
PHYSICAL REVIEW E 98, 023102 (2018)

Oscillatory instability in a reaction front separating fluids of different densities
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Reaction fronts described by the Kuramoto-Sivashinsky (KS) equation can exhibit complex behavior as they
separate reacted from unreacted fluids. If the fluid of higher density is above a fluid of lower density, then the
Rayleigh-Taylor instability can lead to fluid motion. In the reverse situation, where the lighter fluid is on top,
gravitationally driven forces can stabilize a convectionless flat front inhibiting the complex front propagation
described by the KS equation. In these cases, a critical density difference is required to provide stability to the
flat front. A linear stability analysis shows that the transition from stable to unstable flat fronts can be oscillatory
for viscous fluid motion. Once the transition takes place, the fronts exhibit oscillatory convection resulting in
oscillations of the shape and speed of the front.
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I. INTRODUCTION

Several processes in nature involve two different substances
separated by a thin moving interface. We find examples of these
processes in directional solidification [1], liquid-gas interfaces
[2], combustion [3,4], or reaction-diffusion fronts [5,6]. In
those cases, the substances have different properties, such as
temperature, viscosity, or density. The time evolution of the
interface can be described with an equation that depends on the
front position and its derivatives. In the case of fluid substances,
hydrodynamics will affect the propagation of the front. In the
presence of gravity, fluid motion will tend to destabilize a flat
interface through the Rayleigh-Taylor (RT) instability [7]. This
instability mechanism takes place if a fluid of higher density
is placed above a lower density fluid. In the reverse situation
(the less dense fluid on top), fluid motion will tend to stabilize
the system. Additional mechanisms, such as the presence of
surface tension, may have an impact on the front stability
[8]. Depending on the particular physical system, a flat front
can become unstable to infinitesimal perturbations through
other mechanisms. One such mechanism for front instability
is the diffusive instability in reaction-diffusion fronts, which is
caused by chemicals of different diffusivities [9,10] or different
diffusional fluxes due to the production of the autocatalyst
[11–13]. These types of fronts can be also be described using
a Kuramoto-Sivashinsky (KS) equation which exhibits a flat
front instability for perturbations of large wavelengths [14,15].
Previous works have studied the interaction of diffusive insta-
bilities with the RT instability by coupling hydrodynamics to
a reaction-diffusion system of equations [16,17]. Other works
look at the effects of the RT instability on potentially unstable
fronts described by the KS equation [18,19]. In both cases,
the hydrodynamics was described by Darcy’s law applied to
fluids confined in Hele-Shaw cells or in porous media. It
was found that favorable buoyancy forces contribute to the
flat front instability, whereas, in the reverse situation, they
help stabilize a mechanism that destabilizes the front. The
transition to convection was found to be stationary, where the

growth rate for small perturbations has zero real and imaginary
parts.

In this work, we look for oscillatory flat front instabilities
due to the presence of density gradients across the front. We
use the KS equation to describe the motion of a moving front
coupled with the Navier-Stokes equations to account for the
motion of the viscous fluid. We will show that an oscillatory
instability can exist depending on the value of a Schmidt
number that is proportional to the fluid viscosity. Although
the instability found using the KS equation alone is stationary,
an adverse density gradient not only can provide stability to the
front, but it can also generate an oscillatory transition where
the growth rate for small perturbations has a zero real part, but a
nonzero imaginary part. We also carry out a numerical solution
of the nonlinear system of equations showing the presence of
fronts that exhibit oscillations in shape and speed.

