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Collapse of generalized Euler and surface quasigeostrophic point vortices

Gualtiero Badin1,* and Anna M. Barry2,†
1Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany

2Department of Mathematics, The University of Auckland, New Zealand

(Received 23 May 2018; published 29 August 2018)

Point-vortex models are presented for the generalized Euler equations, which are characterized by a fractional
Laplacian relation between the active scalar and the stream function. Special focus is given to the case of the
surface quasigeostrophic (SQG) equations, for which the existence of finite-time singularities is still a matter of
debate. Point-vortex trajectories are expressed using Nambu dynamics. The formulation is based on a noncanonical
bracket and allows for a geometrical interpretation of trajectories as intersections of level sets of the Hamiltonian
and Casimir. Within this setting, we focus on the collapse of solutions for the three-point-vortex model. In
particular, we show that for SQG the collapse can be either self-similar or non-self-similar. Self-similarity occurs
only when the Hamiltonian is zero, while non-self-similarity appears for nonzero values of the same. For both
cases, collapse is allowed for any choice of circulations within a permitted interval. These results differ strikingly
from the classical point-vortex model, where collapse is self-similar for any value of the Hamiltonian, but the
vortex circulations must satisfy a strict relationship. Results may also shed a light on the formation of singularities
in the SQG partial differential equations, where the singularity is thought to be reached only in a self-similar way.
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I. INTRODUCTION

In this study we are concerned with an incompressible fluid
in R2, with motion governed by the equation, here written in
local coordinates,

∂ζ

∂t
+ ∂ (ψ, ζ )

∂ (x, y)
= 0, (1)

where ζ (x, y, t ) is an active scalar and ψ (x, y, t ) is the
streamfunction of the flow, which satisfy the relationship

−ζ = (−�)α/2ψ, (2)

with parameter α ∈ R.
The stream function is related to the horizontal velocity

(u, v) via

(u, v) =
(

−∂ψ

∂y
,
∂ψ

∂x

)
. (3)

We define ∇⊥ = (−∂/∂y, ∂/∂x) and � = (−�)α/2, so that
the velocity can be expressed in terms of the active scalar:

(u, v) = ∇⊥�−1ζ = (−R2ζ,R1ζ ), (4)

where R1, R2 denote the Riesz transforms. These equations
take the name of generalized Euler equations or α models (note
that one should not confuse the α models with the Euler-α
equations, that arise instead as a Lagrangian average of the
fluctuations acting on the Euler equations, [1]).

In these models, α = 2 corresponds to the widely studied
Euler equations with the vorticity taking the place of the active
scalar, while α < 2 and α > 2 correspond to so-called local
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and nonlocal dynamics, respectively. In particular, note that
increasing α serves to weaken the local coupling between the
active scalar and the stream function.

The turbulence emerging in these models has been studied
for a variety of values of α (see, e.g., Refs. [2–12]). In
the present article, we focus on the surface quasigeostrophic
(SQG) model [13–16] obtained when α = 1. This model
emerges in the study of atmospheric and oceanic dynamics
when the active scalar is given by the temperature at one
of the boundaries (e.g. the atmospheric tropopause or the
oceanic surface), with the potential vorticity in the interior of
the fluid set to zero. In this case, the emerging turbulence is
characterized by a forward (i.e., toward large wave numbers)
cascade of kinetic energy [17,18], which might make it a
candidate for the route to dissipation of geophysical flows, as
well as by a forward cascade of temperature variance. The latter
results in the formation of fronts, which in turn are important
for the mixing of passive tracers [19]. In the ocean, SQG
dynamics may shed light on the formation of submesoscale
dynamics [20], which again are important for the mixing
of passive tracers [21–23]. For a study on the relationship
between quasi geostrophic (QG) and SQG turbulence; see, e.g.,
Ref. [24]. The stability of SQG vortices was investigated in,
e.g., Refs. [25–31].

In mathematical terms, the SQG model, which is 2D, shows
strong analogies with the 3D Euler equation [32], for which the
existence of finite-time singularities is still a matter of debate.
These observations sparked much interest because they suggest
that the study of the regularity of the SQG model could provide
hints for the formation of singularities in the 3D Euler equation;
see, e.g., Refs. [32–53]. Among these studies, the numerical
work reported in Ref. [54] shows that the α models [Eqs. (1)–
(4)] possess a value of α in the interval [0,2] for which the
solutions behave in the most singular manner. Further, both
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heuristic and mathematical arguments suggest that if the SQG
equations are singular, the formation of singularities must be
self-similar; see, e.g., Refs. [2,14,51,53,55].

