) by their multiplicity index.

Since total particle number is a conserved quantity, and this
example is in the strong interaction regime, the structure of the
optimal vector search direction can be understood by simple
arguments. For the moment, assume the hopping is turned off,
and the classical dynamics are quasiperiodic. In order for a
trajectory to return close to its initial conditions, as must be
the case for an autocorrelation function, the period of motion
for each site must be nearly integer multiples of each other.
The shearing is strongest perpendicular to the energy surface
for each site. Also, there is almost no frequency change for the
unoccupied orbitals. Since for the coherent state density wave
chosen, the periods of motion for sites 1 and 3 are identical,
the strongest change in their period ratio away from unity,
while preserving the total particle number, is for either site 1 to
increase its occupancy and site 3 to decrease by the same or vice
versa. Furthermore, with bj real and positive, the perpendicular
to the energy surface involves only q1 or q3, no momenta
(the perpendicular vector at a point on a circle lies along the
continuation of the radial line from the center to that point).
Thus, the search direction incorporates vanishing changes in
momenta and a change in position δ�q = (δq, 0,−δq, 0). Even
after turning the hopping term back on, the direction is dom-
inated by these changes. It is clear why Fig. 2 has a reflection
symmetry with respect to the central axis: (δq, 0,−δq, 0) and
(−δq, 0, δq, 0) are related by double cyclic permutation or
index reversal (with a shift). As the story gets more complicated
for greater numbers of sites, we introduce a shorthand for

FIG. 5. Dγ near the revival time. Each black spot gives rise to a
single seed trajectory, and hence there is a one-to-one correspondence
between spots and saddles. A 300 × 300 grid of initial conditions were
used to calculate Dγ � 20 at τ2. The six dotted lines correspond to the
six symmetry-related vectors of (δn,−δn, 0). The three long-dashed
and three medium-dashed lines correspond to cyclic permuations of
(δn, δn, −2δn) and its negative. They separate the plane into twelve
domains. The domains I− and I+ are mirror images of each other
about the dashed line between them, similarly for II− and II+. The
three copies of each domain, I± and II±, are related by 120◦ rotation.
One choice for a fundamental domain would be the sum of the regions
I− and II+ adjacent on the right side of the figure.

this search direction (δq, 0,−δq, 0) ≡ (δn,−δn), ignoring
the unoccupied sites or the difference between position and
momentum; note that in this shorthand, the second direction,
the one associated with the perpendicular to the energy surface
and Fig. 4, is denoted (δn, δn).

One implication of the irrelevance of the unoccupied sites
and momentum generally in the search directions is that in the
strong interaction regime, it is never necessary to search more
than N/2 − 1 dimensional spaces to find all the contributing
complex saddles up to intermediate timescales.

D. Six-site coherent state density wave

Consider next a six-site ring with initial coherent state
density wave |10, 0, 10, 0, 10, 0〉, and let the interaction and
hopping strengths, respectively, be U = 1.0 and J = 0.2. In
this case, the largest eigenvalue is doubly degenerate, and the
initial condition search directions correspond very roughly
to (δn,−δn, 0) and (δn, δn,−2δn); the normalization is not
given by the notation. The next largest eigenvector corresponds
to the energy surface perpendicular, (δn, δn, δn). No other
search directions are even remotely relevant. This information
was used to locate the roughly 5000 saddle families up to
t = 12.

The equivalent of Fig. 2 would be three dimensional.
Instead, Fig. 5 shows where Dγ � 20.0 in the plane of initial
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FIG. 6. M as a function of time. The effective multiplicity of the
saddles begins at one and increases toward the maximum possible of
six in this case as time increases. At long times, it saturates at six and
remains there as these saddles come from a higher dimensional space
of initial conditions than the others.

