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Effects of asymmetry and hot-spot shape on ignition capsules
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Asymmetric implosion of inertial confinement fusion capsules is known, both experimentally and computation-
ally, to reduce thermonuclear performance. This work shows that low-mode asymmetries degrade performance as
a result of a decrease in the hydrodynamic disassembly time of the hot-spot core, which scales with the minimum
dimension of the hot spot. The asymmetric shape of a hot spot results in decreased temperatures and areal densities
and allows more alpha particles to escape, relative to an ideal spherical implosion, thus reducing alpha-energy
deposition in the hot spot. Here, we extend previous ignition theory to include the hot-spot shape and quantify the
effects of implosion asymmetry on both the ignition criterion and the capsule performance. The ignition criterion
becomes more stringent with increasing deformation of the hot spot. The new theoretical results are validated
by comparison with existing experimental data obtained at the National Ignition Facility. The shape effects on
thermonuclear performance are relatively more noticeable for capsules having self-heating and high yields. The
degradation of thermonuclear burn can be as high as 45% for shots with a yield lower than 2 × 1015 and less than
30% for shots with a higher yield.
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I. INTRODUCTION

High-convergence inertial confinement fusion (ICF) im-
plosions at the National Ignition Facility (NIF) frequently
deviate from their desired one-dimensional (1D) spherical
state, resulting in degradation of the fusion energy output.
The physics of implosion asymmetry has been studied for
many years [1,2]. It has been demonstrated that the implosion
asymmetry must be less than a few percent (∼3%−4%) [1–3]
in order to achieve the densities and temperatures required for
thermonuclear ignition and burn. Therefore, it is critical to
improve the fuel target implosion symmetry and to maintain
a spherically uniform target compression. In general, the
implosion asymmetry is caused by the driver-beam nonuniform
illumination, which leads to ablation pressure inhomogeneity,
nonuniform radiation flux, and features such as structural per-
turbations on the capsule surface, imperfect target sphericity,
a nonuniform target density, target alignment errors, small
low-mode aymmetries in the initial capsule shape, and the
presence of the capsule support tent and fill tube. Experimental
evidence shows that these asymmetries result in changes in the
in-flight shape of the capsule and in the final hot-spot shape,
leading to reduced thermonuclear performance [1,2,4–9].

Effects of nonuniform implosion on the drive pressure sym-
metry and fusion performance were investigated numerically
in the 1980s [1,2]. It was discovered that laser nonuniformities
with scale lengths greater than the distance from the ablation
surface to the critical surface would have a severe impact on
the symmetry of the drive pressure and target compression and,
in turn, the shape of the hot spot. The maximum degradation
of nonuniform implosion on the fusion parameters, namely, on
the areal density, the peak mass density and ion temperature
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of the hot deuterium-tritium (DT) fuel after implosion, and
the thermonuclear energy output, is less than 50% for 100%
spatial variations of physical quantities, such as the radius, the
implosion velocity, and the number density of the hot DT fuel
[2]. It was shown that the influence of low-mode asymmetry on
the fusion parameters is slightly more significant in comparison
with that of high-mode asymmetry.

Impacts of the hot-spot shape at the time of stagnation
on the nuclear performance of NIF ignition capsules have
also been studied numerically in recent years [10–12], but
the physical relationship between hot-spot shape and ther-
monuclear burn has not been systematically studied. A recent
computational study evaluated hot-spot asymmetries resulting
in implosion desynchronization and reduced fuel compression,
but the thermonuclear phase was not considered [9,13–16].
Additionally, 2D and 3D numerical simulations have suggested
that asymmetries of the hot spots would significantly reduce
the experimental yield [5].

In this article, we determine the effects of hot-spot shape at
late times on the alpha-particle deposition and neutron yield of
capsules. We extend our ignition theory [17–21] to include the
hot-spot shape and quantify the effects of implosion asymmetry
on both the ignition criterion and the capsule performance.
Theoretical results are validated by comparison with existing
NIF experimental data. The results explain the correlation
between hot-spot shape and neutron yield of fusion capsules.