It is well known since Helmholtz [56] that point-vortex
models can be derived from the Euler equations. By dividing
the fluid into a number of separated regions with arbitrarily
small area and considering the limit, each vortex is seen
to approach a single point with infinite vorticity and finite
circulation (e.g., Refs. [57–59]). Of particular interest is the
case given by three vortices, which possesses many nontrivial
properties but is completely integrable [60]. One particularity
of point-vortex dynamics is that if the system of point vortices
satisfy some necessary constraints on their circulations, then
there exist motions where the vortices collapse to a point in
a finite time [61,62]. This collapse is subject to the initial
conditions of the system and can take place for an arbitrary
number of vortices [62,63]. For 2D Euler dynamics, the
collapse must be self-similar, i.e., the motion takes place
without change of shape of the system [64]. On the sphere and
for 4 degrees of freedom, Ref. [65] showed that point vortices
can undergo non-self-similar collapse. Further, the spherical
geometry allows also for partial collapse, in which only a subset
of the point vortices coalesce. For further studies on collapse
of point vortices, see Refs. [66–75].

The Hamiltonian nature of the point-vortex model allows
for the use of powerful machinery built in classical mechanics
[76]. A notable alternative to the Hamiltonian formulation is
due to Nambu [77]. The latter is based on Liouville’s Theorem
and relies not only on the Hamiltonian but also on an arbitrary
number of Casimirs, i.e., the singularities of the Poisson
operator, of the system. The resulting dynamics is determined
by a skew-symmetric bracket, known as the Nambu bracket.
For finite-dimensional systems (e.g., Ref. [78]), the resulting
dynamics has an elegant geometric interpretation: Dynamical
motions follow intersections of the manifolds defined by level-
sets of the Hamiltonian and of the Casimirs.

Following Ref. [79], consider a system with three degrees of
freedom r = (r1, r2, r3). If the system possesses two invariants,
namely, the Hamiltonian H = H (r) and the Casimir C =
C(r), one has

Ḣ = ∇rH · ṙ = 0, (5)

Ċ = ∇rC · ṙ = 0, (6)

where ∇r indicates the gradient operator in r space. The system
Eqs. (5) and (6) implies an orthogonality relationship between
ṙ, ∇rH , and ∇rC, so that

ṙ = ∇rC × ∇rH, (7)

which shows that the flow is along the intersection of the
manifolds defined by the level-sets of H and C. Notice
that in Eq. (7) time might be properly rescaled to include
proportionality terms. Equation (7) is the canonical Nambu
form

ṙi = ∂ (ri, C,H )

∂ (ri, rj , rk )

= εijk

∂C

∂rj

∂H

∂rk

= {ri, C,H }N i, j, k = 1, 2, 3, (8)

where εijk is the antisymmetric Levi-Civita symbol and where
the curly braces indicate the (here canonical) Nambu bracket.
The dynamics of an arbitrary state space function F (r) is thus
given by

Ḟ = {F,C,H }N . (9)

If Eq. (9) is generalized as {F1, ..., Fn}, the bracket is a
multilinear map

{, , }N : [C∞(X)]⊗n → C∞(X), (10)

for all Fi (i = 1, ..., n) ∈ X, where X is a smooth manifold.
Equation (10) satisfies the following properties:

(1) Skew-symmetry

{F1, · · · , Fn}N = (−1)ε(σ )
{
Fσ1 , · · · , Fσn

}
N
, (11)

where ε(σ ) is the parity of a permutation σ .
(2) Leibniz Rule

{F1, · · · , Fn}N = F1{F2, · · · , Fn}N
+{F1, F3, · · · , Fn}NF2. (12)

(3) Jacobi identity

{{F1, ..., Fn−1, Fn}N, Fn+1, ..., F2n−1}N
+{Fn, {F1, ..., Fn−1, Fn+1}N, Fn+2, ..., F2n−1}N · · ·
+ {Fn, ..., F2n−2, {F1, ..., Fn−1, F2n−1}N }N

= {F1, ..., Fn−1, {Fn, ..., F2n−1}N }N . (13)

For more algebraic properties of Nambu brackets, see
Ref. [80].

The extension of Nambu mechanics to infinite-dimensional
systems was performed in Ref. [81], where the Nambu brackets
for fluid dynamics were formulated using enstrophy and
helicity as Casimirs in 2D and 3D, respectively. In geophysical
fluid dynamics, the Nambu brackets have been used, e.g.,
by Refs. [82–92]. Of particular interest for this study is the
derivation of the Nambu brackets for the α-models, derived
for the first time in Ref. [79]. Given a 2D continuous system
with the dynamic variable ζ as previously defined, along with
the Hamiltonian H = H [ζ ] and Casimir C = C[ζ ], one has
the generalized Euler equation,

ζ̇ + ∂ (Cζ ,Hζ )

∂ (x, y)
= 0, (14)

where the the subscripts indicate variational derivatives with
respect to ζ . Equation (14) is equivalent to Eq. (1). Arbitrary
functionals F [ζ ] evolve according to

Ḟ + {F,H,C}N = 0, (15)

with the noncanonical Nambu bracket

{F,H,C}N = −
∫

A

Fζ

∂ (Hζ ,Cζ )

∂ (x, y)
dA. (16)

The classical (α = 2) point-vortex model was first studied
using Nambu mechanics in [93,94]. In particular, Ref. [95] used
geometric properties of finite-dimensional Nambu mechanics
to analyze collapse of three point-vortices. This study looked
for intersections of level-sets of the Hamiltonian and Casimirs
which pass through the collapse point, i.e., where the mutual
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distances between the vortices is zero. The result represents a
manifold of necessary conditions for collapse.

