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processes in scale, and multifractal predictions
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We compare different approaches towards an effective description of multiscale velocity field correlations
in turbulence. Predictions made by the operator-product expansion, the so-called fusion rules, are placed in
juxtaposition to an approach that interprets the turbulent energy cascade in terms of a Markov process of velocity
increments in scale. We explicitly show that the fusion rules are a direct consequence of the Markov property
provided that the structure functions exhibit scaling in the inertial range. Furthermore, the limit case of joint
velocity gradient and velocity increment statistics is discussed and put into the context of the notion of dissipative
anomaly. We generalize a prediction made by the multifractal model derived by Benzi et al. [R. Benzi et al., Phys.
Rev. Lett. 80, 3244 (1998)] to correlations among inertial range velocity increment and velocity gradients of any
order. We show that for the case of squared velocity gradients such a relation can be derived from first principles in
the case of Burgers equations. Our results are benchmarked by intensive direct numerical simulations of Burgers
turbulence.

DOI: 10.1103/PhysRevE.98.023104

I. INTRODUCTION

Three-dimensional turbulence is a paradigmatic out-of-
equilibrium system with connections to fundamental questions
in statistical mechanics [1,2] and many other applied problems
in different disciplines, e.g., mechanical engineering [3], at-
mospheric physics [4], geophysics [5], and astrophysics [6].
One of the most striking features of turbulence is that, already
when stirred with a Gaussian, homogeneous, and isotropic
forcing, the flow develops highly nontrivial, non-Gaussian, and
multiscale statistical properties in the limit of high Reynolds
numbers. Here the Reynolds number is the control parameter
that defines the relative intensity of nonlinear vs linear terms
in the Navier-Stokes equation

∂

∂t
v(x, t ) + v(x, t ) · ∇v(x, t ) = −∇p(x, t ) + ν∇2v(x, t ).

(1)

The existence of anomalous scaling properties goes under
the name of intermittency, which is empirically found in all
three-dimensional turbulent flows in nature and is still lacking
a clear understanding and derivation from the underlying
equations of fluid motion. Accordingly, this phenomenon of
small-scale intermittency manifesting itself, e.g., in the form
of the non-self-similarity of the probability density function
(PDF) of longitudinal velocity increments

δrv = [v(x + r) − v(x)] · r
r

for r > 0, (2)

is still one of the most compelling experimental, numerical, and
theoretical open problems of fully developed turbulence. Many
studies of turbulence research have been devoted to the exper-
imental and theoretical examination of the scaling exponents

ζ (n) of structure functions 〈(δrv)n〉 ∼ rζ (n) in the inertial range
[1]. Here Kolmogorov’s phenomenological description of the
turbulent energy cascade, i.e., the transport process of energy
from large to small scales, predicts ζ (n) = n/3, which in turn
implies a self-similar velocity increment PDF. The effects of
intermittency lead to deviations from Kolmogorov’s theory and
ζ (n) has been empirically found to be a nonlinear function of
n [1,7–12].

The pivotal role of the turbulent energy cascade in tur-
bulence theory immediately suggests the importance of ex-
tending the analysis based on single-scale observables (2)
to multiscale velocity increments, which should also lead
to a better understanding of local and nonlocal correlations
inside the inertial range and among inertial and viscous scales.
Owing to the prohibitive analytical difficulties to attack the
Navier-Stokes equation (1), the attention has been also often
focused on other dynamical models of turbulence, in particular
to the Burgers equations, a simplified one-dimensional and
compressible version of the Navier-Stokes equation. Here the
only nonlinearity enters through the advective term

∂

∂t
v(x, t ) + v(x, t )

∂

∂x
v(x, t ) = ν

∂2

∂x2
v(x, t ). (3)

It is well known that the Burgers equation develops a qua-
sishock for generic smooth initial conditions, a property that is
also connected to anomalous scaling of the velocity increments
[13]. Furthermore, in this paper we impose periodic boundary
conditions and deal only with the forced Burgers case (see
Sec. IV A), which can also be treated by using the Hopf-
Cole transformation [13]. Neglecting the forcing contributions
would make the problem exactly solvable, however, the in-
troduction of suitable boundary conditions can change the
problem considerably.
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In the following we will address both the Navier-Stokes
and Burgers equations using different statistical approaches
to describe their multiscale correlation properties, together
with a series of quantitative validations using direct numerical
simulations of Eq. (3). In particular, we will compare the
two seemingly different approaches of the operator-product
expansion [14–18] and the Kramers-Moyal approach [19–22].
It will be shown that both methods yield the same predictions
for multiscale velocity increment correlations, the so-called
fusion rules. Subsequently, we will address the case where
one of the increments matches the velocity gradient within
the framework of the multifractal approach [1,17,23]. We will
prove a particular expression of the multifractal (MF) approach
from first principles in Burgers turbulence, i.e., by deriving an
exact velocity increment hierarchy from the Burgers equation.

Historically, one of the first multiscale analyses in tur-
bulence was carried out in [14] where the operator-product
expansion from quantum field theory [24] was invoked. In this
framework, one can derive the relation for the two-increment
(three-point) quantity

〈(δrv)p(δRv)q〉 ∼ 〈(δrv)p〉
〈(δRv)p〉 〈(δRv)p+q〉 (4)

for η < r � R � L, where η is the dissipation scale and L

the integral length scale. Moreover, we assume that one of the
two extremes of the interval of length r and R coincides and
that both increments are collinear. These relations are known
as fusion rules and they have been analyzed both theoretically
and numerically [15–18]. It should be noted that the fusion
rules necessarily imply a reduction of the spatial complexity
of the problem: The three-point quantity on the left-hand side
of Eq. (4) can be cast in terms of two-point quantities, the
structure functions 〈(δrv)n〉. For three-dimensional isotropic
and homogeneous turbulent flows, one can show [25] that
the most general tensorial two-point velocity correlation func-
tion can always be decomposed in terms of longitudinal or
transverse velocity structure functions. Here, for the sake of
simplicity, we will always limit the discussion to the case when
all distances are collinear with the velocity increments taken
on the longitudinal direction as given by Eq. (2). Furthermore,
this is the only possible case for one-dimensional Burgers
turbulence (discussed below).

In the following, we will address the multiscale correlation
function (4) by using the MF model [1,17,23] as well as the
Kramers-Moyal (KM) approach [19–22] in order to describe
the evolution of velocity increment PDFs across the inertial
range. Within the MF model we will also address multiscale
correlation functions when one of the velocity increment is
calculated at fused points, i.e., when the increment is smaller
than the viscous dissipative cutoff. The latter case is important
to discuss in the context of the so-called dissipative anomaly
[26] that emerges in a multipoint PDF hierarchy of Burgers
turbulence (see also the discussion in Sec. IV A of this paper).
We mention that there exist different definitions for dissipative
anomaly in the literature, both connected to local or averaged
quantities [1,26,27]; in this paper we are only interested in
the definition in terms of averaged quantities and in the limit
of small but nonzero viscosity. We note that these different
definitions address the same physical issue as already noted
by Polyakov [see the equation and discussion after Eq. (19) in

[26]]. Most of the theoretical arguments are general and can
be applied both to the three-dimensional homogeneous and
isotropic Navier-Stokes equation and to the one-dimensional
Burgers equation. We will then present a series of detailed
numerical benchmarks for the latter case only, where one can
achieve a separation of scales large enough to make precise
quantitative statements. The paper is organized as follows. In
Sec. II we outline the usual derivation of the fusion rules (4) and
discuss the dissipative cutoff within the framework of the MF
model. Henceforth, it will be shown in Sec. III that the fusion
rules (4) can be derived from the KM expansion associated with
a Markov process [28]. Section IV A contains a derivation of
a multi-increment PDF hierarchy from the Burgers equation
which leads to a validation of the MF prediction from first
principles. In Sec. IV B we will examine both fusion rules and
the MF predictions in direct numerical simulations of Burgers
turbulence.