II. EQUATIONS OF MOTION

We study thin reaction fronts that separate reacted from
unreacted fluids in a viscous media. The front can be described
with a height function H (X, T ) that provides the vertical
position of the front as a function of the horizontal coordinate
X and the time T . In this work we focus on fronts that obey
the KS equation coupled with fluid motion

∂H

∂T
= V0 + V ∂2H

∂X2
+ V0

2

(
∂H

∂X

)2

− K∂4H

∂X4
+ Vz|H . (1)

The coefficients V and K determine the evolution of the
front without fluid motion and depend on the parameters of
the system under consideration. For fronts that exhibit diffusive
instabilities, the coefficient V depends on the ratio of the diffu-
sivities of the different chemical substances involved [9,15].
It can be either positive or negative, which determines the
stability of flat front solutions without fluid motion (Vz = 0).
If V > 0, the flat front solution of Eq. (1) is stable to per-
turbations of all wavelengths, but when V < 0, this solution
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becomes unstable to large wavelength perturbations. In the
particular case of a cubic autocatalytic reaction where both
diffusivities are the same, the coefficients become K = 0 and
V = D, where D is the molecular diffusivity [15]. In other
systems, such as the case of thermodiffusive instabilities, they
will depend on the corresponding thermal diffusion coefficient
[14,20]. The equation involves the flat front speed V0 and the
vertical component of the fluid velocity Vz, which is evaluated
at the front height H . Since we are studying fronts near the
onset of convection, we assumed that the fluid velocity is small,
providing a term comparable to a second order correction on
the front height [18,21].

In this paper, we use a two-dimensional Navier-Stokes
equation to describe viscous fluid motion

∂ �V
∂T

+ ( �V · ∇ ) �V = − 1

ρ0
∇P + ν∇2 �V − ρ

ρ0
gẑ. (2)

The velocity field must satisfy the continuity equation

�∇ · �V = 0. (3)

Here �V is the fluid velocity, P is the pressure, g is the
acceleration of gravity, ẑ is a unit vector in the vertical Z-
direction pointing upward, ν is the coefficient of kinematic
viscosity, ρ0 is the density of the unreacted fluid, and ρ

corresponds to the fluid density that depends on the chemical
composition. In the thin front approximation, there is an abrupt
change of density across the front that can be written as

ρ = ρ0 + �ρ�(Z − H ), (4)

where � is the a step function, being equal to one if the
argument is positive and zero otherwise. The density difference
between unreacted and reacted fluid corresponds to �ρ, being
positive if the heavier fluid is on top. The continuity equation
allows us to write the components of the fluid velocity in terms
of a stream function �(X,Z, T ), using Vx = ∂�/∂Z and
Vz = −∂�/∂X. Introducing these relations into the Navier-
Stokes equations [Eq. (2)] and combining them to eliminate
the pressure, we obtain the following equation for the stream
function � and the vorticity �:

∂�

∂t
= ∂ (�,�)

∂ (X,Z)
+ ν∇2� + g

ρ0

∂ρ

∂X
. (5)

Here the vorticity is defined as

� = ∇2�, (6)

while ∂ (F1, F2)/∂ (X,Z) is defined by

∂ (F1, F2)

∂ (X,Z)
= ∂F1

∂X

∂F2

∂Z
− ∂F1

∂Z

∂F2

∂X
. (7)

We use dimensionless units to write the equations of motion.
Assuming that K is nonzero, we introduce time and length
scales defined by LT = K/V2, and Lx = √

(K/|V|). We define
|V|/L2

x as unit of the vorticity and |V| as unit of the stream
function. In this system of units (represented with lower case
letters), the dynamic equations become

∂ω

∂t
= ∂ (ψ,ω)

∂ (x, z)
+ Sc∇2ω − RaSc

∂h

∂x
δ(z − h). (8)

These units lead to a dimensionless Rayleigh number

Ra = gδρL3

ν|V| . (9)

Here δρ corresponds to the fractional density difference be-
tween the unreacted and reacted fluid, and Sc is a dimensionless
Schmidt number defined as

Sc = ν

|V| (10)

since the parameter V corresponds to the molecular diffusivity
in cubic autocatalytic reaction fronts with a single diffusive
substance.