condition search directions, but showing a cross section by
fixing the time to be equal to τ2 (= 2π ). The double degeneracy
turns out to be necessary to accommodate the higher symmetry.
For example, form the vector from the sum of the two above.
The resulting vector is equivalent to (δn, 0,−δn), which is
an odd permutation of the first vector. The difference gives a
positive permutation. In fact, using appropriate normalization
and summing or subtracting (recall that Aα = 1), it is possible
to construct in the plane of initial conditions all six symmetry-
related versions of (δn,−δn, 0), uniformly spread out with
60◦ between them. Similarly, it is possible to build the three
cyclic permutations of (δn, δn,−2δn), as well as the three
cyclic permutations of the negative (−δn,−δn, 2δn). Unlike
(δn,−δn, 0), which gives rise to a multiplicity of six, these two
sets cannot be mapped onto each other by a symmetry operation
and saddles associated with them only come in multiplicities
of three. These twelve lines are indicated in Fig. 5. They
separate the fundamental domains, which can be mapped onto
each other by either a cyclic permutation or index reversal.
Thus, to find all the saddles, it is only necessary to search
in 1/6th of the initial condition plane. For example, the 60◦
wedge encompassing areas I− and II+ on the right-hand side
would give a complete set of saddles. Those emanating from
the central initial condition have multiplicity 1, those on the
two symmetry lines at the bottom of I− and the top of II+
have multiplicity 3, and the rest have multiplicity 6.

For a highly symmetric point in phase space, typically it
takes time for the neighboring lower symmetry trajectories
to return. This can be seen in this example by calculating
an intensity waited average multiplicity of the saddles as a
function of time. It is given by

M(t ) =
∑

j g2
j |Aj (t )|2∑

j gj |Aj (t )|2 , (44)

where the index j runs only over the symmetry-reduced set
of saddles. Figure 6 illustrates the result for the six-site ring
example. The higher symmetry and lower multiplicity saddles

dominate at short times and give way to dominance by the
highest multiplicity saddles at longer times.

E. Remarks on the eight-site ring

The eight-site model has a new feature; the four cyclic group
has a two cyclic subgroup. There will be saddles of degen-
eracies, (1,2,4,8). There are three search directions necessary
to construct the maximum eightfold saddle degeneracy, and a
search for all the relevant saddles to long times will require
a significant computational effort but is quite possible to do.
Nevertheless, compared with the 16 dimensions required of
the straightforward search method, this is a great advance. The
fourth largest eigenvalue will be associated with the normal
to the energy surface, (δn, δn, δn, δn), and along with the
remaining ones can be entirely ignored.

In greater detail, consider the case for J = 0.5 and
U = 0.5 and an initial coherent state density wave
|40, 0, 40, 0, 40, 0, 40, 0〉. It turns out that the search direction
associated with the most unstable eigenvector direction is
(δn,−δn, δn,−δn). This direction can capture the saddles of
multiplicity 2; as usual multiplicity 1 saddles require only the
wave packet central orbit. The two choices for the fundamental
search domain are either the positive half-line or the negative
half-line along this direction.

It is slightly more complicated to determine the fundamental
search domain for the multiplicity 4 saddles. The second and
third most unstable directions are equally unstable (degenerate
eigenvalues) and are roughly given by (δn, 0,−δn, 0) and
(0, δn, 0,−δn). Actually, due to the degeneracy, the two
eigenvectors that emerge from the calculations are not these
two but rather a linear combination that hides the simple
structure of these two vectors. It is necessary to recognize
that rotating the two calculated vectors generates the two
above, which are then simpler and related by a cyclic
permutation. With the vectors above, four choices for a
fundamental search domain could be given by the full line
along (δn,−δn, δn,−δn) and either the positive or negative
half-line along either (δn, 0,−δn, 0) or (0, δn, 0,−δn).
Another choice, though, could be the positive half-lines of
(δn,−δn, δn,−δn) and (δn, 0,−δn, 0) plus the positive half-
lines of (δn,−δn, δn,−δn) and (0, δn, 0,−δn). Some care
must be exercised. The choice of the positive half-line along
(δn,−δn, δn,−δn) and the full line along (δn, 0,−δn, 0)
would turn out to miss half of the possible multiplicity 4 saddles
entirely (those found would come with a symmetry-related
partner). A simple fundamental search domain for multiplicity
8 saddles is the positive half-lines of all three directions.