II. HOT SPOT SHAPES

ICF experimental data indicate that the hot spot in an
ignition capsule is often symmetric with respect to the axis
of the hohlraum; i.e., the polar view of the hot spot is almost
always within 20% of circular and sometimes ringlike. The
equatorial view of the hot spot ranges from round to oblate or
prolate. The ring shape in the polar view is an implosion defect,
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FIG. 1. Hot-spot shapes considered: oblate (left), prolate (mid-
dle), and torus (right). The sphere and dipole are not plotted.

probably caused by a polar jet or collisions of incoming and
reflected shocks during the implosion. This defect could be
minimized or removed by carefully controlling the shock and
reflected shock in the implosion design. It is noteworthy that
NIF “toroidal” implosions do not create true toroids. The polar
emissivity (x ray or neutron) does not go to 0. So a toroidal hot
spot on a nuclear image is, in fact, more a depression than a
true void. The same is true for a dipole configuration (a dipole
hot spot is composed of two isolated spheres at the poles). For
simplicity, we consider five geometric hot-spot shapes: sphere,
oblate, prolate, torus, and dipole. The oblate, prolate, and torus
shapes are displayed in Fig.1.

The equation of a spheroid centered at the origin with z as
the symmetry axis is

x2 + y2

a2
+ z2

c2
= 1, (1)

where x, y, and z are Cartesian coordinates, a is the equatorial
radius of the spheroid, and c is the distance from center to pole
(polar radius) along the symmetry axis. If c = a, the spheroid
is a sphere, if c < a, the spheroid becomes oblate, and if c > a,
the spheroid will be prolate. The volume of a spheroid is given
by the expression

Vsph = 4πa2c/3. (2)

The equation of a torus azimuthally symmetric with respect to
the z axis is

(d −
√

x2 + y2)2 + z2 = b2, (3)

where d is the radius from the center of the hole to the center of
the torus tube and b is the radius of the torus tube. The volume
of a torus is

Vtor = 2π2b2d. (4)

In terms of the inner and outer radii, rin ≡ d − b and rout ≡
d + b, the volume of the torus can also be written as

Vtor = 1
4π2(rout + rin )(rout − rin )2. (5)

In experiments, the equatorial images (neutron and x ray) of
a hot spot is fitted with Legendre polynomials to characterize
the size and shape of each neutron source distribution and
x-ray-emitting core, The results of this fit provide a measure
of the lowest mode of hot-spot asymmetry, P2/P0, which is
the ratio of the second-order to the zeroth-order Legendre
polynomials that are required to fit the contour at 17% of
the peak neutron emission. Contributions from higher-order
modes are similarly determined. In terms of P2 and P0 and by
definition, the equatorial radius is a = P0 − P2/2 and the polar
radius is c = P0 + P2. For a prolate hot spot, P2 > 0, and for

an oblate one, P2 < 0. Thus, the aspect ratio a/c of a spheroid,
i.e., the ratio of the equatorial radius a to the distance from the
center to the pole c, is given as a/c = [1 − P2/(2P0)]/(1 +
P2/P0). For small P2/P0, a/c � 1 − 3P2/(2P0).