II. FUSION RULES AND THE MULTIFRACTAL MODEL

The derivation of the fusion rules (4) starts from the
assumption that the small-scale statistics of δrv is related to
the large-scale configuration δRv via the multiplier λ(r, R)
according to

δrv ∼ λ(r, R)δRv. (5)

Furthermore, we assume that λ(r, R) = λ(r/R), which is a
consequence of a purely uncorrelated multiplicative process in
addition to homogeneity along the energy cascade [17,18] and
yields

〈(δrv)p(δRv)q〉 ∼ 〈λ(r/R)p(δRv)p+q〉
∼ 〈λ(r/R)p[λ(R/L)(δLv)]p+q〉, (6)

where we required that the large-scale increment is related
to the integral-scale increment by the same relation (5).
Furthermore, δLv is assumed to be statistically independent
of the multiplier λ(r/L), which yields

〈(δrv)p(δRv)q〉 ∼ 〈λ(r/R)pλ(R/L)p+q〉〈(δLv)p+q〉, (7)

but also implies that 〈(δrv)p〉 = 〈(δLv)p〉〈λ(r/L)p〉. Hence, in
the high-Reynolds-number limit (Re =

√
〈v2〉L/ν � 1, with

the kinematic viscosity ν) where we expect scaling of the
structure functions 〈(δrv)p〉 ∼ (r/L)ζ (p), we can demand that
〈λ(r/R)p〉 ∼ (r/R)ζ (p). The last hypothesis that enters the
derivation of the fusion rules (4) is that the multipliers obey an
uncorrelated multiplicative process, which allows the splitting
of the first expectation value on the right-hand side of Eq. (7),

〈(δrv)p(δRv)q〉 ∼ 〈λ(r/R)p〉︸ ︷︷ ︸
(r/R)ζ (p)

〈λ(R/L)p+q〉〈(δLv)p+q〉︸ ︷︷ ︸
〈λ(R/L)p+q (δLv)p+q 〉

∼ 〈(δrv)p〉
〈(δRv)p〉 〈(δRv)p+q〉. (8)

In the following, we will also consider the case when the small-
scale increment in Eq. (4) approaches the velocity gradient. On
the basis of the MF model, one can deduce the existence of an
intermediate dissipation range [29], corresponding to a con-
tinuous range of dissipation lengths η(h, ν), where h denotes
the continuous range of scaling exponents of the MF model
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(see also [23] and note that the MF model is also contained in
Mellin’s transform in combination with the method of steepest
descent [7]). In addition, the MF model can be invoked in order
to investigate the Reynolds-number dependence of moments
of velocity derivatives [30]. By the use of these multifractal
calculations in combination with the intermediate dissipation
range cutoff, one can derive expressions for joint velocity
gradient-increment statistics [17,18] such as〈(

∂v(x)

∂x

)2

[δRv(x)]q
〉

∼ Rζ (q+3)−1

ν
. (9)

Here we explicitly wrote the dependence of the increment δRv

on x in order to indicate that the velocity gradient and the
velocity increment are calculated with one point in common, x.
Moreover, it must be stressed that this relation only holds if the
scaling exponents fulfill Kolmogorov’s 4/5 law, i.e., ζ (3) = 1.

We now want to generalize the previous expression (9) to
arbitrary orders of the velocity gradient. To this end, we define
the quantity Dp,q (ν, R) = 〈(∂v/∂x)p(δRv)q〉, which can be
written in terms of the dissipative scale η(ν) as

Dp,q (ν, R) =
〈(

δηv

η

)p

(δRv)q
〉
. (10)

The MF ansatz is based on the introduction of a set of scaling
exponents h, so there exists a local scaling law

δηv = (η/R)hδRv, (11)

with probability Ph(η,R) = (η/R)3−D(h), where D(h) is the
fractal dimension of the set and where the velocity increment is
Hölder continuous with exponent h (see also [1]). Furthermore,
the dissipative scaling is defined by requiring an O(1) local
Reynolds number [29]

Reloc = ηδηv

ν
∼ O(1). (12)

As a result, we get a fluctuating η which depends on h and
ν. Using (11) and (12) in (10), we obtain the first conditional
expectation〈(

δηv

η

)p

(δRv)q
∣∣∣∣δRv

〉

∼
∫

dh(δRv)q+pR−p

(
ν

RδRv

)[p(h−1)+3−D(h)]/(1+h)

∼ (δRv)[q+p+φ(p)]Rφ(p)−p

νφ(p)
, (13)

where we have used a saddle-point estimate in the limit of
infinite Reynolds numbers ν → 0 in order to get the exponent

φ(p) = − min
h

p(h − 1) + 3 − D(h)

1 + h
. (14)

Finally, we can estimate the unconditioned expectation value
by considering again the MF ansatz to connect the ve-
locity increment at scale R with the large-scale velocity
fluctuation vL,

δRv = (R/L)hδLv, (15)

and integrating over all possible h,

Dp,q (ν, R) ∼
∫

dh R3−D(h) (δRv)[q+p+φ(p)]Rφ(p)−p

νφ(p)
, (16)

where we have taken L = 1 for simplicity. Plugging (15) in
(16) and using again a saddle-point estimate in the limit R �
L = 1, we get

Dp,q (ν, R) ∼ Reφ(p)Rζ [p+q+φ(p)]Rφ(p)−p, (17)

where the viscosity from Eq. (16) has been replaced by the
dimensionless Reynolds number Re for which the relation
Re ∼ O(1)/ν holds. The exponents ζ (q ) are the scaling
exponents of the structure function of order q,

〈(δRv)q〉 ∼
∫

dh(δRv)qR3−D(h) ∼ Rζ (q ), (18)

with

ζ (q ) = min
h

[qh + 3 − D(h)]. (19)

It is important to remark that within the MF ansatz the scaling
exponents of the velocity gradient, i.e., 〈(∂v/∂x)p〉 ∼ Reφ(p),
and the structure function scaling exponent are connected via
[1,30]

φ(p) = [q − ζ (q )]/2, p = [ζ (q ) + q]/2. (20)

Using this expression, it is easy to see that, provided the
third-order single-scale structure function satisfies the 4/5
law ζ (3) = 1, then for p = 2 the expression (17) possesses
the remarkable property that it is inversely dependent on the
viscosity ν, e.g., ν〈[∂v(x)/∂x]2[δRv(x)]q〉 remains a finite
quantity in the limit ν → 0, which is a sort of generalized
dissipative anomaly [1]. In Sec. IV A we will prove Eq. (9) from
first principles in Burgers turbulence and discuss the effects of
pressure contribution that we have to face in the more general
case of three-dimensional Navier-Stokes equation.

A different approach to the turbulent velocity gradient
statistics was carried out recently [31–33]. Here a series of
order-dependent dissipative scales η2n is introduced starting
from a balancing of inertial and diffusive terms of the equation
for the 2nth-order longitudinal structure function

η2n = L Re1/[ζ (2n)−ζ (2n+1)−1]. (21)

Furthermore, the moments of the velocity gradient can be
related to the structure functions via the local dissipation
Reynolds number (12) according to〈∣∣∣∣∂v

∂x

∣∣∣∣n
〉

≈
〈∣∣∣∣δηv

η

∣∣∣∣n
〉

= 〈(δηv)2n〉
ν

∼ Renη
ζ (2n)
2n . (22)

Equation (21) implies Reynolds number scaling of the velocity
gradients according to〈∣∣∣∣∂v

∂x

∣∣∣∣n
〉

= Resn , (23)

where

sn = n + ζ (2n)

ζ (2n) − ζ (2n + 1) − 1
. (24)

Here ζ (n) denotes the exponent of absolute values of structure
functions 〈|δrv|n〉. The above prediction is different from
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the MF result for q = 0 in Eq. (17) (see also [34] for a
quantitative comparison). Furthermore, it is not obvious how
Eq. (23) should be generalized in order to predict the multiscale
dissipative-inertial correlation function (17). It is important to
remark that the above relation pertains only to absolute value
velocity increments. If one extends it to the signed quantities
(〈δrv)n〉, it would be inconsistent with the existence of a
dissipative anomaly, i.e., with the constraint s2 = 1, unless
the relation ζ (5) − ζ (4) = ζ (4) − 1 holds. Inserting ζ (3) =
1, this relation suggests monoscaling ζ (5) − ζ (4) = ζ (4) −
ζ (3), which is at odds with intermittency effects observed in
three-dimensional turbulence (but compatible with the Burgers
scaling, discussed below).

Nevertheless, the MF model must yet be considered as
the only description of multiscale correlations in turbulence
capable of reproducing the existence of dissipative anomaly.
The latter depends only on the requirement that the exact 4/5
law is satisfied in the inertial range, i.e., ζ (3) = 1.

