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The structural properties of strongly coupled ions in dense plasmas with moderately to strongly degenerate
electrons are investigated in the framework of the one-component plasma model of ions interacting through
a screened pair interaction potential. Special focus is put on the description of the electronic screening in the
Singwi-Tosi-Land-Sjolander (STLS) approximation. Different cross-checks and analyses using ion potentials
obtained from ground-state quantum Monte Carlo data, the random phase approximation (RPA), and existing
analytical models are presented for the computation of the structural properties, such as the pair distribution and
the static structure factor, of strongly coupled ions. The results are highly sensitive to the features of the screened
pair interaction potential. This effect is particularly visible in the static structure factor. The applicability range of
the screened potential computed from STLS is identified in terms of density and temperature of the electrons. It is
demonstrated that at 7, > 1, where r; is the ratio of the mean interelectronic distance to the Bohr radius, electronic
correlations beyond RPA have a nonnegligible effect on the structural properties. Additionally, the applicability
of the hypernetted chain approximation for the calculation of the structural properties using the screened pair

interaction potential is analyzed employing the effective coupling parameter approach.
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I. INTRODUCTION

Dense plasmas with different temperatures of ions and
electrons are realized in experiments on inertial confinement
fusion (ICF) [1-4]. During compression of the target by a laser
or intense charged particle beams [5—-7] electrons get heated
first, followed by the subsequent thermalization with an ionic
subsystem. In such plasmas, full equilibration can be finally
reached due to the energy exchange between electrons and
ions. However, due to the large ion-to-electron mass ratio,
the temperature equilibration is rather slow. Depending on
the plasma density and initial values of the temperatures of
electrons and ions, the thermalization time is in the range
from ~10° to ~10° fs [8—12]. This time is much larger
than the characteristic timescale of the ionic subsystem of
dense plasmas, which is Nw;, where wp; denotes the ion
plasma frequency, and this time increases with the plasma
coupling strength [13]. This results in a transient stationary
nonequilibrium state of a dense plasma with relatively cold
strongly coupled ions and hot ideal or weakly coupled electrons
[14-17]. Another reason for the interest in a dense quantum
plasma with strongly coupled ions is the study of the properties
of extreme states of matter upon laser compression of materials
[14,18-20] and laboratory astrophysics [21,22].

The strong coupling within the ionic subsystem can be
detected by analyzing the static structure factor S(k), which
is measured using the x-ray Thomson scattering technique
[23]. For instance, in a recent experiment on the laser shock-
compressed aluminum, the product of the Fourier transform of
the electron density and the static structure factor of strongly
coupled ions was measured via x-ray Thomson scattering [17].

Motivated by the experimental realization of dense two-
temperature plasmas [24-26], in this paper we consider a
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fully ionized quantum plasma consisting of weakly nonideal
partially degenerate electrons and strongly coupled classical
ions. The theoretical description of such plasmas is challenging
due to the simultaneous effect of nonideality, electron quantum
degeneracy, thermal excitation, and mostly because of the out-
of-equilibrium condition. At present, there exists disagreement
on peculiarities of the ionic structure factor of dense plasmas.
For instance, to find an explanation of the observed structural
characteristics of the ions, Fletcher et al. [27] and Ma et al. [24]
proposed an effective ion-ion interaction potential consisting of
a Yukawa potential with an additional short-range repulsive po-
tential. This model was questioned by Clérouin et al. [15], who
investigated the structural characteristics of two-temperature
dense plasmas by a molecular dynamics simulation of ions
based on a Thomas-Fermi density functional theory treatment
of the electrons. Later, Harbour er al. [28] investigated the
compressibility, phonons, and electrical conductivity of warm
dense matter on the basis of an improved neutral-pseudoatom
model and also found disagreement with the conclusions of
Refs. [24,27].

Due to the high complexity of the study of dense plasmas
out-of-equilibrium, a careful analysis of both the experimental
and the simulation data by performing comparison to well
defined models with clear approximations is indispensable.
Such a comparative analysis helps to identify the inner
machinery of the microscopic processes, which cannot be
observed directly in measurements. In fact, previous works
on dense plasmas and warm dense matter hugely benefited
from such comparisons. For instance, the analysis of the
dynamical conductivity using the Mermin dielectric func-
tion helped to identify the non-Drude-like behavior induced
by electron excitations in the conduction band [29]. The
results from the one-component Coulomb plasma model
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(OCP) and the Yukawa one-component plasma model (YOCP)
were used for the analysis of the structural properties of
warm dense matter [15,30], where the comparison with the
OCP results helped to understand the role of screening,
whereas comparison with the YOCP results is needed for
having a picture about higher order electronic correlation
effects.

Regarding structural properties, clearly, it will be very
useful to compare data from ab-initio simulations to results ob-
tained on the basis of improved ion potentials in the framework
of the linear response theory [31]. Indeed, if the quantum and
exchange-correlation effects are properly taken into account in
the density-density response function of the electrons [32-34],
differences with the data from the more advanced simulations
[35-38]—¢.g., molecular dynamics simulation of ions with
the electrons treated by density functional theory (DFTMD)—
will clearly indicate that nonlinear screening effects might
be of importance. Therefore, with respect to the applicability
to a quantum plasma with strongly coupled ions, accurate
analyses and checks of different existing theoretical models
of the electronic density response (polarization) function
are needed. To this end, in this paper, we study how the
structural characteristics of the strongly coupled ions in a
dense plasma are related to the choice of the screened ion
potential, in linear response. In particular, we are interested
what is the effect of quantum degeneracy and electronic
nonideality on these potentials and, hence, on the ion structure.
We are considering ion potentials that are obtained from
ground state quantum Monte Carlo data (QMC), from the
random phase approximation (RPA), and various analytical
models.

The particular focus is put on the use of the local field
correction within the well-known Singwi-Tosi-Land-Sj6lander
approximation (STLS) [39,40].

The motivation for the accurate and detailed investigation
of the applicability of the STLS based model for dense plasmas
and warm dense matter studies is that the STLS is conceptually
clear, technically simple, and has been widely used in many ap-
plications where electronic correlations are important. For ex-
ample, STLS-based methods were used to investigate transport
[41,42] and relaxation [43] properties, stopping power [44—
48], the dynamical as well as the static structure factor
[49-53], and thermodynamic properties [54-57] of dense
plasmas to mention but a few. Recently, considering the elec-
tron kinetic equation within a multiscale approach, Graziani
et al. [58] developed an extended mean-field model which
incorporates electronic correlations through the STLS ansatz.
Particularly, in the light of the latest developments in the fluid
description of inhomogeneous quantum and nonideal plasmas
[59-61] with the STLS closure relation, the presented analysis
of the applicability of the STLS description of the electronic
correlations in the framework of the multiscale approach is
important and timely.