III. SHAPE DEPENDENT HYDRODYNAMIC
DISASSEMBLY TIME

Hot-spot ICF ignition relies on thermonuclear burn initi-
ation in the hot spot and robust burn propagation to the rest
of the cold fuel. For self-sustained burn to occur in the hot
spot, the resultant alpha particles must be captured in the hot
spot and heat the DT gas. The thermonuclear burn efficiency
of the hot spot directly depends on the alpha heating process
in the hot spot through alpha-particle deposition and hot-spot
hydrodynamic disassembly. Ignition requires that the hot-spot
nuclear reproduction time be less than the hot-spot hydrody-
namic disassembly time, resulting in the temperature runaway
phenomenon [17,18]. Both the nuclear reproduction time via
alpha-particle energy deposition and the hot-spot hydrody-
namic disassembly time are sensitive to the geometric shape of
the hot spot. It is clear that the hydrodynamic disassembly time
is at its minimum in the direction of the shortest dimension
of the hot spot. A shorter hydrodynamic disassembly time
in one direction will cause a shorter time for overall nuclear
reproduction and a shorter time for alpha-heating in the entire
hot spot. Additionally, radiation energy, thermal conduction,
and alpha particles are preferentially lost from the system in
the same direction, without depositing their energy [22,23].

The thermonuclear confinement of the hot spot in an ICF
capsule is directly associated with the hydrodynamic disas-
sembly time, which is determined by the shortest dimension
of the hot spot divided by the sound speed in the hot spot.
The longer the thermonuclear confinement, the larger the burn
fraction of the DT fuel, and the closer the thermonuclear burn
to ignition. Therefore, the shape of the hot spot should play
a role in thermonuclear burn and capsule performance via
hydrodynamic disassembly and confinement.

We begin by establishing a relationship between the shortest
geometric dimension of the hot spots shown in Fig. 1 and
a 1D perfect sphere. When a two-dimensional analysis is
appropriate, we assume that the 2D projected area in the
equatorial view, r2

0 = ac, is conserved among the different
shapes. When a three-dimensional analysis is appropriate,
we assume that the volume of the hot spots, r3

0 = a2c, is
conserved (where r0 is the radius of the 1D sphere). Under these
assumptions, we are able to obtain the relationship between the
radius of the 1D sphere and the dimensional parameters of the
spheroids or torus. These assumptions are supported by the
results of the analysis shown later.

Conserving the projected area of a 2D prolate hot spot in
the equatorial view leads to

a = r0

√
a/c = r0

√
1 − P2/(2P0)

1 + P2/P0
. (6)

For an oblate hot spot, the expression for the polar radius is
c = r0

√
(1 + P2/P0)/[1 − P2/(2P0)]. Note that an equatorial

projection does not distinguish between a torus and an oblate
spheroid; a torus hot spot would have similar equatorial
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projections in the 2D equatorial view. Thus, for all hot-spot
shapes, the ratio of the shortest radius (rmin) to the radius of a
1D sphere has the same expression,

rmin

r0
= g2D, (7)

where g2D is a function of the shape of the two-dimensional
hot spot:

g2D ≡
⎧⎨
⎩

(
1−P2/(2P0 )

1+P2/P0

)1/2
, prolate;(

1−|P2/P0|
1+|P2/P0|/2

)1/2
, oblate.

(8)

For small |P2/P0|, g2D � √
1 − 3|P2/P0|/2 for all shapes. For

any given P2/P0, the g2D of a prolate hot spot is always greater
than the g2D of an oblate hot spot.

For 3D hot spots, we assume that the hot-spot volume, r3
0 =

a2c ≡ a3(c/a), is conserved (i.e., the hot-spot volume is the
same for all shapes). Under this assumption, toroidal, prolate,
oblate, and dipolar hot spots are distinguishable. For oblate hot
spots (c < a), the relationship between the shortest equatorial
radius rmin and a 1D sphere of radius r0 is

c = r0

(
1 − |P2/P0|

1 + |P2/P0|/2

)2/3

. (9)

For prolate hot spots (c > a), the relationship takes the form

a = r0

[
1 − P2/(2P0)

1 + P2/P0

]1/3

. (10)

The equatorial view of a toroidal shape is similar to an oblate
hot spot and can also be described by Legendre polyno-
mials. The aspect ratio can be expressed as b/rout � (1 +
P2/P0)/[1 − P2/(2P0)]. By conserving the volume of the hot
spot, we obtain an expression for the shortest dimension of a
toroidal hot spot, i.e., the radius of the torus in terms of the 1D
sphere radius

b = r0

[
2

3π (rout/b − 1)