While the analyses listed so far focus on the classical 2D
Euler model, the results can be generalized to other models. For
example, SQG point vortices have been studied in Ref. [96],
while interactions between SQG and QG point vortices are
studied in [97]. A number of questions thus arise: Does the
SQG point-vortex model possess collapse solutions? If yes,
must collapse be self-similar? These questions, beyond being
interesting per se, may also be of interest due to the following
motivation. It is believed that the formation of singularities in
SQG should happen, if at all, in a self-similar way. Thus the
way in which SQG point vortices undergo collapse might pose
an intriguing analogy for the study of singular solutions of the
SQG PDE along the lines proposed in Ref. [62] for the Euler
equation.

In the next section we outline the derivation of point-vortex
equations for the α-models and consider relevant properties of
the models. In particular, we make a Nambu formulation and in
Sec. III we use this to set up collapse conditions for the models.
Section IV contains a detailed study of the SQG point-vortex
model (α = 1), establishing the existence of collapse solutions
and analyzing their self-similar structure. We conclude with a
discussion in Sec. V.

II. POINT-VORTEX EQUATIONS FOR THE α MODELS

In this section we derive point-vortex equations for the
α models. When α > 3, we will see that the effect of one
vortex on another increases with distance, and hence this case
is considered unphysical. Because of this, only the interval
α ∈ ]0, 3] will be considered. Note that this interval includes
the transition between local (α < 2) and nonlocal (α > 2)
dynamics. The particular case of SQG will first be considered
in Sec. IV A.

A. Green’s functions

Consider a point vortex with circulation � placed at the
origin, so that

ζ (r) = �δ(r). (17)

The Green’s function for the α models is

G(α)(r) = −(−�)−α/2δ(r), (18)

from which the stream function can be calculated as

ψ (r) =
∫

G(α)(r, r′)ζ (r′)dr′. (19)

The form for Eq. (18) can be found by taking its Fourier
transform [98]. Calculations give

G(α)(r) = �(α)rα−2, α �= 2, (20)

where

�(α) = −
{

2α

[
�

(
α

2

)]2

sin

(
απ

2

)}−1

. (21)

As shown by Ref. [98], the function �(α) has a discontinuity
at α = 2. In this case, one has

G(2)(r) = 1

2π
ln r + C, (22)

where C is an arbitrary constant

B. Equations of motion

Given n point vortices with circulations �i , i = 1, ..., n, let

r2
ij = (xi − xj )2 + (yi − yj )2 (23)

be the square of the distance between vortex i and vortex j .
With this notation, inserting Eq. (20) into Eq. (19) and using
Eq. (3), one can derive the equations of motion for the ith
vortex to be

ẋi = −�(α)
∑
i<j

�j

yi − yj

r4−α
ij

, (24)

ẏi = �(α)
∑
i<j

�j

xi − xj

r4−α
ij

, (25)

for α �= 2. When α = 2, inserting Eq. (22) into Eq. (19) and
again using Eq. (3) yields

ẋi = − 1

2π

∑
i<j

�j

yi − yj

r2
ij

, (26)

ẏi = 1

2π

∑
i<j

�j

xi − xj

r2
ij

. (27)

C. Invariant quantities and integrability
of the three-vortex problem

With these equations of motion it is possible to prove the
following:

Proposition 1. The three-vortex problem for the α-model
possesses the conserved quantities

Hα = −�(α)
∑
i<j

�i�j

r2−α
ij

α �= 2, (28)

Q =
∑

i

�ixi, (29)

P =
∑

i

�iyi, (30)

I =
∑

i

�i

(
x2

i + y2
i

)
. (31)

For the case α = 2 one has the known Hamiltonian

H2 = − 1

2π

∑
i<j

�i�j ln rij . (32)

Proof. First recognize that these quantities represent, re-
spectively, the Hamiltonian, the two components of the linear
momentum, and the angular impulse. Only the Hamiltonian
depends on α and the passage from α < 2 to α > 2 shows a
fundamental change in the topology of the system. Define the
canonical Poisson bracket for the N -vortex problem as

[f, g]P =
∑

i

1

�i

(
∂f

∂xi

∂g

∂yi

− ∂g

∂xi

∂f

∂yi

)
. (33)
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Making use of it, the proof of the invariance of the Hamiltonian
simply comes from the observation that Ḣα = [Hα,Hα]P = 0.
The conservation of Q, P , and I can be proved instead from
simple substitution and noting that [Q,Hα]P = [P,Hα]P =
[I,Hα]P = 0.

By Liouville’s theorem, the previous proposition implies
that the three-vortex problem for the α models is completely
integrable.