In these units, the KS equation (1) becomes

∂h

∂t
= c0 − ∂2h

∂x2
+ c0

2

(
∂h

∂x

)2

− ∂4h

∂x4
− ∂ψ

∂x

∣∣∣∣
h

, (11)

which involves a dimensionless front speed c0 using the
corresponding time and length scales (c0 = V0LT /Lx). As dis-
cussed earlier, we consider only the case of negative coefficient
V , when the KS equation has a long wavelength instability in
the absence of fluid motion [14]. Equations (8)–(11) allow a flat
front solution h0(x, t ) = 0 with stream function ψ0(x, z, t ) =
c0x, in a reference frame moving with the flat front velocity c0.
We define a stream function ψ ′, relative to the stream function
ψ0, using the relation ψ = ψ ′ + ψ0. Therefore our equations
in the moving frame read as

∂ω

∂t
= c0

∂ω

∂z
+ ∂ (ψ ′, ω)

∂ (x, z)
+ Sc∇2ω − RaSc

∂h

∂x
δ(z − h)

(12)
and

∂h

∂t
= −∂2h

∂x2
+ c0

2

(
∂h

∂x

)2

− ∂4h

∂x4
− ∂ψ1

∂x

∣∣∣∣
h

. (13)

A. Linear stability analysis

We carry out a linear stability analysis of the flat front
solution neglecting the nonlinear terms in Eqs. (12) and (13),
given that the zeroth-order solution corresponds to zero front
height and zero stream function. We introduce perturbations
of the form

ψ ′ = ψ̂ (z)eσ t sin(qx) (14)

and

h = h1e
σ t cos(qx) (15)

into the linearized equations, leading to

σ

(
d2

dz2
− q2

)
ψ̂ = c0

(
d2

dz2
− q2

)
dψ̂

dz
− Sc

(
d2

dz2
− q2

)2

ψ̂

+ RaScqh1δ(z) (16)

and

σh1 = (q2 − q4)h1 − qψ̂ (0). (17)

The strategy for solving this system consists in first solving
the linear equation (16) in terms of h1 and then substituting
into Eq. (17). The delta function leads to the following jump
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conditions at z = 0:

[ψ̂] =
[
dψ̂

dz

]
=

[
d2ψ̂

dz2

]
= 0 and

[
d3ψ̂

dz3

]
= −Raqh1.

(18)
Here the brackets represent the value of the function just above
the front minus the value of the function just below the front.
We look for solutions of the homogeneous part of Eq. (16)
substituting ψ̂ = ψke

kz. This leads to an equation in the wave
number k:

(k2 − q2)
(
k2 + c0

Sc
k − q2 − σ

Sc

)
= 0. (19)

From here we obtain four values for k, namely k1,2 = ±q and
k3,4 = −σ/Sc ± q2, where

q2 =
√

γ 2
0 + 4(q2 + σ/Sc) (20)

with γ0 = c0/Sc. Since the solution has to be finite far away
from the front, it can be written as

ψ1(z) =
{
Ae−qz + Bek4 if z � 0

Ceqz + Dek3 if z < 0
, (21)

where the jump conditions require that the coefficients A, B,
C, and D satisfy

A + B − C − D = 0, (22)

qA − k4B + qC + k3D = 0, (23)

q2A + k2
4B − q2C − k2

3D = 0, (24)

q3A − k3
4B + q3C + k3

3D = Ra qh1. (25)

The solution to this system of equations leads to

ψ̂ (0) = C + D = h1Ra

2

(2q + k3 − k4)

(−k3 + k4)(q + k3)(q − k4)
.

Substituting into Eq. (17) and using the definitions of k3 and
k4 we arrive at the equation

2q2(σ − q2 + q4)
[
(q + q2)2 − γ 2

0

] = Ra q(q + q2). (26)

This equation represents the dispersion relation between
the growth rate σ and the wave number q. It depends on three
parameters: the Rayleigh number Ra, the Schmidt number Sc,
and the dimensionless parameter γ0.