]1/3

. (11)

By definition, the radius of a torus has to be less than rout/2
for d > b to have a hole; this constraint gives the bound
P2/P0 < −0.4 for a toroidal hot spot. At P2/P0 = −0.4,
b � 0.6r0, which is the maximum height of the torus in terms
of r0. Legendre expression shows that for values of P2/P0

from −0.5 to −1.0, the variation of the height of a torus stays
within ±4% of 0.6P0. Therefore, we use the approximation
b/rout ≈ 0.6/(1 + |P2/P0|/2) for a toroidal hot spot in our
analysis.

Since the density profile of a toroidal hot spot does not
really go to 0 at the center, one can treat the toroid as an oblate
object with a density depression at the center. The topology of
an oblate hot spot changes to a toroid when P2/P0 < −0.4.
Similarly, a hot spot with a prolate topology will become
a dipole when P2/P0 > 0.5. At P2/P0 = 0.5, a/c = [1 −
P2/(2P0)]/(1 + P2/P0) � 1/2, a prolate spheroid turns into a
dipole with radiusa � r0(1/2)1/3 � 0.8r0. This radius remains
for all values of P2/P0 > 0.5 if we assume that each end of the
dipole approximates a sphere of radius b � a. Thus, for a 3D
hot spot, the ratio of the shortest dimension (rmin) to the radius

of a 1D sphere can be expressed as rmin
r0

= g3D, where

g3D ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[ 1−P2/(2P0 )
1+P2/P0

]1/3
, prolate,( 1−|P2/P0|

1+|P2/P0|/2

)2/3
, oblate,[

2
3π

(
0.6

0.4+|P2/P0|/2

)]1/3
, torus,

0.8, dipole

(12)

is a function of the geometric shape of the hot spot. Both Eq. (8)
and Eq. (12) show that the shortest dimension of the hot spot
decreases as the hot spot departs from a spherical shape. For any
given P2/P0, the g3D of a prolate hot spot is always greater than
the g3D of an oblate one. So prolate hot spots should perform
better than oblate hot spots. This result is consistent with the
experimental data obtained at NIF, discussed later. A more
general function of geometric shape including contributions
of P4 and M4 is given in the Appendix. In this article we focus
on the effects of low-mode P2.

As discussed earlier, the hydrodynamic disassembly time
of deformed hot spots is a function of the hot-spot shape and
is determined by the shortest dimension of the hot spot. The
disassembly time can be expressed as

τ 2D
h ≡ rmin

Cs

= r0

Cs

g2D ≡ τ0g2D (13)

for 2D hot spots and

τ 3D
h ≡ rmin

Cs

= r0

Cs

g3D ≡ τ0g3D (14)

for 3D hot spots. The parameter Cs = (2γgRT/ADT)1/2 �
2.778 × 107

√
γgT (keV) cm/s is the speed of sound in the

hot spot. Here, γg is the adiabatic index of the hot deuterium-
tritium fuel, ADT is the atomic weight mass of the DT mixture,
R is the gas constant, and T is the hot-spot temperature in
keV. The hydrodynamic disassembly time of a perfect sphere
is τ0 ≡ r0/Cs . The shape functions g2D and g3D are given,
respectively, by Eqs. (8) and (12).