The system also has an invariance for scaling, as stated in
the following:

Proposition 2. The equations of motion Eqs. (24) and (25)
are invariant with respect to the transformations

(x, y) → λ(x ′, y ′), (34)

t → λ4−αt ′, (35)

where λ ∈ R.
Proof comes from direct substitution.
Last, the system has two invariants linked to the circulation:
Proposition 3. The equations of motion Eqs. (24) and (25)

yield the conservation of the total circulation,

γ =
∑

i

�i , (36)

and of the angular momentum,

Vα =
∑

i

�i k · (ri × ṙi )

= �(α)
∑
i<j

�i�j

r2−α
ij

. (37)

Proof. The conservation of Eq. (36) comes directly from
Kelvin’s circulation theorem and, together with the conser-
vation of P, Q yields the conservation of the center of
circulation,

C =
∑

i �iri∑
i �i

. (38)

In the case of α = 2, the angular momentum is the virial

V2 = 1

2π

∑
i<j

�i�j , (39)

which is a conserved scalar. For α �= 2 one has the interesting
result Vα = −Hα , which implies [Vα,Hα]P = −[Hα,Hα]P
= 0.

The proof of invariance of the previous quantities can also
be demonstrated a priori. It is easy to check that the Lagrangian
function [16,99]

Lα = Hα + Vα, (40)

here generalized for the α models, satisfies corresponding con-
tinuous symmetries for time and space translations, rotations,
and scaling. Application of Noether’s theorem [16,99] yields
thus the conservation of Hα, Q, P, I , and Vα , respectively.

D. Equations of relative motion

In the following, it will be convenient to have the equations
of motion written in terms of the mutual squared distances

between the point vortices, also known as equations of rel-
ative motion [100,101]. Using the canonical Poisson bracket
Eq. (33), one has

dr2
ij

dt
= [

r2
ij , Hα

]
P

= 2(α − 2)�(α)
∑

k �=i �=j

�kAσ

(
1

r4−α
jk

− 1

r4−α
ki

)
. (41)

Notice that for α = 2 we have

dr2
ij

dt
= [

r2
ij , H2

]
P

= 2

π

∑
k �=i �=j

�kAσ

(
1

r2
jk

− 1

r2
ki

)
. (42)

In Eqs. (41) and (42), the quantity A is the area of the triangle
with rij , rjk, rki as side-lengths and σ is the orientation of
the same triangle, so that σ = 1 if the vortices are arranged
counter-clockwise and σ = −1 otherwise. Without loss of
generality, in the following we will set σ = 1.

Alternatively, one has

ṙij = (α − 2)�(α)
∑

k �=i �=j

�k

ρ

(
rki

r3−α
jk

− rjk

r3−α
ki

)
, (43)

where ρ = rij rjkrki/A. For α = 2,

ṙij =
∑

k �=i �=j

�k

πρ

(
rki

rjk

− rjk

rki

)
. (44)

Remark 1. From Eqs. (43) and (44) we see that all equilibria
and relative equilibria of the three-vortex problem for the α

models correspond to cases in which either

rij = rjk = rki (45)

or

A = 0, (46)

and hence the vortices must form an equilateral triangle or
collinear configuration. This also holds and is well-known for
the classical three-vortex problem (α = 2). In particular, since
the vector field Eqs. (43) and (44) is smooth near equilateral
triangle configurations, except at the point of collapse, it is
easy to see that Eq. (45) is also a sufficient condition for
equilibrium [72]. For the collinear configuration, the condition
Eq. (46) gives rise to three possibilities, corresponding to (i) an
absolute equilibrium; (ii) a relative equilibrium, i.e., a rigidly
translating or rotating collinear configuration of vortices; or
(iii) an evolution of the collinear configuration to a triangle with
nonzero area and then, due to the symmetries of the system,
to a commuted collinear configuration [72]. In order for the
configuration to remain collinear [and hence to avoid case (iii)],
the system should also satisfy the condition

Ȧ = 0. (47)

Finally, the system does not allow for partial collapse, i.e., for
collapse of two of the three vortices. The proof proceeds in
complete analogy with the case α = 2 [72] and will not be
reported here.
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It should be noted that in Eqs. (28)–(31), only the Hamilto-
nian is written as a function of the relative distances. In terms
of these, it is possible to prove the conservation of the quantity

M = 1

2

∑
i<j

�i�j r
2
ij , (48)

which is the squared relative angular momentum with respect
to the center of circulation. This follows from the observation
that [Hα,M]P = 0. Notice that M does not depend on α.

E. Nambu formulation of the equations of motion
for three-point vortices

Using the conserved quantities Hα and M , one can rewrite
the equations of relative motion for three-point vortices as

ṙij = 1

�1�2�3ρ

(
∂M

∂rjk

∂Hα

∂rki

− ∂M

∂rki

∂Hα

∂rjk

)
, (49)

or, in vector notation,

ṙ = 1

�1�2�3ρ
∇M × ∇Hα. (50)

Equation (50) is the noncanonical Nambu representation for
the point-vortex problem. Notice that, as in underlying partial
differential Eqs. (14), the Nambu representation depends on α

through Hα and not through the coefficients of the equations.
Following the arguments reported in the Introduction,

Eq. (50) shows that the motion can be geometrically identified
along the manifold given by the intersection of the level sets
of Hα and M . In the following we will use this approach to
identify the necessary conditions for collapse.