III. MARKOV PROPERTY IN SCALE AND FUSION RULES

Another description of multi-increment statistics in turbu-
lence was proposed in [19], using a Markov process of velocity
increments in scale for the turbulent energy cascade. It is
worth specifying further the concept of this cascade process.
In three-dimensional turbulence, the vortex stretching term
induces small-scale structures which are believed to be vortex
tubes or vortex sheets [35]. In its original form [1], the turbulent
energy cascade suggests that this destabilization of large-
scale vortical structures is accompanied by an energy transfer
from large to small scales. This particular interpretation of
the turbulent energy cascade concentrates on the geometrical
structures inherent in the particular flow and may differ in other
types of flows, e.g., Rayleigh-Bénard convection (plumes),
magnetohydrodynamic turbulence (current sheets), pipe flows
(boundary layer), and finally shocks in Burgers turbulence. In
the following, we are concerned with a stochastic description
of the energy transport across scales without paying attention
to the underlying structures. The latter approach starts from
the definition of the n-increment PDF

fn(vn, rn; vn−1, rn−1; . . . ; v1, r1) =
n∏

i=1

〈
δ
(
vi − δri

v
)〉
, (25)

where we restricted ourselves to longitudinal velocity incre-
ments (2) only (note that the inclusion of mixed longitudinal
and transverse increment statistics necessarily complicates the
entire procedure [36]). According to Bayes’ theorem, we can
define the conditional probabilities

p(v3, r3|v2, r2; v1, r1) = f3(v3; r3, v2, r2; v1, r1)

f2(v2, r2; v1, r1)
(26)

and

p(v2, r2|v1, r1) = f2(v2, r2; v1, r1)

f1(v1, r1)
. (27)

Henceforth, the localness of interactions of the cascade process
of the longitudinal velocity increments in scale is ensured by
the Markov property in scale

p(v3, r3|v2, r2; v1, r1) = p(v3, r3|v2, r2), (28)

where we assume that η < r3 � r2 � r1 < L. The Markov
property implies a considerable reduction of the spatial com-
plexity of the velocity increment statistics, which can be
deduced from the n-increment PDF (25): If one imposes the
scale ordering η < rn � rn−1 � · · · � r1 < L, this (n + 1)-
point quantity factorizes due to the Markov propertyxbrk
according to

fn(vn, rn; vn−1, rn−1; . . . ; v1, r1)

= p(vn, rn|vn−1, rn−1) × · · · × p(v2, r2|v1, r1)f1(v1, r1),

(29)

Hence, the Markov property constitutes a three-point closure
of the multi-increment statistics [22,37].

In the following, we examine the implications of (28) for the
multiscale moments (4). A central notion of a Markov process
is that the transition PDF follows the same KM expansion as
the one-increment PDF [28], namely,

− ∂

∂r2
f1(v2, r2) = L̂KM(v2, r2)f1(v2, r2), (30)

− ∂

∂r2
p(v2, r2|v1, r1) = L̂KM(v2, r2)p(v2, r2|v1, r1), (31)

where the KM operator is defined as

L̂KM(v2, r2) =
∞∑

k=1

(−1)k
∂k

∂vk
2

D(k)(v2, r2). (32)

Furthermore, the minus sign in Eq. (31) indicates that the pro-
cess occurs from large to small scales and the KM coefficients
are defined as

D(k)(v2, r2) = 1

k!
lim

r3→r2

∫
dv3

(v3 − v2)k

r2 − r3
p(v3, r3|v2, r2).

(33)

The KM expansion (30) allows for an appealing formulation of
intermittency via an evolution of the one-increment PDF (30)
in scale. Moreover, scaling solutions for the structure functions,
i.e., 〈(δrv)n〉 ∼ rζ (n), necessarily imply KM coefficients of the
form [20,21,38]

D(k)(v2, r2) = (−1)kKk

k!

vk
2

r2
, (34)

as can be seen by taking the moments
∫

dv2v
n
2f (v2, r ) =

〈(δrv)n〉 from Eq. (30) and setting r2 = r ,

− ∂

∂r
〈(δrv)n〉 =

n∑
k=1

(
n

k

)
Kk (−1)k

〈δrv
n〉

r
. (35)

Dividing by the structure function of order n yields

− ∂

∂r
ln〈(δrv)n〉 = 1

r

n∑
k=1

(
n

k

)
Kk (−1)k. (36)
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TABLE I. Phenomenological models of turbulence (we refer the reader to [20,21] for further discussions) with scaling exponents ζ (n) and
the corresponding reduced KM coefficients from Eq. (34): Kolmogorov’s mean field theory (K41) [1], Kolmogorov-Oboukhov phenomenology
(K62) [1], Burgers phenomenology [13], the β-model [1], She-Lévêque model [1], and Yakhot’s model [39]. Note that the K41 phenomenology
and the Burgers ramps do not exhibit intermittency corrections. The K62 phenomenology is the only intermittency model that can be
reproduced with just two KM coefficients. The reduced KM coefficients of a phenomenology that uses the anti–de Sitter/conformal field
theory correspondence [40] can only be calculated numerically and have not been included in the table (see [20,22]) for further discussion).)

Model Scaling exponent ζ (n) Reduced KM coefficients Kn

K41 n/3 K1 = 1/3, no higher orders
K62a n/3 − μn(n − 3)/18 K1 = (3 + μ)/9, K2 = μ/9, no higher orders
Burgers ramps n K1 = 1, no higher orders
Burgers shocks 1 Kn = 1
βb DF −2

3 n + (3 − DF ) K1 = DF −2
3 + (3 − DF ), Kn = 3 − DF for n > 1

She-Lévêquec n

9 + 2
[
1 − ( 2

3

)n/3]
Kn = 1

9

[
n 1F0(1 − n; . . . ; 1) + 18

(
1 − 3

√
2
3

)n]
Yakhotd (1+3β )n

3(1+βn) Kn = �[n+1]

�

[
n+1+ 1

β

] (�[1 + 1
β

]+ 1
3β2 �

[
1
β

])
aμ ≈ 0.227.
bDF ≈ 2.83.
cHere νFq (a; b; z) is the generalized hypergeometric function.
dβ = 0.05.

Integrating this equation from r to L yields

〈(δrv)n〉 = 〈(δLv)n〉
(

r

L

)−∑n
k=1 (

n

k
)Kk (−1)k

. (37)

Accordingly, the reduced KM coefficients Kk are related to the
scaling exponents ζ (n) according to

ζ (n) = −
n∑

k=1

(
n

k

)
Kk (−1)k. (38)

All currently known phenomenological models of turbulence
are reproduced by a suitable choice of the reduced KM coeffi-
cients listed in Table I. Another important implication of this
KM description of structure function scaling follows directly
from the moment solution (37): In order to obtain nonvanishing
odd-order moments (such as Kolmogorov’s 4/5 law 〈δrv

3〉 =
− 4

5 〈ε〉r) at a scale r one must have nonvanishing odd-order
moments at large scales L. In other words, the symmetric form

of the KM expansion dictated by the coefficients (34) is not able
to generate skewness during the cascade process; it can only
transport an initial large-scale skewness in the PDF down in
the cascade.

In the original works [19,41,42] the KM expansion (30)
was truncated after the second coefficient, which reduces the
expansion to an ordinary Fokker-Planck equation (consistent
with Kolmogorov-Oboukhov (K62) scaling; see Table I). This
truncation is motivated by Pawula’s theorem [28], which states
that if an even-order KM coefficient n > 2 is zero then all other
coefficients n > 2 are zero as well. In this particular case, it
can be shown [43,44] that multiscale correlations obey fusion
rules (4). However, the restriction to a Fokker-Planck equation
based on the Pawula theorem has proven to be a questionable
approximation [20–22] and higher-order coefficients were
found to be small but nonvanishing (see Table I). We will show
below that the fusion rules are valid even considering the entire
KM expansion. To this end, we cast the solution of Eq. (31) in
the form of a Dyson series [28], replacing r2 = r and r1 = R,

p(v2, r|v1, R) = δ(v2 − v1) +
∫ R

r

dr1L̂KM(v2, r1)δ(v2 − v1)

+
∫ R

r

dr1

∫ r1

r

dr2L̂KM(v2, r1)L̂KM(v2, r2)δ(v2 − v1) + · · ·

= δ(v2 − v1) +
∫ R

r

dr1
L̂(v2)

r1
δ(v2 − v1) +

∫ R

r

dr1

∫ r1

r

dr2
L̂(v2)2

r1r2
δ(v2 − v1) + · · ·

= δ(v2 − v1) + ln
R

r
L̂(v2)δ(v2 − v1) + 1

2!

(
ln

R

r

)2

L̂(v2)2δ(v2 − v1) + · · ·

= exp

[
ln

R

r
L̂(v2)

]
δ(v2 − v1), (39)

where the scale-independent differential operator L̂(v2) is defined according to

L̂(v2) =
∞∑

k=1

Kk

k!

∂k

∂vk
2

vk
2 . (40)
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Note that the scale ordering problem in the first line of the Dyson series (39) can be omitted due to the separable form of the KM
coefficients (34).