IV. SHAPE DEPENDENT IGNITION CRITERION AND
CAPSULE PERFORMANCE

From Eqs. (8) and (12), for oblate and toroidal hot spots
with nonzero P2/P0, g3D � g2D � 1. Thus, τ3D � τ2D < τ0,
which indicates that any ignition capsules departing from the
1D implosion symmetry would be less robust because of the
shorter time available for self-sustained thermonuclear burn.
So it would be more difficult for a 2D or a 3D capsule to
achieve ignition. In order to quantify this point, we substitute
the shape-dependent hydrodynamic disassembly time, Eq. (13)
or (14), into the 1D thermonuclear ignition criterion [18,24]
and obtain the shape-dependent ignition threshold for the areal
density of the hot spot

(ρr )ihs � (ρr )1D
IT /gi, (15)

where i = 2D or 3D, and (ρr )1D
IT is the 1D ignition threshold

on the hot-spot areal density, given by the expression [18]

(ρr )1D
IT ≡ [(1 + d∗)2/d∗][3kT + Erad/nDT]CsADT/NA

〈σv〉DTWα − (
Q̇b

l + Q̇e
l

)
(1 + d∗)2/

(
d∗n2

DT

) ,

(16)
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where nDT ≡ nD + nT = ρDTNA/ADT, Q̇i
l ≡ dQi

l/dt (i =
b, e) represent the energy loss by electron bremsstrahlung
and electron conduction, d∗ is the D-to-T ratio, NA is Avo-
gadro’s number, and k is the Boltzmann constant. The nuclear
reactivity 〈σv〉DT [25,26] can be approximated by a power
law of temperature, T n. For the temperature range 3–5.5 keV,
〈σv〉DT ≈ CDTT 4 is a good approximation [18], where CDT �
2.3 × 10−20 cm3/s/keV4. The shape function gi is given by
Eqs. (8) and (12) for 2D and 3D geometries, respectively.
With gi < 1, the ignition threshold for a 2D or 3D hot spot
increases due to shape asymmetry. This result is consistent
with the simulations performed by Kawata [2].

Similarly, the ignition parameter for 2D and 3D
hot spots becomes χi ≡ Phsτ0gi/(Pτ )IT, where (Pτ )IT ≡
T 2 (keV)/(9.17 × 1016〈σv〉) is the ignition threshold in Gbar-
ns. At T = 4 keV, (Pτ )IT � 29.7 Gbar-ns [18]. Ignition occurs
when

Phsτh � (Pτ )IT/gi. (17)

Substituting the power-law solution of 〈σv〉 [18] into Eqs. (16)
and (17), we obtain the analytical form of the Lawson criterion
for asymmetric imploding ignition capsules,

P (Gbar)τh (μs) >
2κc

ADT

(1 + d∗)2

d∗
0.03472

γ
1/2
g giT (keV)2

, (18)

where κc is a fitting constant and has the value 5.514 [18].
The minimum required hot-spot mass for achieving sustained
thermonuclear burn in 2D or 3D hot spots with 〈σv〉 ∼ T 4 is
given by

Mmin
hs � 4π

3

κc

gi

(1 + d∗)2/d∗

T (keV)2.5

r2
0 F

C2
f

, (19)

where Cf ≡ r0 F/rhs is the geometric convergence ratio and
r0 F and rhs are, respectively, the initial inner radius of the fuel
and the final radius of the hot spot.

The hot-spot pressure of an asymmetric hot spot is deter-
mined by the formula

P i
hs =772 ×

[
8π (3γp − 1)/(Mpν)

3(γp − 1)(γg − 1)

]1/2(
T

keV

)
(ρr )3/2

hs g
3/2
i ,

(20)

where Mp is the mass of the pusher in μg at the peak
implosion velocity [17], which is the sum of the total mass
of the DT fuel and the mass of the remaining ablator, and
γp is the adiabatic index of the pusher. The average areal
density of the hot spot (ρr )hs is in g/cm2. The param-
eter ν ≡ ηADTV 2

imp/(2RT ), where η is an implosion effi-
ciency coefficient [17]. The neutron yield of an asymmetric
capsule is

Y i
n ≈ 2.8 × 106gi

(γp − 1)(γg − 1)

(3γp − 1)

(
Mp

μg

)