III. COLLAPSE FOR THE α MODELS

A. Collapse manifold

Define

Bα = − Hα

�(α)�1�2�3
, (51)

C = 2M

�1�2�3
, (52)

with the special case

B2 = − 2πH2

�1�2�3
. (53)

With these definitions, Eqs. (28), (48), and (32) become

Bα = rα−2
12

�3
+ rα−2

23

�1
+ rα−2

31

�2
, (54)

C = r2
12

�3
+ r2

23

�1
+ r2

31

�2
, (55)

with the special case

B2 = ln r12

�3
+ ln r23

�1
+ ln r31

�2
. (56)

The state of total collapse corresponds to r12 = r23 = r31 = 0,
and so we must require

C = 0. (57)

This immediately implies that one of the circulations carries
a sign opposite the other two. We can also use Eq. (55) to
express one of the variables, e.g., r31, as a function of the other
variables. Since rij � 0, it follows that

r31 =
√

−�2

(
r2

12

�3
+ r2

23

�1

)
, (58)

which must hold for all values of α. Equation (54) yields

r31 =
[
−�2

(
rα−2

12

�3
+ rα−2

23

�1
− Bα

)] 1
α−2

, α �= 2. (59)

The manifolds containing candidate trajectories for collapse
are thus given by the intersections of the surfaces defined by
Eqs. (58) and (59).

B. Admissible cone

In spite of the above, the condition that trajectories are
constrained to the intersection of the surfaces is not sufficient
for collapse. This is a consequence of the ambiguity arising
from the mutual distances coordinate space. Consider the
following geometric argument (see, e.g., Ref. [57]). Given the
triangular inequalities

rij � rjk + rki, (60)

one has

(r12 + r23 + r31)(r12 + r23 − r31)

× (r12 − r23 + r31)(−r12 + r23 + r31) � 0. (61)

Geometrically, the set of points inside the region satisfying
Eq. (61) describe a conic section. Only the trajectories that
lie inside this so-called admissible cone represent realizable
vortex triangles. It is trivial to see that the roots of Eq. (61)
for, e.g., r31, defining the boundaries of the admissible cone,
are r31 = ±(r12 + r23) and r31 = ±(r12 − r23). Notice that, by
definition, we are interested in the regions where rij � 0.

Remark 2. In the classical point-vortex model (α = 2),
collapse is self-similar and can occur for any value of the
Hamiltonian, but has a strict relationship on the vortex cir-
culations, i.e., [61,62] ∑

i

1/�i = 0. (62)

This condition arises from special properties of the logarithm.
Notice also that the same condition implies V2 = 0. For
the symmetric case �1 = �2 = 1, �3 = −� < 0 that will be
considered later, collapse can thus only occur for � = 1/2.

If initial conditions are chosen to lie on the collapse
manifold and within the admissible cone, then the evolution
of the orbit moves toward the collapse point in either forward
or backward time, provided the manifold does not contain any
equilibria or relative equilibria. Since all equilibria and relative
equilibria are either collinear or equilateral, it is easy to check
the existence of such trajectories. In what follows we will
see that families of collapsing and expanding configurations
come in pairs, in analogy with results from the classical Euler
three-vortex problem. In Sec. IV, the collapse manifold and the
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admissible cone will be studied for the special case of SQG,
i.e., for α = 1.

IV. COLLAPSE FOR THE SQG EQUATIONS

A. Equations of motion

For the SQG equations, i.e., for α = 1, one has

�(1) = − 1

2π
, (63)

and thus

G(1)(r) = − 1

2πr
, (64)

which is the well-known Green’s function discussed in, e.g.,
Ref. [14].

With this, the equations of motion become

ẋi = 1

2π

∑
i<j

�j

yi − yj

r3
ij

, (65)

ẏi = − 1

2π

∑
i<j

�j

xi − xj

r3
ij

. (66)

The Hamiltonian is

H1 = 1

2π

∑
i<j

�i�j

rij

. (67)

In the following, the subscript 1 will be omitted. Using the
results for the α models, one arrives at the equations of relative
motion for three point vortices,

dr2
ij

dt
= [

r2
ij , H

]
P

= 1

π
�kAσ

(
1

r3
jk

− 1

r3
ki

)
, (68)

or, equivalently,

ṙij = �k

2πρ

(
rki

r2
jk

− rjk

r2
ki

)
. (69)

B. Necessary conditions for collapse

For three SQG point vortices, one has

H = 1

2π

(
�1�2

r12
+ �2�3

r23
+ �3�1

r31

)
, (70)

and therefore

B = 1

�3r12
+ 1

�1r23
+ 1

�2r31
. (71)

We recall that B was defined as

B = 2πH

�1�2�3
. (72)

Note that Eq. (71) does not allow for partial collapse, i.e., the
instance of two vortices coalescing while the third remains
separate. In particular, if any one of the mutual distances rij

tends to zero, then another must also tend to zero in order for
B to remain constant. However, the latter is a total collapse
scenario.