The paper is structured as follows: In Sec. II, the plasma
state of interest and the corresponding dimensionless pa-
rameters are defined. In Sec. III, the theoretical formalism
and the methods of calculations are presented. The results
on the structural properties of strongly coupled ions are
shown in Sec. IV. In the last section, we summarize our
findings.

II. PLASMA PARAMETERS

In this paper we consider plasmas with degenerate electrons,
i.e., the Fermi energy of the electrons, Ep, is larger or
comparable to their characteristic thermal energy, k5 7,, and
the electronic degeneracy parameter obeys 6 = kgT,/Ep < 1.
Furthermore, we consider plasmas with a high degree of
ionization. This means, the temperature of the electrons is
much higher than the atomic ionization energy. In dense
plasmas, the ionization energy is drastically reduced due to
quantum and correlation effects.

This effect is referred to as the pressure ionization or Mott
effect. At 6 < 1, the condition of pressure ionization can be
defined approximately by requiring the Fermi energy to be
greater than the modulus of the binding energy of the electron
(~e?/2ag), which yields for the Mott point, rM = a jap ~
1.92 [62], where aé"’ is the mean interelectronic distance at the
appropriate density, and ag = i>/m.e” is the first Bohr radius,
for the example of hydrogen. Indeed, this simple estimate gives
the correct order of magnitude. First-principle path-integral
Monte Carlo simulations indicate that 90% of the bound states
break up at a density of r; ~ 1.2 [63]. At higher temperature,
the combined thermal and pressure ionization happens at lower
density (larger ry). Based on these estimates we will consider,
in the following, densities n, > 10> cm™ and electronic
temperatures 7, > 10* K.

The electrons of the dense plasma are conveniently char-
acterized by the dimensionless parameters 6 and r; (we
assume that the system is paramagnetic), whereas the state
of the ions is determined by the classical coupling param-
eter [' = Zzez/(akBTi), where Ze is the ion charge, T; is
the ion temperature, and a = (4n/3)"'/? characterizes the
mean distance between ions (Wigner-Seitz radius). In many
experiments with dense plasmas, the ions are often strongly
coupled corresponding to aliquid state, I' > 1, but still far from
the crystallization point [16,64]. Therefore, we will consider
ion coupling parameters in the range 1 < I' < 50.

To have a complete physical picture of the nonisothermal
plasma, in addition, the electron-ion coupling parameter, ['; =
Ze? Jak,T,, must be determined. This parameter indicates the
validity of the theoretical method in use. For example, when
[ < 1 (an extremely dense plasma, r; < 1, or very hot
electrons), the ions can be described within the OCP. If I'; < 1,
the ions still can be studied within the one-component plasma
model, but with a screened ion-ion pair interaction potential
[65]. In this case, the effect of electrons is absorbed into the
effective ion potential. Moreover, due to the weak electron-ion
coupling, the screening by the electrons can be described in the
framework of linear response theory. In the regime of strong
coupling between the electronic and ionic subsystems, I'g; > 1,
the creation of bound states (electron-ion recombination) must
be considered. But this case is excluded by our choice of
the density and temperature range, as explained above. As a
rule, in dense plasmas (warm dense matter) I'g; < 1 [64,66].
In Ref. [64], this was confirmed by orbital-free density func-
tional theory. Furthermore, due to strong screening in dense
plasmas, a more realistic electron-ion coupling parameter is
I'ei x exp(—«), where the dimensionless screening parameter
(screening length in units of a) is in the range « ~ 1 — 2, at
the considered densities and temperatures (for a more accurate
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TABLE I. Examples for experiments where two component quantum plasmas with strongly coupled ions were realized.

Plasma parameters

Systems and References n [108 cm™3] T, and T; [10° K] 0 and r,

Cryogenic DT implosion on 2<n<s10 23 < T, <230 02<60<£0.38 1<Srs<eo
OMEGA [67,68] T, =T, 1.17<r, <2

Direct-drive ignition 25<n<3 69 < T, <464 02<60<50.8 05<Tr<3
at the NIF [68,69] T, =T, 1.75<r; < 1.86

Solid Be heated by 4-5 keV 2<n<4 11 <7, <110 007<6<1.15 2<r<10
pump photons [70] T, =T, 1.6<r, <2

“Laser-driven shock-compressed n>~5.46 T, ~ 100 6 ~0.5 I ~50
aluminum [24] T.]T;, =5 ry = 1.435

Laser-driven shock-compressed n~?228 T, ~ 139 0 ~0.88 75<T <75

Be sample [25] 2<T,/T; <20 ry =1.92

“Laser-driven shock-compressed n>~6."7 T, >~ 150 6 ~0.95 4<r1r<16

Be sample [26] 1.8<T,/T; <65 re =1.34

4T,/ T; was evaluated in Refs. [15,28].
T,/ T; was evaluated in Ref. [28].
°T,/T; was evaluated in Refs. [28,71].

definition of the coupling parameter, see Sec. IIIB). As a
result, the actual electron-ion coupling is reduced even further.
Also, for simplicity and without loss of generality, we set
Z = 1. In this case, the ratio of the electron temperature to the
temperature of ions can be related to 6, ry, and I" as 7,/ T; ~
1.84 x (0/rs) . For instance, at ry = 1.5 and I'; < 50, the
degeneracy parameters & = 0.5 and 0.1 imply a temperature
ratio T,/ T; < 30and 7T,/ T; < 6, respectively.

A few relevant examples of experiments and associated
plasma parameters are presented in Table I. There, densities,
temperatures, and the corresponding values of the degeneracy,
density, and ionic coupling parameters are given. These data
confirm that the plasma parameters considered in this work are
experimentally attainable and where the studied effects will be
of relevance.

Note that in many experiments, the plasma undergoes a
complex evolution during which the plasma parameters change
substantially [67—70]. For example, in Ref. [68], it was shown
by analyzing experimental data [67,69] that the ICF plasma
enters the regime with strongly coupled ions (I' > 1) and
quantum nonideal electrons (0 < 1 andry > 1). In the table we
also list experiments where nonisothermal (two-temperature)
quantum plasmas with I > 1 [24-26] are observed. For these
experiments, the electron-ion temperature ratio, 7,/7;, was
evaluated in Refs. [15,28,71].