×
(

Vimp

km/s

)2(
PhsτB

Gb · ns

)
T 2

keV, (21)

where Gb stands for gigabar and τB is the temporal burn width.
From this analysis, it follows that implosion asymmetry

and hot-spot shape directly affect the alpha-heating and ther-

modynamic properties of the hot spot and, in turn, affect
the thermonuclear burn of the capsule. Both the hot-spot
pressure and the neutron yield would decrease as the implosion
departs from spherical symmetry. The degradation in capsule
performance due to implosion asymmetry can be quantified by
the geometric shape function gi . For a given fuel adiabat, the
neutron yield of the capsule scales as Y ∝ (ρr )hsT

2.5 [17,18].
Thus, the ratio of the neutron yield between asymmetric and
spherical hot spots can be quantified by the geometric shape
function gi ,

Y i
n/Y 1D

n = τ i
h/τ0 = gi, (22)

where Y 1D
n is the neutron yield for a 1D spherical hot spot.

The neutron-yield degradation from implosion asymmetry
is divided into two parts,

�Y i
n = Y i

n

(
�Y 1D

n

Y 1D
n

+ �gi

gi

)
. (23)

The first term accounts for the degradation of the 1D spherical
hot spot because of the decreased hot-spot pressure, density,
and temperature caused by the asymmetric implosion, which
can be viewed as an indirect effect of the shape. The second
term accounts for the direct impact of the geometric shape of
the hot spot because of the shorter hydrodynamic disassembly
time and the decreased alpha-particle energy depositions.
Equation (23) shows that given P2/P0, the degradation or
effects of hot-spot shape on capsule performance increase with
the neutron yield of the capsules, although the relative yield
degradation percentage remains the same. The explicit shape
effects for most of the low-yield low-foot experiments con-
ducted at NIF are small because the impact on thermonuclear
burn from a low hot-spot areal density is larger than the impact
from the hot-spot shape and the alpha-heating in these shots
was very minimal. Consequently, implosion asymmetry is not
a major cause of poor performance of these shots.

V. COMPARISONS WITH EXPERIMENTAL DATA

With the measurable shape function gi , we are able to eval-
uate the effects of implosion asymmetry on the thermonuclear
burn of a capsule by comparing our theoretical predictions with
the experimental data from NIF. In Fig. 2, we plot the ratio of
the capsule yield to the 1D capsule yield as a function of the
aspect ratio c/a, showing that the neutron yield decreases as
the hot-spot shape departs from a sphere. The 1D capsule yield
is calculated by the yield formula, (21) [18,19], which uses the
peak implosion velocity, hot-spot areal density derived from
the minimal energy implosion scaling model [17], fuel adiabat,
neutron down-scatter ratio (DSR), and hot-spot temperature.
Figure 2 shows that hot spots with a prolate shape (sausage)
perform better than hot spots with an oblate shape (pancake).
This theoretical result is consistent with the NIF ignition
experimental data [27,28] and numerical simulations [14,29].

Generally, hot spots with toroidal shapes have the most
degraded performance. Our theory indicates that prolate hot
spots suffer less yield degradation than either oblate or toroidal
hot-spot shapes for any value of P2/P0. As |P2/P0| reaches 0.4,
an oblate hot spot turns into a toroidal shape and a prolate hot
spot turns into a dipole shape.
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FIG. 2. Theoretical yield degradation due to the various hot-spot
shapes. Equations (12) and (22) show that an implosion with a prolate
hot-spot shape is less degraded than one with an oblate or a toroidal
shape. Degradation in the various cases is plotted: 3D prolate (solid
black line), 3D oblate (dot-dashed red line), toroidal (dashed blue
line), and dipole (dotted black line). NIF experimental data are plotted
in black dots.

Hot-spot shapes are measured in NIF experiments with
modes up to M4 and P4. For this article, we analyzed 64 shots
performed at NIF [30]. The measured neutron yields in these
shots range from 8 × 1013 to 9 × 1015, and P2/P0 ranges from
−0.68 to 0.41. In the following analysis, we apply our theory to
the NIF data to quantify the degradation in neutron yield due to
implosion asymmetry or hot-spot shape. We then compare the
degraded performance with the observed yield of the capsule.