We are now in the position to introduce the three-point moments (4). Due to the ordering r � R, we can take the moments of
the two-increment PDF f2(v2, r; v1, R) = p(v2, r|v1, R)f1(v1, R) = 〈δ(v2 − δrv)δ(v1 − δRv)〉 and obtain

〈(δrv)p(δRv)q〉 =
∫

dv2v
p

2

∫
dv1v

q

1 p(v2, r|v1, R)f1(v1, R). (41)

Inserting the Dyson series (31) for the transition PDF p(v2, r|v1, R) yields

〈(δrv)p(δRv)q〉 = 〈(δRv)p+q〉 + ln
R

r

∞∑
k=1

Kk

k!

∫
dv1v

q

1

∫
dv2 v

p

2

∂k

∂vk
2

vk
2δ(v2 − v1)f1(v1, R)

+ 1

2!

(
ln

R

r

)2 ∞∑
k=1

∞∑
l=1

KkKl

k!l!

∫
dv1v

q

1

∫
dv2 v

p

2

∂k

∂vk
2

vk
2

∂l

∂vl
2

vl
2δ(v2 − v1)f1(v1, R) + · · · . (42)

Partial integrations with respect to v2 in the second and third terms yield

〈(δrv)p(δRv)q〉 = 〈(δRv)p+q〉 + ln
R

r

p∑
k=1

(−1)kKkp!

k!(p − k)!

∫
dv1v

q

1

∫
dv2v

p

2 δ(v2 − v1)f1(v1, R)

+ 1

2!

(
ln

R

r

)2 p∑
k=1

(−1)kKkp!

k!(p − k)!

p∑
l=1

(−1)lKlp!

l!(p − l)!

∫
dv1v

q

1

∫
dv2 v

p

2 δ(v2 − v1)f1(v1, R) + · · ·

=
[

1 + ln
R

r

p∑
k=1

(−1)kKk

(
p

k

)
+ 1

2!

(
ln

R

r

)2 p∑
k=1

(−1)kKk

(
p

k

) p∑
l=1

(−1)lKl

(
p

l

)
+ · · ·

]
〈(δRv)p+q〉

=
[

1 − ln
R

r
ζ (p) + 1

2!

(
ln

R

r

)2

ζ (p)2 + · · ·
]
〈(δRv)p+q〉 = exp

[
−ζ (p) ln

R

r

]
〈(δRv)p+q〉

= exp

[
ζ (p) ln

r

R

]
〈(δRv)p+q〉 = rζ (p)

Rζ (p)
〈(δRv)p+q〉 = 〈(δrv)p〉

〈(δRv)p〉 〈(δRv)p+q〉. (43)

Here we made use of the relation (38) and inserted 〈(δrv)p〉 ∼
rζ (p) in the last step. In other words, the operator-product
expansion can be conceived as a Markov process of velocity
increments in scale, a direct consequence of the multiplicative
process (5) and its uncorrelated multipliers. Empirical evidence
suggests that the multiplicative uncorrelated fusion-rule pre-
diction (43) breaks down in the limit of r → R. In terms of the
Markov property (28), such a violation can be explained by the
existence of nontrivial correlations in the energy transfer for
not-too-separated scales.

In conclusion, the application of the fusion rules (4) nec-
essarily entails two aspects: (i) the validity of the Markov
property of velocity increments in scale (28), which implies
that the KM expansion for the transition PDF (31) conforms
with the KM expansion for the one-increment PDF (30), and
(ii) the specific form of the KM coefficients (34) which was
chosen in a way to ensure the existence of scaling solutions
〈δrv

n〉 ∼ rζ (n).
For the sake of completeness, we want to end this sec-

tion with a generalization of fusion rules (4) to n-increment
statistics [(n + 1)-point statistics in terms of ordinary mo-
ments]. The procedure follows along the same lines as the
derivation of the fusion rules from the KM expansions of
the Markov process (43) and is explained in Appendix A.

We obtain

〈(
δrn

v
)pn · · · (δr2v

)p2
(
δr1v
)p1
〉

=
∫

dvn · · · dv2dv1v
pn

n · · · vp2
2 v

p1
1 fn(vn, rn; . . . ; v1, r1)

=
n−1∏
i=1

〈(
δri+1v

)∑i
k=1 pn+1−k

〉
〈(
δri

v
)∑i

k=1 pn+1−k
〉 〈(δr1v

)∑n
k=1 pn+1−k

〉
, (44)

where fn is the n-increment PDF (25). These generalized
fusion rules imply a reduction of an (n + 1)-point statistical
quantity to a two-point quantity.

IV. APPLICATION TO BURGERS TURBULENCE

In contrast to the dissipation anomaly that arises in the MF
description (Sec. II), the dissipation anomaly that arises in
the multiscale description of Burgers turbulence bears a clear
physical meaning: Due to the absence of nonlocal pressure
contributions, singular structures consist of localized shocks
whose widths are determined by the viscosity ν. For example,
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consider the single shock solution of Eq. (47),

v(x, t ) = 1 − tanh

(
x − xc − t

2ν

)
, (45)

where the width of the shock is inversely proportional to ν. It
can be readily seen that the averaged local energy dissipation
rate 〈ε〉, where

ε(x) = 2ν

(
∂v(x)

∂x

)2

, (46)

is independent of the viscosity ν. In the following, we will
further discuss multiscale properties of the Burgers equations,
including inertial-viscous cases such as the ones described by
the correlations (17).

A. Dissipation anomaly in a multi-increment PDF hierarchy in
Burgers turbulence

We consider the Burgers equation

∂

∂t
v(x, t ) + v(x, t )

∂

∂x
v(x, t ) = ν

∂2

∂x2
v(x, t ) + F (x, t ),

(47)

with a white noise in time Gaussian forcing F (x, t ) defined by
the second-order moment

〈F (x, t )F (x ′, t )〉 = χ (x − x ′)δ(t − t ′), (48)

where χ (x − x ′) is the spatial correlation function, assumed
to be concentrated around a characteristic scale |x − x ′| ∼ lf .
The evolution equation for the velocity increment δrv(x, t ) is

∂δrv(x, t )

∂t
+ v(x, t )

∂δrv(x, t )

∂x
+ δrv(x, t )

∂δrv(x, t )

∂r
= ν

∂2δrv(x, t )

∂x2
+ F (x + r, t ) − F (x, t ). (49)

The temporal evolution of the one-increment PDF (2) is derived in Appendix B according to

∂

∂t
f1(v1, r1, t ) + v1

∂

∂r1
f1(v1, r1, t ) + 2

∫ v1

−∞
dv′

1
∂

∂r1
f1(v′

1, r1, t )

= −ν
∂

∂v1

∫
dr2[δ(r2 − r1) − δ(r2)]

∂2

∂r2
2

∫
dv2v2f2(v2, r2; v1, r1, t ) + [χ (0) − χ (r1)]

∂2

∂v2
1

f1(v1, r1, t ). (50)

Due to the viscous coupling to the two-increment PDF, we have a hierarchy formally similar to the Bogoliubov-Born-Green-
Kirkwood-Yvon statistical physics case [26,45].

It is useful to reformulate the dissipative terms in order to introduce the local energy dissipation rate (46). First, we assume the
stationarity of the velocity increment statistics, i.e., ∂

∂t
f1(v1, r1, t ) = 0. Second, as shown in Appendix C, the unclosed viscous

term in Eq. (50) can be rewritten in terms of the joint velocity gradient and velocity increment statistics as

v1
∂

∂r1
f1(v1, r1) = −2

∫ v1

−∞
dv′

1
∂

∂r1
f1(v′

1, r1) − ∂2

∂v2
1

[〈
ε(x)

2

[
δ
(
v1 − δr1v(x)

) + δ
(
v1 + δ−r1v(x)

)]〉

+ [χ (0) − χ (r1)]f1(v1, r1)

]
+ 2ν

∂2

∂r2
1

f1(v1, r1). (51)

From this expression, the existence of the dissipative anomaly becomes more apparent than in Eq. (50) due to the nonvanishing
local energy dissipation rate in the limit ν → 0. Taking the moments of Eq. (51) and dropping the index of r1 yields(

1 − 2

n

)
∂

∂r
〈[δrv(x)]n〉 = 2ν

∂2

∂r2
〈[δrv(x)]n−1〉 − (n − 1)(n − 2)

2
〈ε(x){[δrv(x)]n−3 + [−δ−rv(x)]n−3}〉

+ (n − 1)(n − 2)[χ (0) − χ (r )]〈[δrv(x)]n−3〉. (52)