One curious feature is that is that the largest eigenvalue
(a variance) turns out to be approximately 90 times greater
than the next two eigenvector directions (

√
90 times more

unstable). This has some interesting consequences. First, a
crude guess would be that the earliest saddle of degeneracy
4 should show up on a timescale roughly

√
90 times the first

return time, τ1. In fact, the first degeneracy 4 saddle appears
at roughly 7.5τ1. Thus, there is a significant time separation
of the initial appearance of saddles with multiplicities, (1,2),
relative to saddles with multiplicities, (4,8). The first return
is nondegenerate, but by just after the second return, the
quantum dynamics quickly becomes dominated by doubly
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degenerate saddles. The situation remains this way until 7.5τ1,
when the first quadruply degenerate saddle arises. They are
few and weakly contributing, and so it still takes quite a bit
more time for the quantum dynamics to be dominated by
the highest degeneracy saddles. If one is only interested in
the initial interferences that arise in the dynamics, a one-
dimensional search suffices for this eight-site case, but to
follow the dynamics long enough to see the emergence of
the full symmetry enhancement in the autocorrelation function
requires a full three-dimensional search.

IV. IDENTIFYING DYNAMICAL REGIMES USING
Mτ · A−1

α · MT
τ and M−1

τ

Many Hamiltonian systems depend on parameters, and they
might be controllable in many cases, for example, by varying
externally controllable external field strengths. For systems
with many degrees of freedom, far out of equilibrium, it
can be rather challenging to get a full understanding of the
dynamics for an individual system, let alone for the range
of dynamical possibilities of the system as a function of the
parameters. The analysis using the spectrum of Mτ · A−1

α · MT
τ

and its associated eigenfunctions (after mapping back with
M−1

τ ) are ideally suited to elucidating the various dynamical
regimes of such a system. The results depend naturally on
the phase space region of interest, which is determined by the
central trajectory of the wave packet or coherent state. For the
Bose-Hubbard model of Sec. III, there are various transitions
related to the relative strengths of the hopping (J parameter)
and interactions (U parameter); one example is the much
discussed superfluid-Mott insulator transition [43]; another is
the dynamical transition to more chaotic dynamics away from
the pure hopping and pure interaction limiting systems, which
represent integrable systems [44].

A. Density wave dynamical transition

To illustrate the idea, let J = cos θ and U = sin θ so that
J 2 + U 2 = 1. There is a complete rotation of the system
from pure hopping dynamics to pure interaction dynamics
covered by varying θ across the range 0 � θ � π/2. For an
eight-site ring, Fig. 7 shows the expanding part of the spectrum
(the base-10 logarithm of all eight λj,+) as a function of
θ for a density wave coherent state with populated sites of
mean number n = 5 and b = √

5 (i.e., |5, 0, 5, 0, 5, 0, 5, 0〉).
The spectrum is invariant with increasing particle number
if the interaction strength U is reduced by the increase.
Thus, for any value of the occupied sites, i.e., coherent state
density wave |n, 0, n, 0, n, 0, n, 0〉, it generates the exact same
θ -dependent spectrum as Fig. 7 if one uses U = 5

n
sin θ or

rather J 2 + ( n
5 )2

U 2 = 1.
Moving from left to right, the spectrum exhibits a seemingly

discontinuous change in the dynamical properties of the system
near θ = 1.01219704 where the spectrum abruptly shifts and
the eigenvectors completely rearrange their orientations. This
occurs at the same location independent of the number of sites
in the ring. For example, Fig. 8 plots the largest eigenvector
for all rings with even numbers of sites from 4 to 18 and n = 5
as in Fig. 7.

 0

 2
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 12

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

λlog +

θ

FIG. 7. Spectrum, {log10 (λj,+)}, of Mτ · A−1
α · MT

τ as a function
of θ . The initial state is a coherent state density wave for a ring with
eight sites whose parameters are given in the main text. All 8 λj,+ are
shown, but degeneracies make it appear as though fewer are plotted.
There is a strong realignment of the associated eigenvectors, {( δ �p0

δ�q0
)
j
},

at the transition point in the spectrum. To the right of the transition, the
eigenvectors essentially do not involve the initially unoccupied sites,
whereas to the left, all the sites are involved and there is a double
repetition around the ring in the structure of the eigenstates.