B. Numerical solutions

We look for numerical solutions of the nonlinear equations
in the weakly nonlinear regime, keeping only linear terms in
the the vorticity and stream function, assuming that we are
close to a flat front instability. We also consider that the front
deviates only slightly from the flat front, therefore we evaluate
the delta function at the average front position, instead of the
local front position. With these simplifications, we introduce
Fourier series expansions in the horizontal x direction:

ψ =
∑
n=1

ψn(z, t ) sin(nqx), (27)

ω =
∑
n=1

ωn(z, t ) sin(nqx), (28)

and

h =
∑
n=0

Hn(t ) cos(nqx). (29)

Here the parameter q is corresponds to q = π/a, where a

is the width of the domain. Each Fourier series corresponds
to the appropriate boundary conditions at the vertical walls:
horizontal fluid velocity zero (vx = 0) and zero first and third
derivatives for the front height (∂h/∂x = ∂h3/∂x3 = 0) [22].
We assume slip-free boundary conditions. Substituting into the
equations of motion and projecting over the corresponding sine
and cosine functions, we obtain

∂ωn

∂t
= Sc

[
∂2ωn

∂z2
− (nq )2ωn

]
+ RaScδ(z − H0), (30)

∂2ψn

∂z2
− (nq )2ψn = ωn, (31)

dH0

dt
= c0 + q2

4

∑
p

p2H 2
p, (32)

dHn

dt
=

[
(nq )2 − (nq )4 + Ra

nq

2

]
Hn − nqψn(H0, t )

+ q2

4
c0

∑
l,p

lpHpHl (δn,|l−p| − δn,l+p ),

for n � 1. (33)

We solve these equations numerically using central finite
differences to discretize the spatial derivatives on a spatial mesh
made of 500 points having a grid size �z = 0.04. The time
evolution is carried out using a Runge-Kutta method of order
2, with a constant time step �t = 0.0012. This requires one to
calculate the variables ωn at a half-time step and later at the full
time step. With these values of ωn, we obtain ψn from Eq. (31)
using a tridiagonal matrix solver. We use the value of ψn at
the average front position H0 to advance the front expansion
coefficients Hn.

III. RESULTS

We obtain the dispersion relation between the growth rate
σ and the wave number q by solving Eq. (26). The values of
the real part of the growth rate will determine the stability
of the flat front. We first focus on the solutions where the
Schmidt number is Sc = 0.588 and the parameter γ0 = 0. We
chose these values since they illustrate direct transitions to
convection. When the front is not coupled to fluid motion
(Ra = 0), the growth rate is a real number (no imaginary
part). In this situation the growth rates have positive values
for q < 1 indicating long wave instabilities [19]. Increasing
the Rayleigh number to positive values increases the range
of wave numbers that allow unstable fronts, thus the front is
easier to destabilize. This is a consequence of buoyancy forces,
since a positive Rayleigh number arises from having a lighter
fluid underneath a heavier fluid. On the other hand, having the
lighter fluid on top (negative Rayleigh numbers) should provide
stability to the initially unstable front. From Eq. (26) we obtain
multiple solutions for the growth rate for a given value of q.
The stability of these perturbations is determined by the real
parts of the growth rates: if the largest value is negative, then
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FIG. 1. The largest value of Re(σ ) as a function of the wave
number for Sc = 0.588. Dashed lines indicate growth rates with
nonzero imaginary part. Solid lines correspond to purely real growth
rates.

the flat front is stable. Since positive Rayleigh numbers always
increase the instability of the already unstable flat front in the
KS equation, we focus only on negative Rayleigh numbers.
As we decrease the Rayleigh number from Ra = −0.03 to
Ra = −0.6, the range of wave numbers that lead to unstable
perturbations [that is, wave numbers with Re(σ ) positive]
decreases (Fig. 1). Decreasing it even further to Ra = −1.5
results in a stable flat front for all perturbations, regardless
of the wave number q. We find that the critical value of the
Rayleigh number that separates stable from unstable flat fronts
corresponds to Ra = −0.745. For cases where Ra � −0.745,
the curves show a positive relative maximum that increases
with increasing Rayleigh number. They also show a slope
discontinuity that disappears when the Rayleigh number takes
large negative values such as Ra = −1.5. The slope changes
abruptly because we display only the largest value of Re(σ ),
with the other solutions not shown. If they were shown, they
would be smooth curves crossing each other. We point out
that the growth rates near q = 0 have a nonzero imaginary
part, becoming purely real numbers once the wave number q