For n = 3, we recover the equivalent of Kolmogorov’s 4/5 law
for Burgers turbulence

1

3

∂

∂r
〈[δrv(x)]3〉

= −2〈ε〉 + 2ν
∂2

∂r2
〈[δrv(x)]2〉 + 2[χ (0) − χ (r )], (53)

which reduces to 〈(δrv)3〉 = −6〈ε〉r in the inertial range.
In the general case, i.e., for n �= 3, we start by discarding

the forcing contribution in the inertial range η � r � L in
assuming that χ (r ) decreases sufficiently fast for increasing r .
Moreover, in the limit of high Reynolds numbers, i.e., ν → 0,
the smooth subleading viscous term 2ν ∂2

∂x2 〈(δrv)n−1〉 can be

neglected. Hence, in the inertial range where 〈(δrv)n−3〉 should
admit scaling, we obtain

〈ε(x)[δrv(x)]n〉 ∼ |r|ζ (n+3)−1, (54)

which agrees with the first result (9) of the MF model.
Hence, the prediction made by the MF model (9) becomes

exact for the case of Burgers turbulence. It must be stressed
that (52) does not further specify the scaling exponent ζ (n).
It is well known that in order to go beyond it, we need some
heuristic arguments about the dissipative term based on the
geometrical structures of the flow. In high-Reynolds-number
Burgers turbulence, we are faced with shocklike structures
similar to the one in Fig. 1(a). In this case, the local energy
dissipation rate is peaked at the center of the shock and the
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FIG. 1. (a) Schematic depiction of a shock in Burgers turbulence.
The local energy dissipation rate is peaked at the center of the
shock ε(x ). Depending on the strength of the shock, the velocity
field at v(x − r ) and at v(x + r ) possesses the symmetry v(x − r ) =
−v(x + r ), which leads to Burgers scaling (55). (b) In the case of
cusplike structures, ε(x ) is still peaked in the center of the cusp.
The symmetry of the cusps, however, leads to the vanishing of the
dissipation anomaly in Eq. (52).

velocities v(x + r ) and v(x − r ) are arranged antisymmetri-
cally around v(x) = 0. In the limit of small viscosities and for
small r , v(x ± r ) possesses a negligible dependence on r and
we obtain

〈ε(x){[δrv(x)︸ ︷︷ ︸
=v(x+r )

]n−3 + [−δ−rv(x)︸ ︷︷ ︸
=−v(x−r )

]n−3}〉

∼ 〈v2〉(n−3)/2〈ε〉 ∼ rζ (n)−1 → ζ (n) = 1. (55)

This is exactly the celebrated Burgers shock scaling from
Table I. It is important to stress that there exists a series of
rigorous and quasirigorous results on the PDF of the gradient
statistics in Burgers equations [26,45–54]. It is generally
believed that it develops power-law tails in the inviscid limits.

In our derivation, we do not pretend to control leading and sub-
leading contributions in the zero-viscosity case. Our treatment
is limited to estimate the regime of high but finite Reynolds
number.

The influence of smooth velocity field structures can be seen
as follows: Consider Eq. (52) for small r , in which case we can
neglect the nonlinear and forcing contributions

2ν
∂2

∂r2
〈[δrv(x)]n−1〉

≈ (n − 1)(n − 2)

2
〈ε(x){[δrv(x)]n−3 + [−δ−rv(x)]n−3}〉

≈ 2ν(n − 1)(n − 2)

〈(
∂v(x)

∂x

)n−1

rn−3

〉
, (56)

where we performed a Taylor expansion δrv(x) = v(x + r ) −
v(x) ≈ ∂v(x)

∂x
r inside the ensemble average on the right-hand

side and replaced the local energy dissipation rate ε(x) with
its definition (46). Integrating Eq. (56) and reinserting the
definition of the local energy dissipation rate (46) yields

〈[δrv(x)]n〉 = 2−n/2−1/2 〈εn/2〉
νn/2−1/2

rn. (57)

Obviously, this result bears the signature of smooth ramplike
velocity field contributions v(x) in between shocks and is the
leading term for n < 1. Hence, by including the heuristic result
(55), we obtain the well-known Burgers scaling

〈|δrv|n〉 ∼
{
rn for n < 1

r for n � 1.
(58)

In order to understand the importance of the exact shape
of the singularity, it is instructive to consider the case of the
Burgers equation with an additional nonlocality [21,55]

∂

∂t
v(x, t ) + w(x, t )

∂

∂x
v(x, t ) = ν

∂2

∂x2
v(x, t ) + F (x, t ),

(59)

where the convective velocity field is given by

w(x, t ) = αv(x, t ) + (1 − α)P.V.
∫

dx ′ v(x ′, t )

x − x ′ , (60)

where P.V. denotes principal value. Here α = 1 corresponds
to the case of Burgers turbulence, whereas α = 0 corresponds
to the purely nonlocal case that exhibits self-similar behavior
[55]. In the latter case, the velocity field is dominated by
cusplike structures similar to the one depicted in Fig. 1(b).
Consequently, the velocity field possesses the symmetry v(x −
r ) = v(x + r ) leading to the vanishing of the dissipative term
〈ε(x){[δrv(x)]n−3 + [−δ−rv(x)]n−3}〉 for even n. Further-
more, the nonlinear terms in the PDF hierarchy are changed due
to the presence of the nonlocality in the generalized Burgers
equation (59) and are necessarily unclosed [22]. Accordingly,
the nonlinear terms in the purely nonlocal case are balanced
by the forcing terms. Depending on the properties of the
forcing correlation function, this scaling can be associated with
the results of the renormalization group (see [56] for further
references) and necessarily implies nonintermittent scaling.

Another important case of Eq. (52) is when the local
dissipation rate and the velocity increment are statistically
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independent

〈ε(x){[δrv(x)]n−3 + [−δ−rv(x)]n−3}〉
= 〈{[δrv(x)]n−3 + [−δ−rv(x)]n−3}〉︸ ︷︷ ︸

∼r
ζ (n−3)
1

〈ε(x)〉

∼ rζ (n)−1 → ζ (n) − 1 = ζ (n − 3) → ζ (n) = n/3, (61)

which necessarily implies Kolmogorov (K41) scaling. The
case of Burgers scaling (55) must be considered as the opposite
case: The energy dissipation rate is fully correlated with the
velocity increment, leading to strong intermittency. Further-
more, it has been shown that the intermediate case 0 < α < 1
in Eq. (59) shares many resemblances with the original Navier-
Stokes equation [21,55]. Accordingly, the pressure must have
a regularizing effect on the velocity field structures that enter
the dissipation anomaly.

In the following section, we will evaluate both the fusion
rules from Sec. III and the multifractal prediction from direct
numerical simulations of Burgers turbulence.

B. Direct numerical simulations of Burgers turbulence

In order to validate the theoretical considerations of the
previous sections, we performed direct numerical simulations
(DNSs) of the stochastically driven Burgers equation (47). The
numerical setup consists of a second-order Adams-Bashforth
explicit solver paired with an Euler-Maruyama step to account
for the large-scale Gaussian random forcing. We also consider
the variable transformation v̂′

k (t ) = exp(−νk2dt )v̂k (t ),
which implies the exact integration of the viscous term. It
relaxes the restriction on the time step by the diffusive term
and significantly improves the convergence for large wave
numbers. The spatial correlation function of the forcing (48)
follows a power law proportional to k−2 in Fourier space
and has a cutoff at kF = 5. Table II contains a list of the
characteristic parameters in use for the simulations presented
in Figs. 3–5. The resolution was fixed such that η/dx ≈ 6 at
the highest Reynolds number. To improve the statistics we
averaged over 200 independent runs.

1. Evaluation of inertial-inertial fusion rules from DNS of
Burgers turbulence

First, we investigate the validity of the fusion rules (4) for
the Burgers equation. To this end, we consider the quantity

Fp,q (r, R) = 〈(δrv)p(δRv)q〉. (62)

The application of the fusion rules (4) in conjunction with
the Burgers scaling (58) yields three different possible scaling
properties, depending on the order of the moments p and q. If
both increments are dominated by the shock we have case I, if
both are dominated by the smooth ramps we have the case II,
and if the small scale is smooth and the large scale is dominated
by the shock we have case III. The scaling prediction in the
plane (p, q ) is summarized in Fig. 2 and as follows:

Fp,q (r, R) ∼

⎧⎪⎨
⎪⎩

r for p > 1

rpRq for p < 1, p + q � 1

rpR1−p for p < 1 p + q � 1.