III. THEORETICAL DESCRIPTION

A. One component plasma model with effective
ion-ion interaction

First, we briefly discuss the route allowing to decouple the
dynamics of the ions from that of the electrons, as well as
the key assumptions of the model. The ions are considered
to be classical, and the electrons are treated fully quantum-
mechanically in terms of continuous variables. Due to the
large difference in masses, the electrons are assumed to adjust
themselves instantaneously to a change in the ionic locations.
Therefore, a dense plasma is considered as a mixture of

classical strongly coupled ions and a homogeneous quantum
fluid of electrons. These two systems are coupled through the
interaction energy,

1
Usi = 5 D Pei®)ii; (K)iie (=K), )

k0

where 7i denotes the deviation from the mean value of the
density, and @.; (k) is the Fourier transform of the bare electron-
ion interaction potential. As long as the potential energy U.;
is smaller than the quantum kinetic energy of the electrons
(which, at 8 « 1, is of the order of Ef), we may treat
ion-electron interaction as a perturbation. For instance, in the
lowest order approximation, U = Ue(il) = 0, we recover the
OCP model for the ions, meaning the electrons do not respond
atall to the field of the ions. In the second-order approximation,
the response of the electrons is linear in the perturbing field
of the ions, i, (—k) = x.(K)@% (K)ii; (—k), where x.(k) is the
static electron-density response function of a translationally
invariant electron system. Then we find

1
U = 55 2 100 xe () (s ().
k0

2

From Eq. (2) we see that Uéz ) depends only on the variables of
the ions. Therefore, defining the screened ion-ion interaction
potential as [72]

Z%¢? a3k ~
~i k 2 . Kk lk~(l'jr—l‘j),
0 1] +/(2n)3|§0e( ) xe(K) e

3)

CD(l'jf,I'j)Z

the decoupled total Hamiltonian of the system can be written
as

H = H;(R,P) + H,[n.], “4)

where R =1, ...,ry, and P = py, ..., pw, is the complete set
of ionic coordinates and momenta. The Hamiltonian of the
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ionic subsystem reads,

N; N
Hi(R,P) = Ki(P)+ Y > &(rj.x)), (5)
j=1j'>j
with K being the kinetic energy of the ions. Further, H,[n.] in
Eq. (4) is the Hamiltonian of the electronic reference system
without perturbation by the field of the ions. The Hamiltonian
Eq. (4) can then be used for the description of various properties
of the system [73].

In the following, we consider the system without the
influence of external fields (electric or magnetic) and take
the homogenous electron gas as the reference system. Taking
the bare electron-ion interaction potential in the form of the
Coulomb potential, ¢;(K) = 47 Ze?/ k>, one readily recovers
the widely used expression for the screened potential from

Eq. (3)
_ d3k Q2 ikr
0= [ ©

with e 7! (k, @) being the inverse dielectric response function
of the electrons,

- 477 &2
e ko)y=1+ k_2Xe(k7 w). (N
It should be noted that, if for ¢, instead of the Coulomb
potential an electron-ion pseudopotential (such as the so-called
empty core potential) is chosen, the effective potential Eq. (3)
must be used.
Further, all electronic correlation effects are conveniently
incorporated in the so-called local field correction G that enters
the density response function via

4 2
(ko) = x5 (ko0) + TG o) =11 ()

where x( denotes the finite temperature ideal density response
function of the electron gas [74].

A highly successful way to approximately determine the
static local field correction is provided by the self-consistent
static STLS scheme [39,40], which is based on the relation

1 ( dk' k-K /
GSTLS(k’O):_;/(zTP k/2 [SSTES(k —K') — 1], (9)

SSTLS

where the static structure factor is calculated according
to the fluctuation-dissipation theorem as

SSTLS(k)__L S K 1 -1 (10)
B dme\e(k, ) ’

where the summation is over the Matsubara frequencies,
z; = 2mil/Bh. The inverse dielectric function is computed via
Eq. (7) using xo and G35, Thus, Eqs. (7)-(10) form a closed
set of equations that can be solved self-consistently, to yield
the static dielectric function €3-S (k, 0). In the following, the
potential computed in this way will be referred to as the STLS
screened potential, whereas the RPA screened ion potential
corresponds to the case G = 0.

The most reliable data for the static local field cor-
rection are those obtained from ab initio quantum Monte
Carlo simulations. Corradini et al. [75] provided an accurate

parametrization of the ground-state quantum Monte Carlo data
[76] for ry =2, 5, 10, and 100. To check features of the
radial pair distribution function and static structure factor of
the strongly coupled ions interacting via the STLS screened
ion potential, we provide comparisons—in the context of the
considered parameters—with results computed using the static
local field correction of Ref. [75] at r; =2 and 6 = 0.01
(referred to as the QMC data based potential, below).

Using in Eq. (6) the first-order result of the long wavelength
expansion of the inverse ideal (RPA) response function, i.e.,
Xo L(k — 0) ~ ay, the widely used Yukawa-type screened ion
potential is obtained,

. QZ —kgr
Oy(rin, T)=—e ", (1D
r
where @y = 4me?/k%, and the finite-temperature
inverse screening length, k;, is equal to ky(n,T)=

[3k3 20211 p(B)] "2 \yith the inverse electron temperature
B =1/kpT,, and Bu is determined by the normalization,
n=~20,Bur)/7?p¥?. 1t is worth noting that ky
corresponds to the Thomas-Fermi and Debye-Hiickel
expressions in the fully degenerate and classical limits,
respectively. The Thomas-Fermi wave number is given by
krrp = «/§a)p/vF, and I_j; is the Fermi integral of order
—1/2. In the context of dense plasmas, Eq. (11) is often
referred to as the Thomas-Fermi potential (TF).

Substituting into Eq. (6) the second order result of the long
wavelength expansion of the inverse RPA response function,
ie., Xo_l(k — 0) &~ dg + d, - k% [77], one recovers the analyt-
ical model by Stanton and Murillo (SM) [78],

. Q2 —kyr —k_r
¢(r,n,T):;[(1+b)e T+ =-b)e "], (12)

where b = 1/+/1 —a™ and kg = kyp(1 F V1 — aSM)1/2/
Vv aSM/Zv aSM = 3\/@)‘1/—1/2(/3:"0)/777 A= 1/9’ and I;(IBM)
is the derivative of the Fermi integral with respect to Bu.
Further, the inverse Thomas-Fermi screening length at fi-
nite temperature is given by krg = (41_1,2(no)/m/28)">.
In Ref. [78], at oM > 1 the SM potential Eq. (12) was
expressed in a somewhat different form to show the appearance
of the oscillatory pattern in a certain range of densities and
temperatures. The expression for this case can be easily found
from Eq. (12) using Euler’s formula relating trigonometric
functions and the complex exponential function. Therefore,
the SM potential in the form of Eq. (12) can be used regardless
of the value of o™, We note that the potential (12) was
originally derived on the basis of the Thomas-Fermi model
with the first order gradient correction to the noninteracting
free energy density functional. For the ground state (6 =
0) the potential (12) was derived by Akbari-Moghanjoughi
[79] using linearized quantum hydrodynamic equations. For
a detailed discussion of the mutual connection between DFT,
the quantum hydrodynamics model, and linear response theory
we refer the reader to Ref. [59].