Figure 3 demonstrates that shape effects are relatively
more noticeable for neutron yields >1014 by comparing the
experimental yield with the 1D yields from Eqs. (21) and (22).
This is because the values of yield degradation due to geometric

1×1014 1×1015 1×1016

Observed neutron yield

1×1014
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1×1016

1D
 o

r o
bs

er
ve

d 
N

eu
tro

n 
yi

el
d

NIF observed data (oblate HS)
Projected 1D yield for oblate HS
NIF observed data (prolate HS)
Projected 1D yield for prolate HS

FIG. 3. Comparison between the neutron yields of the 1D (spher-
ical hot spot) capsule from Eq. (A2) and the NIF experimental data
shows that shape effects become important when the yield is above
1014 and alpha-heating becomes important. Red diamonds and blue
squares represent the projected 1D capsule performance for oblate
and prolate hot spots, respectively, if they were all spherical. Filled
black circles represent NIF data with oblate hot spots; open black
circles, NIF data with prolate hot spots.

TABLE I. Selected NIF shots and their measured physical quan-
tities. The relationship between the total areal density of the DT fuel
and the measured neutron down-scatter ratio (DSR) is approximately
(ρr )tot � 21 × DSR [10].

Shot No. Vimp P2/P0 DSR Ti Yob

(km/s) (%) (keV) (×1015)

N140225 333 0–0.02 3.88 4.52 2.80
N110914 355 0.08 4.9 3.49 0.58
N131212 331 0.21 2.5 2.81 2.30
N170328 380 0.41 3.6 4.2 5.00
N140311 372 −0.35 4.32 5.38 5.18
N140304 380 −0.17 3.4 5.85 8.10
N130802 329 −0.54 2.63 2.85 0.48

shape depend explicitly not only on the shape parameters
but also on the capsule yield as shown in Eq. (23). So the
values of yield degradation for high-yield capsules would be
more visible than that for low-yield capsules if the hot-spot
shapes were similar although the percentages of degradation
were the same. In the figure, red diamonds represent the 1D
neutron yield of the capsules when the hot spots were spherical
instead of oblate and blue squares show the 1D neutron yield
of the capsules when the hot spots were spherical instead of
prolate. With the NIF data the degradation of the thermonuclear
burn due to hot-spot shape indeed is shown to increase with
the yield of the capsule with similar hot-spot shapes. The
shape effect was even more obvious in some capsules with
yields below 1015 as shown Fig. 3, because the decreased
hydrodynamic disassembly time due to implosion asymmetry
resulted in a significant reduction in alpha-heating and hence
the neutron yield [19]. As the implosion symmetry improves,
the hydrodynamic disassembly time is lengthened, and then the
alpha-particle deposition and heating in the hot spot become
appreciable, leading to a higher capsule performance as shown
in the upper-right corner of Fig. 3, where the high-yield
capsules seem less sensitive to shape. Across all NIF shots,
the maximum yield degradation was about 20% for prolate hot
spots and 45% for oblate hot spots.

For in-depth comparison and analysis, we take seven NIF
shots as examples. These shots were selected because there is
a complete set of nuclear data and x-ray and neutron images of
the hot spots. Each shot represents one of the four typical hot-
spot shapes. Six are high-foot shots, which had high design fuel
adiabats [31,32]. Table I details shot information and measured
physical quantities, including the peak implosion velocity Vimp,
neutron down-scatter ratio (DSR), ion temperature (T) of the
hot spot, and observed neutron yield (Yob) of the capsule.

Applying our shape theory to these shots, using the mea-
sured P2/P0 listed in Table I, the predicted capsule perfor-
mance for each capsule in one, two, and three dimensions is
listed in Table II. The comparison with the experimental data
is clearly improved when the shape deviation is taken into
account with Eqs. (22) and (23).