(63)

TABLE II. Characteristic parameters of the numerical simula-
tions: root-mean-square velocity vrms =

√
〈v2〉, viscosity ν, averaged

rate of local energy dissipation 〈ε〉 = 2ν〈( ∂v

∂x
)2〉, grid spacing dx, time

step dt , dissipation length η = ( ν3

〈ε〉 )1/4, Taylor length λ = vrms

√
2ν

〈ε〉 ,

Taylor-Reynolds number Reλ = vrmsλ
ν

, integral length scale L = E
3/2
kin
〈ε〉 ,

kinetic energy Ekin = 1
2 v2

rms, large-eddy turnover time TL = L

vrms
,

number of grid points N , and maximum force wave number of the
power-law forcing kF . The physical domain size is 2π .

Parameter Run 1 Run 2 Run 3

urms 1.16 1.16 1.15
ν 3.6 × 10−4 1.2 × 10−3 6.8 × 10−3

Re 1800 550 90
Reλ 100 56 23
〈ε〉 1 1 1
dt 1.53 × 10−5 1.53 × 10−5 1.53 × 10−5

dx 3.83 × 10−4 3.83 × 10−4 3.83 × 10−4

η 2.61 × 10−3 6.31 × 10−3 2.37 × 10−2

λ 0.031 0.056 0.134
L 1.564 1.555 1.526
T in TL 760 762 772
N 214 214 214

kF 5 5 5

In the following, we set the large scale R equal to π/2
and vary the small scale r . The large scale R is fixed so
that R/η ≈ 600 for Re = 1800, R/η ≈ 250 for Re = 550,
and R/η ≈ 70 for Re = 90. We have also tested the opposite
scenario by fixing the small scale r to αη with α ∈ [2, 10],
which yielded similar results that will therefore not be shown
here. Figure 3 depicts Fp,q (r, R) for three values in the
three regions of Fig. 2: (p = 2, q = 4) [Fig. 3(a), region I],
(p = q = 0.4) [Fig. 3(b), region II], and (p = 0.6, q = 2)
[Fig. 3(c), region III]. As one can see, all three cases agree
fairly well with the theoretical predictions (black lines with
the corresponding predicted scaling). This becomes even more
apparent from the insets in Fig. 3, which shows Fp,q (r, R)
compensated by the corresponding prediction. We observe
constant (r-independent) regions over a few decades of r/R.

FIG. 2. Parametric space of the exponents of Eq. (62) and the
corresponding fusion-rule prediction. Here I–III correspond to the
three regions that emerge from the bifractal Burgers scaling (58).
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(a)

(b)

(c)

FIG. 3. Examination of the inertial-inertial fusion rules (63) for
runs 1–3 via the quantity Fp,q (r, R) defined in Eq. (62) as a function
of r/R for different values of p and q and for different Reynolds
numbers: (a) p = 2 and q = 4 (region I), (b) p = q = 0.4 (region II),
and (c) p = 0.6 and q = 2 (region III). The black line corresponds
to the fusion-rule prediction in Burgers turbulence summarized in the
three regions I–III of Fig. 2. The inset depicts Fp,q (r, R) divided by
this prediction.

However, as r approaches larger values and tends towards
R, the compensated function becomes r dependent, which
indicates a breakdown of the fusion rules for small-scale
separations. As discussed in Sec. III, the breakdown of the
fusion rules for small-scale separations can also be interpreted
in terms of the violation of the Markov property (28). In the
following section, we will consider the special case of F (r, R)
for r → η to check the viscous-inertial scaling.

2. Evaluation of the viscous-inertial fusion rules prediction from
DNS of Burgers turbulence

In the following, we consider the viscous-inertial multiscale
correlation function given

Dp,q (Re, R) = 〈(∂xv)p(δRv)q〉. (64)

FIG. 4. Parametric space of the exponents of Eq. (64) and the MF
prediction for the viscous-inertial fusion rules. Here I–III correspond
to the three regions that emerge from the bifractal Burgers scaling (58).

We specialize to the Burgers case for which the MF prediction
is given in Fig. 4 and as follows by inspecting Eq. (17):

Dp,q (Re, R) ∼

⎧⎪⎨
⎪⎩

Rep−1 for p > 1

Rq for p < 1 p + q � 1

R1−p for p < 1 p + q � 1.

(65)

In the following, we will also refer to these relations as the MF
prediction for the viscous-inertial fusion rules.

Figure 5(a) depicts νD2,4(Re, R) as a function of R for
different Reynolds numbers (see also Table II). As can be
seen, νD2,4(Re, R) is independent of the scale R in the inertial
range, which is in accordance with the MF prediction in region
I of Fig. 4. The collapse of the data comes in agreement
with the existence of a generalized dissipative anomaly as
discussed in Sec. II and Eq. (9). The flat region increases
as ν → 0. Figures 5(b) and 5(c) depict D0.4,0.4(Re, R) and
D0.6,2(Re, R), respectively, with combinations of exponents p

and q corresponding to regions II and III of Fig. 4 accordingly.
The black line with scaling Rm, m ∈ R, is the viscous-inertial
fusion rules prediction following Eq. (65) for the chosen
exponents p and q. The inset depicts the data divided by
Rm. All three cases show good agreement of the data with
the viscous-inertial fusion rules prediction, which improves as
we increase Re.

3. Evaluation of the velocity gradient statistics from DNS of
Burgers turbulence

Finally, we want to consider the special case where Eq. (64)
reduces to the ordinary moments of the velocity gradient, i.e.,
Dp,0(Re). As can be seen from Fig. 4, the MF prediction for
Burgers turbulence reduces to the Reynolds-number scaling

Dp,0 ∼ Rep−1 for p > 1. (66)

Moreover, for the particular case of Burgers turbulence with
ζ (n) = 1, both the MF prediction (17) and the result from
[31–33] in Eq. (23) yield the relation (66), which was already
discussed in Sec. II. It is convenient to introduce the quantity

Mp =
〈(

∂v
∂x

)p〉〈(
∂v
∂x

)2〉p/2 (67)
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(a)

(b)

(c)

FIG. 5. Examination of the viscous-inertial fusion rules predic-
tion (65) via the quantity Dp,q (Re, R) defined in Eq. (64) as a function
of R/η for different values of p and q and for different Reynolds
numbers. The insets depict the results divided by the corresponding
viscous-inertial fusion rules prediction of regions I–III of Fig. 4. (a)
p = 2 and q = 4 (region I). The quantity νD2,4(Re, R) is shown
here. It is independent of R, and the collapse of the data within error
bars supports the suggestion of a generalized dissipative anomaly
discussed in Sec. II and Eq. (9). (b) p = q = 0.4 (region II). (c)
p = 0.6 and q = 2 (region III).

for even p. Recent numerical investigations of hydrodynamic
turbulence [57] suggest that the moments (67) exhibit a
transition from Gaussian to anomalous behavior if one in-
creases the Reynolds number. Hence, we expect Mp to behave
according to

Mp ∼
{

(p − 1)!! for Re ∼ O(1)

Rep/2−1 ∼ Rep−2
λ for Re � O(1)

(68)

FIG. 6. (a) Moments Mp from Eq. (67) as a function of the Taylor-
Reynolds number in Burgers turbulence. The low-Reynolds-number
regime exhibits Gaussian statistics (dashed black lines), whereas
the high-Reynolds-number regime agrees well with the multifractal
prediction (17) and the result from [31–33] (solid black line) for
Burgers turbulence (68). The lines correspond to flat regions of the
logarithmic derivative of the moments χ (n) [see (b)]. (b) Logarithmic
derivative of the moments (69). The straight black lines correspond to
the theoretical predictions (68), χ (4) = 2, χ (6) = 4, and χ (8) = 6.

for even p. Here we made use of the fact that the Taylor-
Reynolds number Reλ = urmsλ/ν is related to Re according to
Re ∼ Re2

λ in the high-Reynolds-number regime.
Figure 6 is in quantitative agreement with Eq. (68).

Figure 6(a) depicts the moments (67) as a function of the
Taylor-Reynolds number. For small Reλ, the moments ex-
hibit Gaussian statistics similar to the case of hydrodynamic
turbulence [57], whereas the anomalous behavior for larger
Reλ is much more pronounced in comparison to the latter
case. Obviously, this result can be attributed to the strong
intermittency behavior in Burgers turbulence. Nevertheless,
in the high-Reynolds-number regime we can confirm the
prediction (68) to a great extent. The fits (black lines) in
Fig. 6(a) correspond to flat regions in the logarithmic derivative
of the moments (67),

χ (p) = d log Mp

d log Reλ

, (69)

which is displayed in Fig. 6(b). The flat regions are indicated as
flat lines which correspond to the theoretical predictions (68),
χ (4) = 2, χ (6) = 4, and χ (8) = 6. Hence, we can conclude
that the MF prediction also applies to the single-gradient
statistics in Burgers turbulence.