To allow for direct comparison with the case α = 2, for
which Eq. (62) must hold for collapse, we choose �1 = �3 =
1, �2 = −� < 0. This is the simplest situation that can lead
to examples of both self-similar and non-self-similar collapse.
We refer to this as the symmetric case.

For simplicity and ease of notation, we set alsox = r12, y =
r23, z = r31, where x, y, z ∈ R+.

Equations (71) and (57) become

B = 1

x
+ 1

y
− 1

�z
, (73)

0 = x2 + y2 − z2

�
, (74)

respectively.
Notice that in this notation the roots of Eq. (61) satisfying

(x, y, z) � 0 are given by z = x + y and z = ±(x − y).
We now state the following:
Proposition 4. The SQG three-vortex model possesses col-

lapsing solutions. For the symmetric case, collapse can be
self-similar or not. When H = 0, collapse is self-similar, while
for H �= 0, collapse must be non-self-similar.

The proof of the proposition will be demonstrated over the
next two subsections, and numerical examples will then be
reported.

1. Self-similar collapse

Consider first the case where the side-lengths of the triangle
have a linear scaling, i.e.,

y

x
= k1, (75)

z

x
= k2, (76)

with k1, k2 ∈ R+. The replacement of these in Eq. (73) yields

B =
(

1 + 1

k1
− 1

�k2

)
1

x
. (77)

In order for the above equation to hold for all x > 0, we must
have

1 + 1

k1
− 1

�k2
= 0, (78)

and hence

B = 0. (79)

Pairing this with Eq. (74) gives a relationship between k1 and
k2, that is

k3
2 = k1(1 + k2

1 )

k1 + 1
. (80)

Remark 3. It should be emphasized that Eq. (79) implies
that the linear scaling for SQG-collapse requires H = 0. This
differs strikingly from the classical point-vortex model (α =
2), where self-similar collapse requires Eq. (62). No analogous
property arises in the SQG case nor for the generic α models.
The same condition implies V2 = 0, which does not arise in
the SQG case nor for the generic α models; see Eq. (37).
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Indeed, we will see that any choice of � within a certain
interval can lead to collapse with linear scaling for SQG when
H = 0.

Lemma 1. Any choice of �, with �∗ < � < 0.5, where
�∗ ≈ 0.387464, can lead to self-similar collapse for SQG when
H = 0.

Proof. Consider the planar level sets z = Z for fixed values
Z ∈ R+. We are interested in the intersections of these curves
for small values of Z. Equations (73) and (74) are

1

�Z
= 1

x
+ 1

y
, (81)

Z2

�
= x2 + y2. (82)

There are three possible scenarios for the intersections: (i)
the two curves do not intersect; (ii) they intersect along
the line y = x; (iii) they intersect along two different lines,
symmetrically placed about y = x, one of them representing
collapsing solutions while the other consists of expanding
solutions. To guarantee the existence of the intersections, we
require that the quadratic curve Eq. (82) lies “above” the
hyperbolic curve Eq. (81) with respect to the line y = x. Along
that line,

1

�Z
= 2

x
, (83)

Z2

�
= 2x2. (84)

Thus, let

xH = 2�Z, (85)

xM =
√

1

2�
Z. (86)

The condition of one curve lying above the other is xM > xH . It
is evident that this is true provided 0 < � < 1/2. Notice that
when � = 1/2 one has xM = xH and the level curves meet
along the line of equilateral triangles.

To complete the proof, one should prove that the trajectories
always lie within the admissible cone. In the region (x, y, z) �
0 and with the assumption 0 < � < 0.5, the plane z = x +
y never meets the surface defined by Eq. (73) since, in the
defined region, (x + y)2 > x2 + y2 > �(x2 + y2). Thus, the
curves of intersection never meet the z = x + y boundary of
the admissible cone.

Inserting z = y − x into Eqs. (73) and (74) yields the linear
relationships

y = [1 + √
(2 − �)�]

1 − �
x (87)

and

y = (1 + √
1 + 4�2)

2�
x, (88)

respectively. The two lines coincide for � = �∗ ≈ 0.387464,
so that, i.e., for � = �∗ the manifold given by the intersection
of H and M coincides with the boundary of the admissible
cone.

Finally, because of symmetry, z = x − y will give the same
value of �∗. Thus, collapse occurs only for the interval �∗ <

� < 0.5.

2. Non-self-similar collapse

Based on the above arguments, we know that the linear
scaling assumption cannot possibly lead to collapse for H �= 0
(i.e., B �= 0). We would now like to pose the question as to
whether there can be collapse for nonzero energy levels. Using
the geometric approach, we work with level curves as in the
previous section. The equations with B �= 0 are now

1

�

(
1

Z
+ B

)
= 1

x
+ 1

y
, (89)

1

�
Z2 = x2 + y2. (90)

As before, in the the region of interest x > 0, y > 0 the
first curve is concave up and the second is concave down.
Further, the first curve only lies in this region of the plane
when 1

�
( 1
Z

+ B ) > 0, which implies that we must request
1
Z

+ B > 0. This will clearly hold when Z is sufficiently small,
which is in agreement with the fact that for collapse we are
interested in the level curves close to the origin, i.e., set by
Z → 0.