reaches the slope discontinuity. The curve with Ra = −0.3 is
the only one that allows unstable perturbations with nonzero
imaginary part, while for all other curves in Fig. 1 the complex
growth rates have negative real parts. The transition from
stable to unstable flat fronts that takes place at Ra = −0.745
corresponds to a stationary transition since the growth rate with
the largest Re(σ ) has a corresponding imaginary part equal to
zero.

The transition from stable to unstable fronts becomes
oscillatory when we set the Schmidt number to Sc = 0.4 and
increase the Rayleigh number. With this Schmidt number,
the front is stable for Ra = −3.5 having the real part of the
growth rate Re(σ ) negative for all wave numbers as shown in
Fig. 2. Increasing the Rayleigh number to Ra = −1.2 results
in a range of positive values for Re(σ ), all the corresponding
growth rates have a nonzero imaginary part, signaling an
oscillatory instability. The transition to this oscillatory regime
occurs at Ra = −2.0. For larger values of Ra, each curve

FIG. 2. The largest value of Re(σ ) as a function of the wave
number for Sc = 0.4. Dashed lines indicate growth rates with nonzero
imaginary part. Solid lines correspond to purely real growth rates.

displays discontinuities in the slope similar to the ones shown
in Fig. 1, due to the crossover between multiple solutions
for σ [recall that we plot only the largest Re(σ )]. Here we
observe the formation of a new relative maximum for Re(σ )
that has a corresponding imaginary part equal to zero. This
maximum value becomes positive at Ra = −0.746, which is
slightly different from the critical value for the transition to
unstable fronts in the previous case (Sc = 0.588), but here the
front is already unstable since there is a range of wave numbers
q corresponding to destabilizing perturbations. The fastest
growing mode corresponds to an oscillatory mode. Increasing
the Rayleigh number further to −0.5 results in having both
stationary and oscillatory destabilizing perturbations taking
place at different wave number, with the fastest growth rate
corresponding to a direct, nonoscillatory mode. Changing
the Schmidt number from Sc = 0.588 to Sc = 0.4 results in
changing the type of instability: from a a direct to an oscillatory
instability.

The critical values of the Rayleigh number for the change
from stable to unstable fronts vary with respect to the
Schmidt number. Moreover, the Schmidt number will deter-
mine whether the transition is stationary or oscillatory. The
critical Rayleigh number is determined when the absolute max-
imum of Re(σ ) is equal to zero. We found that the dispersion
curves can have either one or two relative maximums for Re(σ )
as a function of the wave number, as shown in Fig. 1 and
Fig. 2, depending on the Rayleigh number. When there are two
maximum values, one of them has nonzero imaginary part for
the growth rate, while at the other maximum, the corresponding
imaginary part of the growth rate is zero. When the largest of
these two maxima is equal to zero the front is at the transition
to instability.

In Fig. 3 we display the Rayleigh numbers necessary to
make each relative maximum for Re(σ ) equal to zero, keeping
the parameter γ0 equal to zero. The transition occurs at the
smallest of these Rayleigh numbers. Therefore, only the region
under under both curves correspond to values of Ra and Sc that
allows stable fronts. We notice that the line corresponding to
stationary transitions is almost flat, although it has a slight

023102-4



OSCILLATORY INSTABILITY IN A REACTION FRONT … PHYSICAL REVIEW E 98, 023102 (2018)

FIG. 3. Marginal stability curves for the stationary instability
(thin line) and the oscillatory instability (bold line). For values of
Sc < 0.5 the oscillatory instability takes place at Rayleigh numbers
lower than the stationary transition.

dependence on Sc. We notice that the stationary transition
occurs at Sc = 0.50, and that for higher values of Sc the
curve for stationary transitions is located below the curve
corresponding to oscillatory transitions.