The potentials Eqs. (11) and (12) correctly describe the
screening of the ion potential at large distances but neglect
nonideality (correlation) effects. It is important to stress that
potentials Eqgs. (11) and (12) are lower order approximations
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with respect to the full (nonlocal) RPA description (see
Ref. [77]).

We use the STLS screened potential, the RPA screened
potential, the Yukawa potential, the SM potential, and the
QMC data based potential for the calculation of the radial pair
distribution function and static structure factor of strongly cou-
pled ions. This is done by implementing the aforementioned
potentials into the solution of the Ornstein-Zernike integral
equation in the hypernetted chain approximation (HNC). This
allows us to perform a detailed analysis of the applicability
limits of the different potentials and to identify the effects
related to the electronic correlations as well as nonlocality.
As a cross-check, the main conclusions obtained using HNC
are tested by molecular dynamics simulation (MD). The com-
parison of the STLS screened potential with other potentials
considered in this work was recently presented by Moldabekov
etal [31].

It is worth noting that, at 6 < 1, previous DFTMD results
suffered from a lack of reliable input for the exchange-
correlation free energy density of electrons. In fact, the
first accurate results on the exchange-correlation free energy
density on the level of the local density approximation have
been obtained only recently [32-34]. Additionally, most of the
DFTMD simulations were done for isothermal plasmas (see
discussions in Ref. [15]). Another method for the description
of two-component dense plasmas is based on the theory
of quantum interaction potentials between plasma particles
[30,35]. At the considered plasma parameters, this method
suffers from an approximate treatment of electronic quantum
effects and, more importantly, from the uncertainty in the
choice of the so-called electron-ion temperature, which is
needed for the determination of the electron-ion quantum
potential [36-38]. Therefore, the present approach of treating
the ions in the OCP framework with an effective pair interaction
potential, obtained from a linear response description of the
electrons, is highly valuable for the understanding of dense
plasmas out of equilibrium [65].

B. The HNC approximation in terms of an effective coupling
parameter Ty

The Ornstein-Zernike relation is given by

h(r) =c(r)+n/c(r’)h(|r—r’|)dr’, (13)
and the formally exact closure reads

g(r) = exp[—Bu(r) + h(r) — c(r) + B(r)], (14)

where 8 = (kgT)~!, u(r)isthe pair interaction potential, g (r)
the radial pair distribution function (RPDF), h(r) = g(r) —
1 the total correlation function, ¢(r) the direct correlation
function, and B(r) is the bridge function. The hypernetted
chain approximation corresponds to the case B(r) = 0. Details
about the numerical solution of Egs. (13) and (14) are given in
Appendix A.

Itis well known that the RPDF of the OCP and of the YOCP
can be unified by introducing an effective coupling parameter,
[efr, that characterizes the strength of correlations determined
from the shape of the RPDF. Based on accurate MD simulation

=00 ——
2t P | 0 T —
reﬂ‘ = 100* PP I p—
o k=15
T o= 2.0
B0
1F
0 .

FIG. 1. The HNC result for the radial pair distribution function
calculated for different screening parameters « and effective coupling
parameters I'g.

data, Ott et al. [80] found the following simple parametrization
of Tefr,

Fer (I, k) = f ()T, 15)

fk)=1—0.309> + 0.08«>, (16)

in the range 0 < k < 2, and 1 < Ier < 150, where k = kga
is the screening parameter.

We use this approach to test the performance of the HNC for
an accurate computation of the RPDF. We find that the HNC
results nicely follow a one-to-one mapping between the RPDF
of Coulomb and Yukawa systems, similar to the MD results
[80]. This is illustrated in Fig. 1. Second, it is revealed that
for the accurate description of the RPDF the HNC can be used
up to I'er ~ 10. To illustrate this, in Fig. 2 the comparison of
the HNC results with the RPDF calculated using the bridge
function by Daughton et al. [81], for the Yukawa system, and
by Ng [82], for the Coulomb system, are shown. Following
the notation of Ref. [83], the use of the bridge function by
Daughton et al. is denoted as the IHNC (“improved HNC”)
and the bridge function by Ng is denoted as AHNC (“adjusted
HNC”). The IHNC gives very good agreement with the MD

"AHNC ——

FIG. 2. Radial pair distribution function calculated for different
effective coupling parameters I'e+ using the HNC approximation, the
AHNC (with bridge function by Ng [82]), and the IHNC (with bridge
function by Daughton er al. [81]).
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"AHNC ——
|15 0\ [ OE—
2t data by Ott  +
= I'=100 HNC commme
&0 /
1t )
10 s
k=20
0 i

FIG. 3. The same as in Fig. 2 but here comparison with the MD
results by Ott et al. [80] at ' = 10, 100, and ¥ = 2.0.

data [81] and, thereby, can be considered as the “exact” one.
It is worth noting that, even at « = 2, the AHNC yields good
agreement with the IHNC results. This is one more illustration
of a certain level of universality of the bridge functions as it
was suggested by Rosenfeld and Ashcroft [84].

The comparison with the MD data by Ott er al. [80,83] is
given in Fig. 3 and confirms the correctness of our numerical
solution of the Ornstein-Zernike equation and allows to quan-
tify the accuracy of the different approximations.

As an example of our findings, we note that at x = 2 the
condition [y = 10 gives I' = 25 as the maximal value of
the coupling parameter up to which a good agreement between
the HNC and MD data on the RPDF is observed. This indicates
that at stronger screening, k¥ > 2, the agreement between the
HNC data and the MD result can be extended well beyond
I' = 25. Indeed, as it is shown below, this is confirmed by
the calculations based on the STLS screened potential, where
screening is significantly stronger in comparison with the
Yukawa potential Eq. (11) due to electronic nonideality.

The screened pair interaction potentials used in this work
depend on the temperature and density of the system and, there-
fore, belong to the class of state-dependent potentials. Many of
the widely used integral equations, like the Ornstein-Zernike
relation, were originally derived considering a pair interaction
which does not have a dependence on the temperature and
density (e.g., Coulomb potential). Therefore, the use of the
solution of these integral equations on the basis of the screened
pair interaction potentials must be done with caution (see
discussions in Refs. [85,86]). In this work, the main results
were verified by MD simulations of ions interacting through a
screened ion potential.