V. CONCLUSION

We have presented an overview of prevalent concepts that
allow for multiscale descriptions of turbulent flows. A main
result of this paper is that the operator-product-expansion–
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fusion-rule approach [14–16,26] that emanated from quantum
field theory is a direct consequence of the Markov property of
velocity increments in scale devised in [19], provided that the
structure functions exhibit scaling in the inertial range. This
means an amalgamation of two fields that coexisted for nearly
20 years. By contrast, our results might also lead to a novel
stochastic interpretation of the operator-product expansion in
quantum field theory [24]. Different from other closure meth-
ods, e.g., the quasinormal approximation [58], renormalization
methods [50,59], renormalization-group methods [60], and
the eddy-damped quasinormal approximation [56,61–63], both
the Markov approach and the operator-product expansion are
nonperturbative, i.e., are not based on properties of Gaussian-
distributed velocity field fluctuations. The latter property
makes both approaches suitable candidates for a closure of
the multi-increment PDF hierarchy [22].

Regarding the breakdown of the fusion rules in the limit
of small-scale separations, it is tempting to investigate the
influence of non-Markovian cascade processes. Here a gen-
eralization of the KM expansion for the transition PDF (31)
to arbitrary stochastic processes as emphasized in [64] might
yield a generalization of the fusion rules to arbitrary cascade
processes. A dissipative cutoff of the structure functions [65]
can also be achieved by a dissipative KM expansion, but is
beyond the scope of the present work. In addition, the Markov
property could be considered as a first step in an approximation
of multi-increment statistics. The natural next step would be
an extension incorporating one additional level of memory in
scale [22], e.g., assuming

p(v4, r4|v3, r3; v2, r2; v1, r1) ≈ p(v4, r4|v3, r3; v2, r2) (70)

and thus allowing one to capture correlations between the
inertial and viscous-inertial ranges.

Furthermore, we have shown that a specific prediction of the
MF model for joint velocity gradient and velocity increment
statistics (9) can be obtained from the basic fluid dynamical
equations under the neglect of pressure contributions, i.e., from
the Burgers equation. It must be stressed that this result can be
derived without any further assumptions apart from the scaling
of structure functions in the inertial range. However, at this
point, we could not validate the generalization of the MF result
to arbitrary powers of the velocity gradient given by Eq. (13).
In order to derive such a generalization, one has to operate at
the next level of the multi-increment hierarchy (50). Here a
possible closure is the Markov property (28), which leads to a
self-consistent equation for the two-increment PDF [22].

The numerical part of this work was devoted to the
verification of fusion rules and the prediction of the MF

prediction in DNSs of Burgers turbulence. Both fusion rules
and MF prediction could be established to a certain extent.
The limitation of the fusion rules arises for vanishing scale
separations and could be understood from the violation of the
Markov property (28). A further examination of this regime is
a task left to future research.
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APPENDIX A: GENERALIZATION OF FUSION RULES TO
n-INCREMENT STATISTICS

We consider the moments of the n-increment PDF〈(
δrn

v
)pn · · · (δr2v

)p2
(
δr1v
)p1
〉

=
∫

dvn · · · dv2dv1v
pn

n · · · vp2
2 v

p1
1 fn(vn, rn; . . . ; v1, r1),

(A1)

where the pi’s denote arbitrary exponents and we impose the
scale ordering η � rn � rn−1 � · · · � r2 � r1 � L. First, we
rewrite the n-increment PDF according to Bayes’ theorem

fn(vn, rn; . . . v1, r1) = p(vn, rn|vn−1, rn−1; . . . ; v1, r1)

× fn−1(vn−1, rn−1; . . . v1, r1). (A2)

The general form of the Markov property in scale implies that

p(vn, rn|vn−1, rn−1; . . . ; v1, r1) = p(vn, rn|vn−1, rn−1).

(A3)

Hence, Eq. (A1) simplifies to∫
dvn · · · dv2dv1v

pn

n · · · vp2
2 v

p1
1 p(vn, rn|vn−1, rn−1)

×fn−1(vn−1, rn−1; . . . ; v1, r1). (A4)

Under the assumption of the scaling of structure functions
in combination with the Markov property, we can express
the conditional probability p(vn, rn|vn−1, rn−1) in terms of a
Dyson series (39)

p(vn, rn|vn−1, rn−1) = δ(vn − vn−1) + ln
rn−1

rn

∞∑
k=1

Kk

k!

∂k

∂vk
n

vk
nδ(vn − vn−1)

+ 1

2!

(
ln

rn−1

rn

)2 ∞∑
k=1

Kk

k!

∂k

∂vk
n

vk
n

∞∑
l=1

Kl

l!

∂l

∂vl
n

vl
nδ(vn − vn−1) + · · · . (A5)
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Inserting (A5) into (A4) and performing the partial integrations with respect to vn similar to Eq. (43) yields[
1 +

pn∑
k=1

(−1)kKk

(
pn

k

)
ln

rn−1

rn

+ 1

2!

pn∑
k=1

(−1)kKk

(
pn

k

) pn∑
l=1

(−1)lKl

(
pn

l

)(
ln

rn−1

rn

)2

+ · · ·
]

×
∫

dvn−1 · · · dv2dv1v
pn+pn−1
n−1 · · · vp2

2 v
p1
1 fn−1(vn−1, rn−1; . . . ; v1, r1). (A6)

Here the term in square brackets can be written as an exponential function according to

[· · · ] = exp

[
ln

rn−1

rn

pn∑
k=1

(−1)kKk

(
pn

k

)]
. (A7)

The sum in the exponential function can be identified as the scaling exponent ζ (pn) = −∑pn

k=1(−1)kKk (pn

k ) and we obtain

〈(
δrn

v
)pn
(
δrn−1v

)pn−1 · · · (δr2v
)p2
(
δr1v
)p1
〉 = exp

[
ln

rn

rn−1
ζ (pn)

]〈(
δrn−1v

)pn+pn−1 · · · (δr2v
)p2
(
δr1v
)p1
〉
. (A8)

Furthermore, the scaling of the structure functions implies that 〈(δrn
v)pn〉 ∼ r

ζ (pn )
n , which yields

〈(
δrn

v
)pn
(
δrn−1v

)pn−1 · · · (δr2v
)p2
(
δr1v
)p1
〉 = 〈(

δrn
v
)pn
〉〈(

δrn−1v
)pn
〉 〈(δrn−1v

)pn+pn−1 · · · (δr2v
)p2
(
δr1v
)p1
〉
. (A9)

Successive application of this relation yields

〈(
δrn

v
)pn
(
δrn−1v

)pn−1 · · · (δr2v
)p2
(
δr1v
)p1
〉 = 〈(

δrn
v
)pn
〉〈(

δrn−1v
)pn
〉 〈(δrn−1v

)pn+pn−1
〉

〈(
δrn−2v

)pn+pn−1
〉 × · · · ×

〈(
δr2v
)pn+···+p2

〉
〈(
δr1v
)pn+···+p2

〉 〈(δr1v
)pn+...+p1

〉
, (A10)

or in more compact notation

n∏
i=1

〈(
δri

v
)pi
〉 = n−1∏

i=1

〈(
δri+1v

)∑i
k=1 pn+1−k

〉
〈(
δri

v
)∑i

k=1 pn+1−k
〉 〈(δr1v

)∑n
k=1 pn+1−k

〉
, (A11)

which is the counterpart to Eq. (44).