1. Universal self-trapping dynamical transition

The asymptotic structure of phase space deduced from finite
time propagation here must reflect the structure of phase space
imposed by the stability properties of the shortest periodic
orbits. In particular, if there is a short orbit bifurcation as a
function of some dynamical parameter, the abrupt structural
changes to which it gives rise must show up in spectral
plots such as Figs. 7 and 8. A great deal is known about
the stationary solutions of the discrete self-trapping equation
and their bifurcations [45], a phase space version being used
in this example. Presumably, the dynamical transition shown
here, which is universal in site number and mean occupation
number of the scaled system, can be traced to a short periodic
orbit bifurcation with universal properties to which the density
waves are particularly susceptible (the density waves involve
the region of phase space structured by certain periodic orbits
or stationary solutions undergoing bifurcations). Although the
transition is extremely abrupt in Figs. 7 and 8, its lack of being
discontinuous is only due to the finite time of propagation used.

This transition, assuming the appropriate scaling of the
value of U , has a peak which occurs at a universal value of
nU/J = n tan θ = 8 to an accuracy of better than one part
in 109. It has the curious feature that left of the transition
(smaller θ ), there are the maximum number, N − 2, of positive
Lyapunov exponents, whereas to the right (larger θ ), half of
them vanish, leaving only N/2 − 1 positive Lyapunov expo-
nents. Simultaneously, the sum of the Lyapunov exponents
(Kolmogorov-Sinai entropy [38]) is approximately constant
across the transition and therefore the remaining positive
ones are doubled on average on the right, which would
correspond to the self-trapped regime. The values of initial
conditions involving the initially unoccupied sites remain
very close to zero, meaning that they have no involvement
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FIG. 8. Largest eigenvalue {log10 (λ1,+)} of Mτ · A−1
α · MT

τ as a
function of θ . The initial state is a coherent state density wave for rings
with 4,6,8,10,12,14,16,18 sites with populated sites of mean number
n = 5. All eight cases of λ1,+ are shown, but portions of the curves
with fewer sites are copied in rings with greater numbers of sites. For
example, the 12-site ring follows partly the 4-site ring and partly the
6-site ring results. That makes it appear as though fewer examples are
plotted. The upper panel is a magnification of the transition region,
which is magnified again in the lower panel near the sharp peak.

in the production of saddles. Thus, the initial conditions of
saddle trajectories for the initially unoccupied sites remain
very nearly unoccupied for the entire time range that the
semiclassical theory can be used to reconstruct the quantum
dynamics.

The eigenvectors related to eigenvalues greater than the
energy surface normal follow a pattern of double degeneracy.
If N/2 − 1 is even, they are all doubly degenerate, whereas if it
is odd, the most unstable eigenvector is the nondegenerate one
and responsible for creating saddles that have multiplicities of
2. As the gap between these eigenvalues gets larger, it takes
longer for the effective saddle multiplicity, M(t ), to transition
from 1 → . . . 2N .

On the left side of the transition, the most unstable eigen-
vectors involve the initially unoccupied sites strongly. They
must satisfy the discrete symmetries of the ring as must the
eigenvectors on the right side, but that is accomplished in a very
different way. They exhibit a pattern which is twice repeated
in going around the ring once, unlike the eigenvectors right of
the transition. In addition, there are “level” crossings where

 0
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λlog
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FIG. 9. Spectrum, {log10 (λj,+)}, of Mτ · A−1
α · MT

τ as a function
of θ . The upper panel shows the {log10 (λj,+)} of a four-site ring
with equal populations and phase relations; see text for details. The
lower panel shows the {log10 (λj,+)} for an eight-site ring with an
alternating phase relationship from site to site; see text for details.
There is no abrupt dynamical transition for these examples as there
is for coherent state density waves. There is a transition to chaotic
dynamics in the lower panel and the greatest degree of instability
seen for any trajectories.

the association between eigenvectors and eigenvalues switch
back and forth, and thus there is the possibility of transitions
in the dynamics with regards to which subspaces dominate the
production of saddles. On a final note, if one chooses an initial
coherent state with all of its particles in a single site, there is a
generally similar appearance to the spectral dependence on θ .
There does not appear to be qualitatively new dynamical fea-
tures associated with initially occupying a single site relative
to the density wave example although the details differ.