IV. STRUCTURAL PROPERTIES OF IONS

We now present results of calculations for three cases with
different electronic correlations: ry < 1, ry, =2,and 1 < r; <
2. These three cases can be characterized as weakly, strongly,
and moderately nonideal regimes, respectively.

A. Densities r; < 1: Weakly nonideal electrons

The case of the density parameter r; = 1 is especially
interesting as it characterizes the transition from the regime
where the RPA approach is justified to the regime where

re=1.0,0=001

0 1 2
r/a

FIG. 4. Screened ion potential in different approximations.

electronic nonideality is important, and the RPA fails. For
a plasma with degenerate electrons, 8 < 1, it defines the
maximal density up to which the Thomas-Fermi potential
approximated by Eq. (11) can be used. In Fig. 4, a comparison
between different potentials is provided for the case of strong
degeneracy, 0 = 0.01, with ry = 1. It is clearly seen that
the electronic correlations (taken into account in the STLS
screened potential) lead to a stronger screening of the ion
potential.

In Fig. 5 the RPDF calculated using different potentials at
I'=0.5, 1, and 5 is presented. The RPA screened, Yukawa,
and SM potentials give almost the same result up to I' =
10, while the STLS screened potential, due to the stronger
screening, produces a slightly smaller correlation-hole in the
RPDEF. Surprisingly enough, at higher coupling parameters,
the data obtained using the RPA screened potential is much
closer to the STLS result rather than to the results calculated
on the basis of the Yukawa and SM potentials, as illustrated
in Fig. 6 for I' = 25 and 50. This appears to be because the
structural properties of the strongly coupled ions are sensitive
to the exact shape of the potential. We clarify this point by
presenting the ratio of the considered potentials to the Yukawa
potential in Fig. 7. One can see that the RPA potential has
oscillations around the decaying SM potential. We note that, by
design, the SM potential is a better approximation to the RPA
than the Yukawa potential but gives almost the same RPDF
as the Yukawa potential. The STLS potential also has such
oscillations, but with stronger overall screening. In fact, these

FIG. 5. Radial pair distribution function calculated using different
screened ion potentials with I' = 0.5, 1, 5, and 10.
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FIG. 6. The same as in Fig. 2 but for I' = 25 and 50.

oscillations in the RPA and STLS potentials have the same
shape (position of local extrema, etc.) up to r/a = 3.75. This
can be seen by looking at the difference between the RPA
screened potential and other potentials presented in Fig. 8.
The difference in the shape of the oscillations in the STLS
and RPA potentials appears only when the oscillations turn
into the well-known Freidel oscillations with asymptotics
~cos(2kpr)/r3 atr/a > 5. Now, to show that the mentioned
similarity in the pattern of the STLS and RPA potentials is the
reason for the agreement in the RPDF calculated on their basis,
we introduce the following potential, which is a hybrid of the
RPA and Yukawa potentials:

Drpa(r), r<r;
D;(r) = , (17
@ exp(—kyr), r=>r

where B;(r;) = Orpa(ri)ri explkyr;), ri/a =5.5, rn/a =2,
and r3/a = 1.25. The values of r; are chosen such that at
r > rj the oscillations of the RPA potential around zero (Fridel
oscillations) take place, at r > r, the second maximum of the
RPDF is located, and at r > r3 the first peak of the RPDF
appears. Therefore, potential ®; Eq. (17) is the RPA screened
potential up to r; and has the Yukawa-type screening part, for
r; > r. Using this potential allows us to eliminate the effect of
the oscillations from different regions one by one and, thereby,

1.6 Yukawa (TF) ——

02 | g = 1.0.0 = 0.01 S

0O 05 1 15 2 25 3 35 4
r/a

FIG. 7. The ratio of the different screened potentials to the
Yukawa potential Eq. (11).
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FIG. 8. The absolute value of the difference between the RPA
screened potential and other potentials.

to check how sensitive the structural properties of the strongly
coupled ions are to these oscillations.

InFig. 9, the RPDF calculated using ®; (denoted as RPA;) is
compared to the RPDF of the YOCP. The potential ®; gives the
same result as the RPA potential, the potential &, gives a result
closer to the YOCP at r/a > 2 and in agreement with the RPA
potential based result at r/a < 2, and the potential 3 closely
reproduces calculations using the Yukawa potential (with small
differences due to the matching with the RPA potential at r =
r3). Therefore, it is clear that the difference, at large coupling
parameters, in the RPDF computed using the RPA screened
potential and the Yukawa (or SM) potential appears due to the
manifestation of the positive oscillations of the RPA potential.

Next, we consider the static structure factor S(k) (SSF). In
Fig. 10, the values of S(k) are shown for I in the range from
0.5 to 50. Due to stronger screening, the STLS based results
have a higher value of S(0) in comparison with the case when
the electronic correlations are neglected. This means that the
inclusion of the effect of nonideality of the electrons results
in a larger isothermal compressibility of the ions. At ka < 3,
the RPA result is in very good agreement with the results
obtained using the Yukawa and SM potentials for all considered
coupling parameters. This means that the Fridel oscillations
do not affect the structural properties of the ions. This remains
correct for all r; < 2 regardless the value of 8. Additionally, at

141 T T T 1.1

re=1.0,0 =0.01

0.8

FIG. 9. Radial pair distribution function calculated using the
Yukawa potential Eq. (11), the RPA screened potential, and the test
potential Eq. (17).
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FIG. 10. Static structure factor computed using different screened
potentials. In the upper figure (a) the curves for I' = 5.0 are shifted
relatively to the cases I' = 0.5 and 1.0 for the better visibility.

ka > 2.5,the STLS resultis in good agreement with the results
obtained using the RPA, Yukawa, and SM screened potentials
uptol’ = 10. AtT" > 10and ka > 3, the RPA result remains in
agreement with the STLS result, but not with the Yukawa and
SM screened potentials based results. This, again, is due to the
aforementioned effect of the similarity in the oscillations of
the RPA and STLS screened potentials. The latter is known
to be associated with the so-called Kohn anomaly [87,88],
i.e., a local nonmonotonicity of the dielectric function around

After the detailed consideration of the case of strongly
degenerate electrons, we consider the impact of the thermal
excitations of electrons at r; = 1. In Fig. 11, the values of g(r)
and S(k) are shown at different degeneracy parameters, 6 =
0.1, 0.2, and 0.3. From this figure it is clear that the thermal
effect leads to the suppression of all electronic quantum
nonlocality and nonideality effects at 6 > 0.3. Therefore, in
the case of ry = 1, at 6 > 0.3 the simple Yukawa potential
Eq. (11) provides a fairly good description of the structural
properties of the strongly coupled ions.