APPENDIX B: DERIVATION OF MULTI-INCREMENT HIERARCHY IN BURGERS TURBULENCE

In order to derive the evolution equation (50), we take the temporal derivative of the one-increment PDF

∂

∂t
f1(v1, r1, t ) = ∂

∂t

〈
δ
(
v1 − δr1v(x, t )

)〉 = − ∂

∂v1

〈
δ
(
v1 − δr1v(x, t )

) ∂

∂t
δr1v(x, t )

〉

= ∂

∂v1

〈
δ
(
v1 − δr1v(x, t )

)
[
v(x, t )

∂

∂x
δr1v(x, t ) + δr1v(x, t )

∂

∂r1
δr1v(x, t )

− ν
∂2

∂x2
δr1v(x, t ) − F (x + r1, t ) + F (x, t )

]〉
, (B1)

where Eq. (49) was used in order to replace the temporal evolution of the velocity increment. Each term can now be treated
separately. Starting with the first advective term, we obtain

− ∂

∂v1

〈
δ
(
v1 − δr1v(x, t )

)
v(x, t )

∂

∂x
δr1v(x, t )

〉
=
〈
v(x, t )

∂

∂x
δ
(
v1 − δr1v(x, t )

)
〉

= ∂

∂x
〈v(x, t )δ(v1 − δr1v(x, t ))〉︸ ︷︷ ︸

=0,homogeneity

−
〈

∂v(x, t )

∂x
δ
(
v1 − δr1v(x, t )

)

︸ ︷︷ ︸
=[

∂δr1 v(x,t )
∂r1

− ∂δr1 v(x,t )
∂x

]δ

〉

=
∫ v1

−∞
dv′

1
∂

∂r1

〈
δ
(
v′

1 − δr1v(x, t )
)〉︸ ︷︷ ︸

=f1(v′
1,r,t )

−
∫ v1

−∞
dv′

1
∂

∂x

〈
δ
(
v′

1 − δr1v(x, t )
)〉

︸ ︷︷ ︸
=0,homogeneity

. (B2)
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Here we made use of the inverse chain rule in the first and last steps. The second advective term can be treated in the same way
according to

− ∂

∂v1

〈
δ
(
v1 − δr1v(x, t )

)
δr1v(x, t )

∂

∂r1
δr1v(x, t )

〉

=
〈
δr1v(x, t )

∂

∂r1
δ
(
v1 − δr1v(x, t )

)
〉

= ∂

∂r1

〈
δr1v(x, t )δ

(
v1 − δr1v(x, t )

)〉− 〈∂δr1v(x, t )

∂r1
δ
(
v1 − δr1v(x, t )

)
〉

= v1
∂

∂r1

〈
δ
(
v1 − δr1v(x, t )

)〉︸ ︷︷ ︸
=f1(v1,r1,t )

+
∫ v1

−∞
dv′

1
∂

∂r1

〈
δ
(
v′

1 − δr1v(x, t )
)〉︸ ︷︷ ︸

=f1(v′
1,r1,t )

, (B3)

where we made use of the sifting property of the δ function, i.e., δr1v(x, t )δ(v1 − δr1v(x, t )) = v1δ(v1 − δr1v(x, t )). The nonlinear
terms can thus be expressed solely in terms of the one-increment PDF or its associated cumulative PDF, which is a particularity
of the Burgers equation (for the Navier-Stokes equation we would be facing unclosed terms from the pressure [66]). However,
the viscous contributions in Eq. (B1) confront us with unclosed terms and we have to introduce the two-increment PDF, which
results in an infinite hierarchy of PDF equations. This can be seen from the calculation of the viscous term in Eq. (B1),

−ν

〈
δ
(
v1 − δr1v(x, t )

)∂2δr1v(x, t )

∂x2

〉
= −ν

〈
δ
(
v1 − δr1v(x, t )

)
[
∂2δr1v(x, t )

∂r2
1

− ∂2v(x, t )

∂x2

]〉

= −ν

∫
dr2[δ(r2 − r1) − δ(r2)]

∂2

∂r2
2

〈
δr2v(x, t )δ

(
v1 − δr1v(x, t )

)〉
= −ν

∫
dr2[δ(r2 − r1) − δ(r2)]

∂2

∂r2
2

∫
dv2v2

〈
δ
(
v2 − δr2v(x, t )

)
δ
(
v1 − δr1v(x, t )

)〉︸ ︷︷ ︸
=f2(v2,r2;v1,r1,t )

. (B4)

The forcing contributions in Eq. (B1) can be handled by the usual trick of the Langevin equation. Inserting the above calculations
yields the evolution equation for the one-increment PDF

∂

∂t
f1(v1, r1, t ) + v1

∂

∂r1
f1(v1, r1, t ) + 2

∫ v1

−∞
dv′

1
∂

∂r1
f1(v′

1, r1, t )

= −ν
∂

∂v1

∫
dr2[δ(r2 − r1) − δ(r2)]

∂2

∂r2
2

∫
dv2v2f2(v2, r2; v1, r1, t ) + [χ (0) − χ (r1)]

∂2

∂v2
1

f1(v1, r1, t ). (B5)

APPENDIX C: REFORMULATION OF THE VISCOUS TERM IN THE MULTI-INCREMENT HIERARCHY

In this appendix, we show that the unclosed term in the evolution equation of the one-increment PDF (50) involves the local
energy dissipation rate. To this end, we rewrite the viscous contributions in their original form according to

ν

∫
dr2[δ(r2 − r1) − δ(r2)]

∂2

∂r2
2

∫
dv2v2f2(v2, r2; v1, r1) = ν

〈[
∂2δr1v(x)

∂r2
1

− ∂2v(x)

∂x2

]
δ
(
v1 − δr1v(x)

)
〉
. (C1)

A further treatment of these terms yields

+ν
∂

∂r1

〈
∂δr1v(x)

∂r1
δ
(
v1 − δr1v(x)

)
〉
− ν

〈
∂δr1v(x)

∂r1

∂δ
(
v1 − δr1v(x)

)

∂r1

〉

− ν
∂

∂x

〈
∂v(x)

∂x
δ
(
v1 − δr1v(x)

)
〉

︸ ︷︷ ︸
=0,homogeneity

+ν

〈
∂v(x)

∂x

∂δ
(
v1 − δr1v(x)

)

∂x

〉

= −ν

∫ v1

−∞
dv′

1
∂2

∂r2
1

〈
δ
(
v′

1 − δr1v(x)
)〉+ ν

∂

∂v1

〈(
∂δr1v(x)

∂r1

)2

δ
(
v1 − δr1v(x)

)
〉

− ν
∂

∂v1

〈
∂v(x)

∂x

(
∂δr1v(x)

∂x

)
︸ ︷︷ ︸
= ∂δr1 v(x)

∂r1
− ∂v(x)

∂x

δ
(
v1 − δr1v(x)

)
〉
. (C2)

023104-14



MULTISCALE VELOCITY CORRELATIONS IN … PHYSICAL REVIEW E 98, 023104 (2018)

Inserting the one-increment PDF f1(v′
1, r1) into the first term on the right-hand side yields

−ν

∫ v1

−∞
dv′

1
∂2

∂r2
1

f1(v′
1, r1) + ν

∂

∂v1

〈(
∂v(x + r1)

∂r1

)2

δ
(
v1 − δr1v(x)

)
〉

+ ν
∂

∂x

〈 (
∂v(x)

∂x

)
︸ ︷︷ ︸

= ∂δr1 v(x)
∂r1

− ∂δr1 v(x)
∂x

δ
(
v1 − δr1v(x)

)
〉
+ ν

∂

∂v1

〈(
∂v(x)

∂x

)2

δ
(
v1 − δr1v(x)

)
〉

= −ν

∫ v1

−∞
dv′

1
∂2

∂r2
1

f1(v′
1, r1) + ν

∂

∂v1

〈(
∂v(x + r1)

∂r1

)2

δ
(
v1 − δr1v(x)

)
〉

−ν

∫ v1

−∞
dv′

1
∂2

∂r2
1

f1(v′
1, r ) + ν

∫ v1

−∞
dv′

1
∂2

∂r1∂x
f1(v′

1, r1)︸ ︷︷ ︸
=0,homogeneity

+ν
∂

∂v1

〈(
∂v(x)

∂x

)2

δ
(
v1 − δr1v(x)

)
〉
. (C3)

Under the assumption of homogeneity, we obtain〈(
∂v(x + r1)

∂r1

)2

δ
(
v1 − δr1v(x)

)
〉

=
〈(

∂v(x + r1)

∂r1

)2

δ(v1 − v(x + r1) + v(x))
〉

=
〈(

∂v(x)

∂x

)2

δ(v1 − v(x) + v(x − r1))
〉

=
〈(

∂v(x)

∂x

)2

δ
(
v1 + δ−r1v(x)

)
〉
, (C4)

which allows us to introduce the local energy dissipation rate in Eq. (50) according to

v1
∂

∂r1
f1(v1, r1) = 2

∫ v1

−∞
dv′

1
∂

∂r1
f1(v′, r1) − ∂2

∂v2
1

[〈
ε(x)

2

[
δ
(
v1 − δr1v(x)

) + δ
(
v1 + δ−r1v(x)

)]〉+ [χ (0) − χ (r1)]f1(v1, r1)

]

+ 2ν
∂2

∂r2
1

f1(v1, r1), (C5)
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