VI. CONCLUSIONS

In conclusion, we have developed an analytical model to
quantify the effects of implosion symmetry on the ignition and
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TABLE II. Comparison between predicted and observed neutron
yields, in units of ×1015. In this table, we have used 5/3 for the
adiabatic index of the DT fuel.

Shot No. Hot-spot Y 1D
n Y 2D

n Y 3D
n Yob

shape

N140225 Sphere 2.6 — — 2.80
N110914 Sphere 0.61 — — 0.58
N131212 Prolate 2.8 2.41 2.5 2.30
N170328 Prolate 6.3 5.3 5.8 5.00
N140311 Oblate 6.7 5 4.5 5.18
N140304 Oblate 9.8 8.55 8.2 8.10
N130802 Torus 0.7 — 0.36 0.48

burn of NIF capsules in terms of the measurable symmetry
quantity P2/P0. Five possible hot-spot shapes with symmetry
along the axis of the hohlraum have been considered: spherical,
oblate, prolate, toroidal and dipolar hot spots. We found
that toroidal hot-spot shapes cause the most degradation in
performance relative to 1D spherical hot spots and that prolate
hot spots have the least effect. An oblate hot spot will turn
into a toroidal hot spot when P2/P0 < −0.4. Similarly, a
prolate hot spot will turn into a dipole at P2/P0 > 0.5. We
applied our analytical models [17–20] to analysis of the ICF
experiments performed at NIF, including both low-foot and
high-foot capsule experiments. Our model predictions are
consistent with the experimental data.

Our study shows that (i) the shape effect on the capsule
hydrodynamic disassembly time causes the degradation of the
capsule performance due to implosion asymmetry; (ii) the
variations of the hydrodynamic disassembly time with hot-
spot shape differentiate the yield degradation with respect to
different hot-spot shapes, for example, prolate, oblate, toroidal,
and dipolar; (iii) the shape effect is negligible for shots with a
yield < 1014 because the hot spots in these shots are generally
poorly compressed and the impact of the shape effect on
thermonuclear burn is relatively small compared to the impact
of a low hot-spot areal density; (iv) shape effects become more
noticeable when the neutron yield is higher than 3 × 1014

because the decreased hydrodynamic disassembly time due
to shape can significantly reduce the alpha-particle heating in
the hot spot; and (v) deformed hot spots would require more
internal energy to achieve ignition than 1D spherical hot spots.

For most of the NIF shots, the maximum negative impact
on thermonuclear burn due to hot-spot shape to date is less
than 20% for prolate and 45% for oblate. These results are
very consistent with the numerical simulations performed by
Kawata et al. [2] more than three decades ago.
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APPENDIX

In a more general situation, such as when P4 and M4 are
not negligible, we can express the dimensionless ratio rmin/r0

of a 3D hot spot in spherical harmonics,

rmin

r0
= h̃1/3g3D, (A1)

where h̃ is a function of P2, P4, and M4 (Mm, m = 1, 2, . . .

is the harmonic expansion in the polar view) and has the
approximate expression [33]

h̃ = c2
1(c1 + c2) +

(
3c1

5
+ c3

3

)(
c1c3 + c2

2

)

+ c2
(
6c1c3 + c2

2

)
7

+ c2
3

(
3c2

11
+ c3

13

)

+ 64c2
4

105

(
c1 + c2

11
+ 3c3

143

)
. (A2)

The coefficients are given by c1 = 1 − (P2/P0)/2 +
3(P4/P0)/8, c2 = 3[P2/P0 − 5(P4/P0)/2]/2, c3 = 35(P4/

P0)/8, and c4 = [1 − (P2/P0)/2 + 3(P4/P0)/8](M4/

M0). For convenience, in this article, we focus on the
impacts of P2 only. Neglecting terms higher than P2 gives
h̃ � 1 + 12(P2/P0)2/20 � 1.
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