2. Other cases

There are initial conditions (regions of phase space) though
which do behave quite differently than the density waves.
For example, it is straightforward to show using the mean
field (Hamiltonian) equations of motion that the trajectory
associated with equal site populations and phases of b is
stable for all values of J,U . Its spectrum must behave quite
differently than the density wave. Consider a four-site ring
populated |20, 20, 20, 20〉 with all b = √

20. Figure 9 shows
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its spectrum in the upper panel and illustrates how different
the behavior can be from the coherent state density wave
example. It turns out that the largest eigenvalue is associated
with the eigenvector perpendicular to the energy surface, which
just represents the associated dynamical shearing. One of the
eigenvalues is doubly degenerate and only three curves are
apparent. A small change to this coherent state, i.e., alternating
the sign of the bj , creates the most unstable dynamics that we
have seen in calculations. This is such a strong effect that the
mean site particle number had to be reduced to 2.5 to prevent
the instability from exceeding the precision available in the
calculation. The example in the lower panel of Fig. 9 is for
eight sites with b = (−1)j+1

√
2.5 for the j th site. There is no

abrupt transition for this initial state, but there are a number
of level crossings where the dominant dynamical features
are interchanged. There appears to be only five eigenvalues
because three of them are doubly degenerate. They are the
ones which on the right side of the figure are interior to
the highest and lowest eigenvalues. This is also where the
lowest eigenvalue is the one associated with the normal to the
energy surface and the most unstable to the creation of doubly
degenerate saddles.

V. SUMMARY

Gaussian wave packets and their intimately related coun-
terparts, coherent states for bosonic many-body systems, have
great importance in a wide variety of fields. With respect to
their dynamics in systems far from equilibrium, i.e., short
wavelength or mesoscopic regimes, semiclassical methods are
ideally suited to furnish excellent quantitative approximations
and physical pictures of the essential physics. Nevertheless,
they have rarely been applied completely to wave packet
dynamics for systems with more than a couple of degrees of
freedom. The dual problems of performing complex trajectory
saddle point searches with many parameters and determining
which ones must be kept due to Stokes phenomena present
formidable barriers to the development of practical techniques
for implementing the theory fully.

In this paper, a technique similar in spirit to the tangent
space decomposition method for calculating Lyapunov expo-
nents [36,37] and the anisotropic method [33] is developed to
identify the minimal search space. From the minimal space, the
method only relies on identifying real transport pathways and a
Newton-Raphson scheme introduced earlier [38]. Any system,
independent of its number of degrees of freedom, with a small
number of dominant expansion directions can be treated. With
these techniques, it has been demonstrated that thousands of
saddles can be located in individual systems possessing up
to eight degrees of freedom. That particular Bose-Hubbard
model case requires a minimal three-dimensional parameter
search space; the high-symmetry, low-multiplicity saddles
require even smaller dimensional searches. On the other hand,
a straightforward search without the stability analysis would
have required a 16-dimensional parameter search space. That
would have rendered the saddle search effectively impossible
to carry out. Up to the propagation times considered, the set
of saddles identified is essentially complete, which can be
partly confirmed by comparing a Monte Carlo method applied
to the classical transport with the diagonal approximation of

the semiclassical quantities. Furthermore, with a complete
knowledge of the saddles, it was shown in Ref. [9] that a
semiclassical theory could capture post-Ehrenfest interference
phenomena in the context of the Bose-Hubbard model in a ring
configuration extremely accurately.