We wish to identify where the quadratic curve lies “above”
the hyperbolic curve along the line y = x as x, y → 0. This
will guarantee the two curves of intersections as in the earlier
section. We have

xH = 2�(
1
Z

+ B
) , (91)

xM =
√

1

2�
Z. (92)

Thus, xM > xH holds in the limit Z → 0 only if 0 < � < 1/2
exactly as in the H = 0 case. For H �= 0, it is not possible to
evaluate analytically the lower bound for � from the constraint
given by the admissible cone. In the next section, this will thus
be calculated numerically for specific values of H .

C. Examples of SQG collapse

In the previous subsection we have identified candidate
curves for collapse. In what follows, we give examples of
collapse solutions for particular choices of the parameters.
Figure 1 shows the surfaces given by Eqs. (58) (blue) and
(59) (yellow) for three different values of H , corresponding
to H = 0 (top panel), H = −0.1 (middle panel), and H =
0.1 (bottom panel), and �1 = �3 = 1, |�∗| < |�2| < 0.5. In
particular, results are shown for �2 = −0.49. As predicted, the
surfaces intersect along two curves passing through the origin
and are symmetric about the line r12 = r23 but have substantial
differences for different values of H .

1. Examples of SQG collapse for H = 0

The intersection of the surfaces given by Eqs. (58) (blue)
and (59) (yellow) for H = 0 are shown in the top panel of
Fig. 1. The corresponding projections on the (r12, r23) plane
are shown in Fig. 2. For H = 0, the intersections are straight
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FIG. 1. Surfaces given by Eqs. (58) (blue) and (59) (yellow) for
the choice of values �1 = �3 = 1, �2 = −0.49 and (a) H = 0, (b)
H = −0.1, and (c) H = 0.1 (bottom).

lines (seen as the two symmetric lines closer to the r12 = r23

line, marked as dot-dashed) contained within the admissible
cone.

Solving Eqs. (73) and (74) for z yields a quartic equation
in x and y. If H = 0, the solutions are linear. There are two
solutions that meet the region x, y > 0, namely,

y = 0.751484x, (93)

y = 1.3307x. (94)

H�0

H��0.1

H��0.5
H��1

H�0H��0.1H��0.5H��1

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

r12

r 2
3

FIG. 2. Intersections of the curves given by Eqs. (59) and (58)
for the choice of values �1 = �3 = 1, �2 = −0.49 and H ranging
from H = −1 (most outer curves) to H = 0 (most inner curves).
The dashed lines represent the boundary of the admissible cone. The
dot-dashed line represents the line of equilateral triangles defined by
r12 = r23.

Using these two sets of equations allows us to generate
initial conditions that may lead to collapse when integrating
the system Eq. (69). Of course, collapse corresponds to a
singularity of the system, and the equations blow up as this
point is approached. Therefore, to verify that the simulation
corresponds to a collapse trajectory, we compare it with the
analytical solution provided by Eqs. (93) and (94).

Our results show that Eq. (93) corresponds to collapse,
while Eq. (94) corresponds to expansion (collapse in backward
time). The data from the simulation is shown using black dots
in Fig. 3, while the solid line shows the analytical solution
satisfying Eq. (93).

0.02 0.04 0.06 0.08 0.10 0.12 0.14
r12

0.02

0.04

0.06

0.08

0.10

r23

FIG. 3. Black dots: data from numerical integration of the equa-
tions of motion Eqs. (69) when �1 = �3 = 1, �2 = −0.49. Time
increases from right to left and the initial conditions were chosen to
satisfy Eqs. (73) and (74) with B = H = 0. Solid line: analytical solu-
tions of Eqs. (73) and (74), with B = 0, given by r23 = 0.751484 r12.
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0.1 0.2 0.3 0.4 0.5
r12

0.5

1.0

1.5

2.0

2.5

r23

FIG. 4. Black dots: data from numerical integration of the equa-
tions of motion Eqs. (69) when �1 = �3 = 1, �2 = −0.49. Time
increases from right to left and the initial conditions were chosen
to satisfy (73)–(74) with H = −0.1. Solid curve: analytical solutions
of Eqs. (73) and (74) with the specified choice of parameters.

2. Examples of SQG collapse for H �= 0

a. H < 0. The intersection of the surfaces given by
Eqs. (58) (blue) and (59) (yellow) for H < 0 are shown in the
middle panel of Fig. 1. The corresponding projections on the
(r12, r23) plane are shown in Fig. 2. For different values of H <

0, the intersections are seen as symmetric lines with nonlinear
profiles, more and more distant from the r12 = r23 line as the
value of H diminishes, and with nonzero intersections with the
boundaries of the admissible cone.