With increase in the density, the role of the correlations
of the electrons and of the quantum oscillations related to
the Kohn anomaly diminishes. This is confirmed by the
calculations of g(r) and S(k) presented in Fig. 12 forry = 0.5
and 6 = 0.01. We see that the results obtained using different
potentials are in good agreement with each other up to I' = 25.
The effect of the oscillations in the STLS and RPA screened

FIG. 11. Radial pair distribution function and structure factor
computed at different values of the degeneracy parameter 6 of
electrons at r; = 1.0 and I' = 50.

potentials leads to a slight difference around the first peak at
I =50.

Additionally, it should be noted that the considered effect
of the oscillations remains valid at r; < 1, but the conclusion
that with increase in the coupling parameter ions become more
sensitive to the features of the screened potential is general.

B. Density r; = 2: Nonideal electrons

The effect of the electronic nonideality is expected to be
more important as r, increases. For the case ry = 2, the STLS
results can be checked against more reliable ground state QMC
data [75].

As it was mentioned above, we use the accurate
parametrization by Corradini et al. [75]. It is important to note
that in many previous and recent works (e.g., Refs. [42,89]),
parametrizations like those by Ichimaru and Utsumi [90]
(which is based on STLS), were used with the restriction
G(k — 00) < 1 thatoriginated from the earlier works of Shaw
[91] and Niklasson [92]. However, as was first shown by Holas
[93], it turned out that the condition G(k — o0) < 1 isinvalid
and the correct asymptotic behavior is G (k — 00) ~ k2. This
was confirmed by the ground state QMC simulation results in
Ref. [76]. Recently, first ab initio calculations of the static
density response function of electrons at finite temperature
have been successfully performed [94,95], but the k resolution
is not yet sufficient for the implementation into the calculation
of the screened ion potential.

In Fig. 13, the STLS-, RPA-, and QMC-based screened ion
potentials are presented for ry =2 and 8 = 0.01. Atr/a < 1,
the STLS potential is in good agreement with the QMC data
based potential. At r/a ~ 1.25, in contrast to the RPA and
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FIG. 12. Radial pair distribution function and structure factor
computed on the basis of different screened potentials for different
values of I" at r; = 0.5 and 6§ = 0.01.

QMC data based potentials, the STLS screened potential has
a negative minimum. In Fig. 14, the corresponding RPDFs,
g(r), are shown for I' in the range from 0.5 to 10. At I" < 1,
the STLS result is in agreement with the QMC data based
result. As the ionic coupling parameter increases, at I' > 5, the
negative minimum in the STLS potential leads to a deviation of
g(r) calculated using the STLS potential from g(r) obtained
using the QMC data based potential. This disagreement is
more pronounced at I' = 25 and 50 as it is shown in Fig. 15,
where the ion-ion attraction due to the negative minimum
in the STLS potential leads to a much higher first peak
in g(r). As it is expected, the RPA screened, Yukawa, and

®[Hal)

0.5}

0t
0 0.5

rla 1 15

FIG. 13. The STLS and RPA screened potentials in comparison
with the QMC data based potential at r; = 2.0 and 6 = 0.01.
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FIG. 14. Radial pair distribution function of ions at coupling
parameters in the range from 0.5 to 10 computed using different
approximations for the screened ion potential.

SM potentials neglecting nonideality of electrons are not in
agreement with results obtained using the QMC data based
potential. Additionally, the Yukawa and SM potentials appear
to be poor approximations to the RPA screened potential for
the description of the RPDF at I" > 5.

In Fig. 16, the static structure factor calculated using
different potentials at I’ = 0.5, 1.0, 5.0, 10, and 25 is shown.
In this figure, the emergence of a minimum at ka ~ 2 with
increase in I" is demonstrated. This minimum is the result of
the attractive part in the STLS screened ion -ion interaction
potential (see Fig. 13). As it is illustrated in Fig. 16, it is
crucial that this feature of S(k) is not confirmed by the
calculations based on the more accurate QMC based ion-ion
interaction potential. Therefore, modeling screening in the
STLS approximation essentially fails to provide a correct
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FIG. 15. The same as in Fig. 14 but for I' = 25 and 50.

description of S(k) and g(r) at these parameters, showing
unphysical effects of attraction between ions. However, from
Fig. 16 it is also evident that the STLS results and the QMC
data based results at ka > 4 (out of the region of the unphysical
minimum) are in good agreement with each other. This is
because the STLS potential correctly reproduces the QMC
data-based potential at r/a < 1 (see Fig. 13). In this way, the
detailed examination employing the QMC static local field
correction allowed us to find the reason for the failure of
the STLS screened potential, at certain plasma parameters, in
description of the structural properties of the strongly coupled
ions in a dense quantum plasma.

C. Density 1 < r; < 2: Moderately nonideal electrons

Considering densities corresponding to 1 < r; < 2 we can
reveal more information about the applicability of the STLS
screened potential for the calculation of g(r) and S(k), atI" >
1. The STLS and RPA potentials are shown in Fig. 17, for
rg = 1.5 and 1.8, at & = 0.01. Again, the STLS potential is
more strongly screened than the RPA potential. Additionally,
at r/a > 1, the STLS potential has a negative minimum at
both densities, r;, = 1.5 and ry, = 1.8, but with different overall
behavior after the minimum. At r; = 1.5, the STLS potential
has an oscillatory pattern with alternating positive and negative
extrema and, at r; = 1.8, a well developed region of attraction
is clearly seen. This difference leads to dramatic consequences
in the structural properties [96,97].

In Fig. 18, the RPDF of ions at ry = 1.5 and r; = 1.8 is
shown for 6 = 0.01 and I" = 50. At ry, = 1.5, due to stronger
screening, the RPDF calculated using the STLS potential has

0.75
0.5}

0.25

0.25 |

FIG. 16. Static structure factor computed using various screened
ion potentials at different coupling parameters.

a smaller correlation-hole and a lower peak than the RPDF
computed on the basis of the Yukawa potential. In contrast,
due to the attraction part in the screened potential, at r; = 1.8
the peak in the RPDF of ions interacting through the STLS
screened potential is much higher than that of the YOCP with
pair potential Eq. (11). Such an effect is not visible at ry =
1.5 because the asymptote of the potential has a pattern of
oscillations around zero with closely enough situated extrema
so that the effect of the repulsive and attractive parts of the
pair potential mutually compensated [96], similar to the case
ry = 1 (see Fig. 8). In Fig. 19, corresponding values of S(k) are
shown. The manifestation of the unphysical behavior at r; =
1.8 due to “uncompensated” effect of the attraction between
ions interacting via the STLS screened potential is more clear
in S(k) at ka < 4, while, at r; = 1.5, such a feature of S(k) is
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FIG. 17. The STLS and RPA screened potentials at 7, = 1.5 and
ry = 1.8 (6 = 0.01).

absent. Additionally, we note that at ' = 50, # = 0.01, ry =
1.5,andry = 1.8 the Yukawa and SM potentials fail to correctly
reproduce the results found using the RPA screened potential.