The existence of symmetries in the system dynamics im-
poses a significant structure in the locations and multiplicities
of symmetry-related saddle trajectories, depending on the
choice of system state being propagated. Understanding the
fundamental domains, which follows from the group opera-
tions involved and the eigenvectors of A−1

α (τ ) multiplied by
M−1

τ , allows one to reduce the search space further. Symmetry
also has a strong influence on the dynamics. It turns out that
high-symmetry, low-multiplicity saddles dominate the earliest
return dynamics that later give way to dominance by low-
symmetry, high-multiplicity saddles. The high-multiplicity
saddles generate constructive interference and enhance long
time averages of quantities such as the autocorrelation func-
tion. For the far-out-of-equilibrium dynamics of a many-body
system such as the Bose-Hubbard model discussed, symmetry-
related saddles necessarily lead to constructive interference,
and any enhancement factor is revealed over time, not imme-
diately, depending on the timescales at which the various saddle
multiplicities are dominant. An example was shown of the time
dependence of the enhancement factors. There the transition
of the enhancement factor from 1 → 3 → 6 occurred over
just a few Ehrenfest times, but for other cases, such as the
eight-site case mentioned, and in other dynamical regimes,
it can take much longer for the full enhancement to settle
into the dynamics. All of this information is captured in a
full semiclassical theory incorporating quantum interference
through the properties of the saddles.

The dynamical analysis relying on the spectrum of A−1
α (τ )

and the associated eigenvectors of initial conditions found with
the application of M−1

τ can be turned into a powerful and quick
way to investigate various dynamical regimes and possibilities
of multidimensional dynamical systems, especially for those
depending on tunable parameters. As illustrated with the Bose-
Hubbard model, high degrees of instability or abrupt dynamical
transitions are easily identified. Commonalities also appear
evident, such as the similarities seen on varying site numbers
or scaling with particle numbers. The eigenvectors also must
reflect the symmetries of the system, but there may be multiple
ways of accommodating them in high-dimensional spaces. Any
transitions between such regimes are associated with spectral
crossings that indicate where they occur in the parameter space.

Building on the work here, there are a large number of
directions that future research could go. There are many other
kinds of quantities of interest that can be pursued. There
are other classes of states, such as Fock states, that would
require modifying the implementation techniques. In addition,
there are entanglement measures, and out-of-time-ordered
correlators, questions regarding thermalization, and relaxation
in many-body systems that would be of interest as well. There
are also spectroscopic problems that could be addressed, such
as found in molecular spectroscopy, femtosecond chemistry,
or attosecond physics. The beginning would be to identify the
equivalent Lagrangian manifolds associated with the quantities
of interest and to adapt the search methods to the relevant
manifolds.
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APPENDIX: ASSOCIATING COHERENT STATE
AND WAVE PACKET PARAMETER SETS

First consider the usual quantum harmonic oscillator in one
degree of freedom,

H (p̂, x̂ ) = p̂2

2m
+ mω2

2
x̂2 (A1)

with the creation operator

â† = 1√
2h̄

(√
mωx̂ − i

p̂√
mω

)
. (A2)

The projection of a coherent state into a configuration space
representation follows as

〈x|z〉 = 〈x| exp

(
−|z|2

2
+ zâ†

)
|0〉

= exp

(
−|z|2

2

) ∞∑
n=0

zn

√
n!

〈x|n〉

=
(mω

πh̄

) 1
4
e− |z|2

2 − mωx2

2h̄

∞∑
n=0

zn

√
2nn!

Hn

(√
mω

h̄
x

)

=
(mω

πh̄

) 1
4

exp

(
−|z|2

2
− z2

2
− mωx2

2h̄
+

√
2mω

h̄
xz

)
,

(A3)

where the Hn(x) are Hermite polynomials, and the last line
follows from an application of the definition of their generating
function. Therefore, the application of the exponential of the
creation operator is just a configuration space shift of the
ground state multiplied by a global phase.

The following associations of parameters puts the wave
packet and position representation of the coherent state into
the same form. Let

mω = bα and z =
√

bα

2h̄

(
qα + i

pα

bα

)
; (A4)

then the configuration space representation of the coherent
state is

〈x|z〉 = exp

[
− bα

2h̄
(x − qα )2 + i

h̄
pα (x − qα ) + i

2h̄
pαqα

]

×
(

bα

π h̄

) 1
4

, (A5)

which is to be compared to Eq. (2) reduced to its one-degree-
of-freedom form,

φα (x) =
(

bα

π h̄

) 1
4

exp

[
− bα

2h̄
(x − qα )2 + i

h̄
pα (x − qα )

]
.