In this case, we set H = −0.1 and again generate initial
conditions using Eqs. (73) and (74). Figure 4 shows the time
integration of Eq. (69) using these initial conditions. The
trajectory follows an evidently nonlinear path in the projection
onto the (r12, r23) plane. Data from the simulation are shown
with black dots, and the projection of the relevant intersection
of the surfaces generated by Eqs. (73) and (74) onto the plane
is shown as solid curve.

b. H > 0. The intersection of the surfaces given by
Eqs. (58) (blue) and (59) (yellow) for H > 0 are shown in the
lower panel of Fig. 1. Figure 5 shows the intersections of the
curves given by Eqs. (59) and (58) for the choice of values
�1 = �3 = 1, �2 = −0.49, and H ranging from H = 0.01
(most outer curves) to H = 0.5 (most inner curves). The
dashed lines represent the boundary of the admissible cone.
The dot-dashed line represent the line given by the equilateral
triangles defined by r12 = r23.

Also in this case, it is clear that trajectories follow a
non self-similar evolution. The results for these values of H

are however very different than the cases with H � 0. The
trajectories in the (r12, r23)-phase plane appear as homoclinic
orbits connected to the origin. The connection to homoclinic
orbits is however only apparent. Consider in fact the part of a
trajectory given by a fixed value of H . If the initial condition
corresponds to a forward time integration toward the origin,
the necessary conditions for collapse are satisfied. However, if
the initial conditions correspond to a forward time integration
away the origin, the trajectory will approach the line r12 = r23,
i.e., the trajectory approaches an equilateral triangle relative
equilibrium. In other words, each intersection contains two
heteroclinic orbits: one that approaches collapse in backward

H�0.01
H�0.05

H�0.1

H�0.5

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.02

0.04

0.06

0.08

0.10

r12

r 2
3

FIG. 5. Intersections of the curves given by Eqs. (59) and (58)
for the choice of values �1 = �3 = 1, �2 = −0.49, and H ranging
from H = 0.01 (most outer curves) to H = 0.5 (most inner curves).
The dashed lines represent the boundary of the admissible cone. The
dot-dashed line represents the line of equilateral triangles defined by
r12 = r23.

time and an equilateral triangle in forward time, and one that
does the opposite. Therefore, there are no infinitely expanding
solutions in this scenario. This case is particularly striking
because there is no analogous scenario in the classical Euler
point-vortex problem.

V. SUMMARY AND DISCUSSION

In this article we have presented point-vortex equations for
the α models, giving particular attention to the SQG case.
Derivation of the invariant quantities shows a dependence
on the parameter α only in the Hamiltonian, a result that
was already found for the infinite-dimensional case [79]. The
point-vortex equations were expressed via Nambu dynamics,
which allowed for the use of not only the Hamiltonian but also
of the Casimir of the system. As a result, trajectories were found
to follow the intersection of fixed level sets of the Hamiltonian
and Casimir, as already studied by Refs. [93–95].

Within this setting, we studied the collapse of solutions for
the three point-vortex model. Results show that for SQG the
collapse can be either self-similar or less. Self-similarity is
restricted to a zero value of the Hamiltonian, while non-self-
similarity appears for nonzero values of the same. For both
cases, collapse is allowed for any choice of the circulations
within a permitted interval. As remarked, these results differ
strikingly from the classical point-vortex model, where col-
lapse is self-similar for any value of the Hamiltonian, but has
a strict relationship on the vortex circulations.

Information on the behavior of the SQG equations near
collapse is particularly interesting, at least at a qualitative
level, as it is still unknown whether the partial differential
equations of the SQG model can produce singularities. As
suggested in Refs. [62,102], careful examination of the initial
conditions leading to collapse might be used to construct
initial distributions of the active scalar for the SQG model,
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which might be treated as candidates for the formation of
singularities. Or, viceversa, prominent candidates of initial
conditions that are thought to lead to singularities of the SQG
equations, such as the one proposed by Ref. [32], can be used to
construct initial configurations of point vortices. The eventual
collapse of these initial conditions can thus give qualitative
information about the formation of singularities. It is also
interesting to note that while collapse can happen in both
self-similar and non-self-similar ways, the partial differential
equations of SQG are thought to give raise to singularities only
in a self-similar way.

As stated in the Introduction, the α models can be used
to give a representation of balanced models of geophysical
flows, such as the atmosphere and the ocean. The Hamiltonian
nature of these models is valid at scales between the forcing
and dissipation scales. It should be underlined that due to the
extremely high values of the Reynolds’ number associated to
geophysical flows, this condition is satisfied for a large class
of atmospheric and oceanic dynamics. The α models here
analyzed can, however, be used to represent also higher-order

balanced models of geophysical flows, such as the surface
semigeostrophic (SSG) model [103,104]. As semigeostrophic
dynamics is known for the formation of singularities, which
represent the finite-time formation of fronts, the analysis of
the collapse of the corresponding point-vortex models could
give interesting qualitative information for the relation between
collapse and singularities.
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