Asitis expected, the demonstrated feature of S(k) appearing
as the result of the attraction part in the STLS potential at
ry = 1.8 is suppressed at larger 6 due to thermal electronic
excitations. This is illustrated in Fig. 20, where g(r) and
S(k) are shown atr; = 1.8, 8 = 0.5, and I" = 50. In Fig. 20
the effect of the attraction is not visible at all. Further, at

1.5

(b)

FIG. 18. Radial pair distribution function of ions for 7, = 1.5 and
1.8at6 = 0.01 and I" = 50.

@ ' T

123 o) \—
STLS -mome

FIG. 19. Structure factor of ions for v, = 1.5and 1.8 at 6 = 0.01
and I' = 50.

6 = 0.5, we find good agreement between the results obtained
on the basis of the RPA, Yukawa, and SM potentials (being
different from the STLS based result), meaning the higher-
order quantum effects, which are neglected in the Yukawa and
SM potentials, are diminished as well.

We verified the appearance of the feature in S(k) and g(r),
which is related to the attractive part of the STLS potential, by
performing independent MD simulations. The MD simulations
confirmed our findings from the solution of the Ornstein-
Zernike equation with the HNC closure; see Appendix B.

D. Applicability range of the STLS screened ion potential

We can now use the absence of the pronounced impact of
the attraction in the ion-ion interaction on S(k) as a necessary
criterion for the applicability of the STLS screened potential
for the description of the structural properties of the dense
plasma with strongly coupled ions. To proceed further, we
consider different values of the degeneracy parameter. In
the top panel of Fig. 21, the STLS potential is shown at
6 = 0.01, 0.1, 0.2, 0.3, and 0.4. With increasing degeneracy
parameter, the screening becomes weaker, the absolute values
of the negative minimum decrease, and the position of the
negative minimum shifts to a larger distance. Corresponding
S(k)and g(r) of the ions at I' = 50 are presented in the middle
and the bottom panels of Fig. 21, respectively. The electronic
thermal effect results in the suppression of the manifestation of
the ion-ion attraction in S(k) at ka < 4. At = 0.4, the value
of S(k) at the minimum (located in the range 0 < ka < 2)
differs by less than 5% from S(0). In fact, this difference rapidly

023207-11



ZH. A. MOLDABEKOV et al.

PHYSICAL REVIEW E 98, 023207 (2018)

5 : : : -
() I =50
1\ 7 '\v.
e i
0.5 Yukawa
] [Et———
RPA -
STLS —-emm
0 / . \ .
0.5 1 1.5 2 2.5 3
r/a
15 - ; - :
(b) =50

FIG. 20. Radial pair distribution function and structure factor of
ionsat® = 0.5, r, = 1.8, and I" = 50.

disappears with increasing 6. Indeed, the minimum in S(k) at
ka < 4 does not exist already at & = 0.5 (see Fig. 20). From
Fig. 21 one can see that the height of the first peak decreases
with increase in 6 due to the weakening of the attractive part
of the potential, while the correlation-hole increases due to
weaker screening.

To determine parameters at which the STLS potential can be
used for the description of strongly coupled ions, we realized a
large scale study of S(k) at I' < 100, 0.01 <6 <1, ry < 2.
The results are summarized in Fig. 22, where two regions in
the 6 — r, plane are indicated. In region I, the artificial feature
of S(k) due to the attractive part in the STLS potential does
not appear. In contrast, in region II the unphysical absolute
minimum in S(k) at k > O builds up at I" > 1. In region I of
Fig. 22, atr; < 1.5, the STLS potential has oscillatory asymp-
tote and closely enough located repulsion and attraction parts
exhibit a mutually compensating effect leading to monotonic
decay of S(k) as k decreases. For instance, the same is true
regarding the oscillations around zero in the RPA potential
(Fridel oscillations). In contrast, in region I, at r; > 1.5 the
role of the attractive part of the STLS potential diminishes due
to electronic thermal effects.

V. SUMMARY AND OUTLOOK

From our analysis of the structural properties of strongly
coupled ions on the basis of different screened ion potentials—
at typical parameters of nonideal quantum plasmas—we have
the following conclusions:

(1) We determined the region of densities and temperatures
where the STLS description of screening by partially (or to-
tally) degenerate electrons can be used for the calculation of the

0.8 [T
= ® 0.001
= of
e —0.001 F
—0.002
04 r _0003 L

1 2 3 4
0:=0.01, 0.1, 0.2, 0.3, 0.4

0.5 1 1.5 2 2.5 3
T/a
FIG. 21. The screened ion potential (a), static structure factor (b),
and radial pair distribution function (c) at I' = 50 calculated using
the STLS screened potential at r, = 1.8 and different values of the
degeneracy parameter of electrons 6.

structural properties of ions. At r; > 1, electronic correlations
beyond RPA have a nonnegligible effect on the structural
properties of strongly coupled ions in quantum plasmas. In
particular, correlations (nonideality) of the electrons resultin a
larger isothermal compressibility of the ions due to the stronger
screening of the ion charge.

(2) The applicability of the simplest Yukawa model was
gauged by comparing with the results obtained using a more
general description of the screening by the quantum random
phase approximation. It was shown that at 6 ~ 0.1 the Yukawa
and SM potentials can not be used as a reliable approximation
to the RPA potential at I' > 10 and r; > 1. This was explained
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FIG. 22. In the region I the artifact feature of S(k) due to the
attractive part in the STLS screened potential does not appear, and in
the region II (dashed area) the unphysical absolute minimum in S(k)
atk > ObuildsupatI" > 1.

by the use of the long wavelength limit of the density response
function in the entire k range in the case of the Yukawa and SM
potentials. At these plasma parameters, such an approximation
appears to be justified when the manifestation of the Kohn
anomaly is suppressed by the thermal excitations of electrons.
Itisinteresting thatat I' < 50, r; < 2and 8 > 0.01 the some-
what more complex (but still analytical) SM potential gives the
same result as the simpler Yukawa potential when applied for
the calculation of the radial pair distribution function and the
structure factor of the ions.