(A6)

With the parameter association of Eq. (A4), the only distinction
between the two states is the phase convention. The wave
packet form does not include the phase exp[ipαqα/(2h̄)],
which is easily taken into account.

Next consider an N -degree-of-freedom set of coupled
harmonic oscillators,

H (p̂, x̂) = p̂ · p̂
2m

+ m

2
x̂ · A · x̂. (A7)

As throughout the entire paper, implicitly the right vectors are
column vectors and the left vectors are row vectors. There is
an orthogonal transformation to normal coordinates for the
column vectors,

x̂′ = O · x̂ and p̂′ = O · p̂, (A8)

such that

H (p̂′, x̂′) = p̂′ · p̂′

2m
+ m

2
x̂′ · �2 · x̂′, (A9)

where � is the diagonal matrix

� =

⎛
⎜⎜⎝

ω1 0 0
0 ω2 0 . . .

0 0 ω3
...

. . .

⎞
⎟⎟⎠ (A10)

and

�2 = O · A · OT . (A11)

The ground state in normal coordinates is

〈x̂′|0〉 =
(

mNDet(�)

πN h̄N

)1/4

exp
(
− m

2h̄
x̂′ · � · x̂′

)
(A12)

As A is symmetric and positive definite, it can be decomposed
as A = BT · B (with B = � · O). Thus, the ground state can
also be written in the original coordinates as

〈x̂|0〉 =
(

mNDet(�)

πN h̄N

)1/4

exp
(
− m

2h̄
x̂ · BT · �−1 · B · x̂

)
.

(A13)

From this equation, it is already clear that

bα = mBT · �−1 · B, (A14)

since the action of the exponential of the creation operators is
a displacement of the ground state, not a deformation.

Assume the coherent state is defined in terms of the creation
operators associated with the original coordinate system. Fur-
ther, let us project it to begin with onto the normal coordinates.
Thus, the initial quantity to evaluate is

〈x̂′|z〉 = 〈x̂′| exp

(
−z · z†

2
+ z · â†

)
|0〉. (A15)
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Transforming the creation operators to those associated with
the normal coordinates leads to the identifications (â†)′ = O ·
â† for the column vector and z′ = z · OT for the row vector.
At this point, action of the exponential of the (â†)′ is just N

independent translations. This gives

z′ =
√

m�

2h̄
· [q′

α + i(m�)−1 · p′
α], (A16)

or in component form

z′
j =

√
mωj

2h̄

(
q ′

α,j + i
p′

α,j

mωj

)
, (A17)

and that implies for the column vectors of the translations

qα = OT · q′
α,

(A18)
pα = OT · p′

α,

which along with Eq. (A14) associates the multidimensional
coherent state parameters with the wave packet parameters,
except for a global phase convention, which is not of great
interest.

Returning to just one degree of freedom, there is the
possibility of introducing chirps in wave packets, as mentioned
in the text, which corresponds to the introduction of a complex
width bα . It is well known that free particle motion introduces
a complex width parameter as a function of time. The classical

essence of this effect is a linear canonical transformation
of the shearing taking place in the dynamics. As a linear
canonical transformation can be associated with an exact
unitary transformation in quantum mechanics, a natural way
to introduce this effect into a coherent state is to consider the
ground state of the Hamiltonian,

H (p̂, x̂ ) = (p̂ + εmωx)2

2m
+ mω2

2
x̂2

= p̂2

2m
+ εω

2
(x̂p̂ + p̂x̂) + 1 + ε2

2
mω2x̂2m.

(A19)

The ground-state energy remains E0 = h̄ω/2 and the eigen-
function a Gaussian, but the width becomes complex and it
turns out that bα = mω(1 + iε). A phase convention can be
absorbed into the expression for the normalization. A coherent
state can be defined in exactly the same way as in Eq. (A3)
with suitably transformed annihilation and creation operators
possessing the same properties. The only change is the com-
plexification of bα , which shows up in that equation with the
replacement of mω with mω(1 + iε) with the exception of the
normalization factor, which is unchanged. Thus, bα is replaced
with (bα + b∗

α )/2 in the normalization. The form of Eq. (A5)
emerges again, only with a complex bα , except that the global
phase factor is more complicated.
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