(3) Calculations using different screened potentials clearly
show that strongly coupledions atI" > 10 can be very sensitive
to the peculiarities of the shape of the pair interaction potential
and, therefore, to the approximation used for the description
of screening by electrons.

(4) It was revealed that the HNC approximation can be used
for an accurate description of the structural properties of the
strongly coupled particles up to a maximal coupling parameter
the value of which depends on the screening strength. In
the example of the Yukawa potential, the maximal effective
coupling is e =~ 10. This is a very useful finding as the
HNC approximation is often used as a fast and easy way of
incorporating ionic nonideality effects into various theoretical
descriptions.

Let us briefly discuss the possible application of the results
of the present work. In Fig. 23, some of the experimentally
obtained plasmas with parameters overlapping with those
considered in this work (8 < 1, ry < 2,andI" > 1) are shown
on the 6-r; plane. Further, a part of the paths which the plasma
with I' > 1 undergoes in ICF experiments at the NIF and
Omega are sketched, based on data from Ref. [68]. In addition
we have marked the domains of applicability of RPA and STLS,
respectively, as discussed in this paper. Note that the border of
the RPA domain should be understood qualitatively. The strict
applicability condition in a fully degenerate plasma is r; < 1.
At the considered temperatures with 6 < 1, this condition is
softened by thermal excitations, allowing one to use the RPA
closer to ry = 1. Figure 23 shows that the STLS approach
discussed in Sec. IIT is applicable to ICF plasmas starting from
the initial stage, where electronic correlations and quantum
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FIG. 23. The same as in Fig. 22, but with examples of experiments
where quantum plasmas with strongly coupled ions were realized.
Additionally, the RPA domain is indicated. The path which the
plasma with nonideal ions undergoes in ICF experiments is given
approximately on the basis of the data extracted from Ref. [68].

nonlocality effects are crucial (r; > 1 and 6 ~ 0.1), up to the
final regime where electrons are ideal (r; < 1).

An accurate computation of the electrodynamic and trans-
port properties of dense plasma is important, e.g., for the under-
standing of the processes occurring during fuel compression
in ICF experiments. For the investigation of the plasma at
the discussed parameters, the ionic static structure factor is
needed for the accurate calculation of the dynamic electron-ion
collision frequency, which can then be used to study the
electrodynamic (optical) properties of the plasma [98] (e.g.,
reflection and absorption coefficients, emission, and plasma
stopping power). Additionally, the ionic static structure factor
is needed for the calculation of the plasma resistivity on the
basis of the Rousseau-Ziman formula [41]. The STLS screened
potential can be used in MD simulations for the computation
of the ionic dynamical structure factor and transport properties
such as ionic viscosity and diffusion coefficient. The ionic
dynamical structure factor is needed for the description of the
elastic scattering of x-rays off electrons in x-ray Thomson
scattering experiments [99]. Note that the RPDF obtained
using the HNC on the basis of the STLS potential allows
one to calculate plasma transport coefficients for I' < 10
employing the fast and accurate method of effective potentials
developed by Baalrud and Daligault [100,101]. Therefore,
the presented work provides an important theoretical basis
for the further investigation of the aforementioned physical
properties of dense quantum plasmas with strongly coupled
ions.

ACKNOWLEDGMENTS

Zh. Moldabekov is thankful for the funding from the
German Academic Exchange Service (DAAD). This work
has been supported by the Deutsche Forschungsgemeinschaft
via Project No. BO1366/10, and the Ministry of Educa-
tion and Science of the Republic of Kazakhstan via Grant
No. BR05236730, “Investigation of fundamental problems of
physics of plasmas and plasma-like media” (2018).

023207-13



ZH. A. MOLDABEKOV et al.

PHYSICAL REVIEW E 98, 023207 (2018)

APPENDIX A: NUMERICAL SOLUTION
OF THE ORNSTEIN-ZERNIKE EQUATION

The HNC equation was solved by employing the method
of Springer, Pokrant, and Stevens [102]. The idea of the latter
is to rewrite the Ornstein-Zernike equation with the closure
relation Eq. (14) as

Ns = E/(l - n()E) — Gy,
g(r) = CXP[Ns(V) - us(r)],

CS(V):g(V)— 1 —NS(V),
where N(r) = h(r) — ¢(r), and

ug(r) =u(r) —u(r),
cs(r)=C@r)+u(r),

Ny(r) = N(r) —u(r).

Here, u; is, in principle, an arbitrary function that can be used
to accelerate convergence.

For the one-component plasma (OCP), i.e., k = 0, Ng found
that in the liquid state a quick convergence is facilitated by the
choice [82],

r
u;(ry = —erf(ar),
r

where o = 1.08, k = k;a is the screening parameter, and the
distance is given in units of a.

In the case of the Yukawa one-component plasma (YOCP)
with 1 <k <2 and I" < 100, the function u; is not needed
for the convergence of the iterations, i.e., u; = 0. However, at
k < 1, the proper choice of u; is found to be

r

u(r) = 7[6Xp(—1<r) —exp(—ar)], (AD)
where o = 2.16. Moreover, making use of u; in the form given
by Eq. (A1) improves the convergence of the HNC calculations
when the STLS-screened, the RPA-screened, and the QMC-

based potentials are implemented.

APPENDIX B: VERIFICATION OF THE HNC
RESULTS BY MD SIMULATIONS

As it was demonstrated in the main text, the HNC calcu-
lations provide an accurate description of the ionic structural
properties, up to I'er = 10 and, even at Iy = 100, correctly
capture relative differences when different potentials are used
(see Fig. 1). However, for completeness of the study we have
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FIG. 24. Radial pair distribution function and structure factor of
ions interacting through the STLS screened potential computed by
the HNC and MD simulations at r, = 1.8 and 8 = 0.1 for different
coupling parameters.

checked the findings from the HNC calculations by performing
MD simulations based on the Langevin equation of motion.
The number of ions in the MD simulation is set equal to
N = 1000. The radial pair distribution function and the static
structure factor have been calculated separately.

The MD simulations have confirmed our findings from
the solution of the Ornstein-Zernike equation with the HNC
closure. This is illustrated in Fig. 24, where g(r) and S(k) are
calculated at 6 = 0.1 and r;, = 1.8, for I' =5, 10, 25, and
50. From this figure, very good agreement between the MD
and the HNC calculations using the STLS-screened potential
can be seen. We stress that, at the considered parameters, the
HNC works very well, even at I' = 50. The reason for this is
the strong screening, as it was discussed in Sec. III B, for the
Yukawa potential.
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