The effect of the parameter γ0 (which is proportional to
the flat front velocity) on the transition to convective fronts
is displayed in Fig. 4. Here we display the critical Rayleigh
number for the transition to convective fronts as a function
of the Schmidt number for four different values of γ0. Each
curve consists of an increasing portion, joining an almost
flat line at a certain value of Sc. The area below each curve
correspond to parameters that determine stable flat fronts.
For a given Schmidt number, the transition to convective
fronts occurs as the Rayleigh number crosses the curve. If it
crosses through the nearly flat part of the curve, the transition
to convection would be direct. This occurs at all values of
γ0 for large enough Schmidt number. On the other hand,

FIG. 4. Marginal stability curves for the transition to convection
for different values of the parameter γ0. The area under each curve
corresponds to values of the Rayleigh and Schmidt numbers where
the convectionless flat front is stable.

FIG. 5. Real part of the growth rate for different values of the
Schmidt number Sc. Here we set Ra = −1 and γ0 = 0. Dashed
lines indicate growth rates with nonzero imaginary part. Solid lines
correspond to purely real growth rates.

small values of the Schmidt number make the transition
to convection oscillatory. As we increase the parameter γ0,
oscillatory convection requires smaller values of Sc. This
is observed in Fig. 4 since the point of slope discontinuity
takes place at smaller Sc on the curves with larger γ0. We
also notice that the critical Rayleigh number for oscillatory
transition decreases with a larger value of γ0 but increases
for the stationary transition. For example, at Sc = 0.56, both
cases γ0 = 0 and γ0 = 0.3 have an oscillatory transition, with
the critical Rayleigh numbers being equal to −0.74 and −0.79,
respectively, that is, with the larger value corresponding to the
smaller γ0. But changing the Schmidt number to Sc = 0.39,
we find critical Rayleigh numbers equal to −2.2 and −0.12
respectively, which is the reversed relationship. Changing the
direction of the front propagation, thus reversing the sign of
γ0, results in exactly the same values since Eq. (26) is invariant
to sign change. For all the values of γ0 studied, we find that the
instability changes from oscillatory to stationary by increasing
the Schmidt number.

The Schmidt number plays a crucial role in determining
the dispersion relation between the growth rate σ and the
wave number q. It determines whether the transition to an
unstable front is oscillatory or direct, as discussed above.
We explore the dependence of the dispersion relation with
respect to the Schmidt number in Fig. 5, where we display
Re(σ ) as a function of the wave number q, while keeping the
Rayleigh number constant Ra = −1 and the parameter γ0 = 0.
We observe that for a relatively small value of Sc = 0.33,
the dispersion relation has a range of wave numbers that
correspond to unstable perturbations to the front. In this case
all growth rates have a nonzero imaginary part, therefore
small initial perturbations will lead to oscillatory fronts. For
a somewhat larger value of Sc = 0.83, we find that the flat
front is stable for all perturbations. Here the growth rate is
also a complex number with a nonzero imaginary part, except
for an interval between two slope discontinuities that includes
a relative maximum for the corresponding curve in Fig. 5.
Increasing the Schmidt number to Sc = 5, we find a similar
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FIG. 6. Growth rates for different values of the Schmidt number
Sc. Here we set Ra = 1 and γ0 = 0.

situation, but now the region containing the relative maximum
has grown. In the limit, when Sc → ∞, we can find an
analytical solution to the dispersion relation of Eq. (26):

σ = q2 − q4 + Ra/(4q ),

and the corresponding curve has no imaginary values for the
growth rate, showing a singularity at q = 0. In this limiting
case, there exists a single negative maximum for the growth
rate, signaling stability for the flat front. Using this equation,
we find that the maximum value of Re(σ ) is always negative
for Ra < −0.185903, having a critical wave number equal to√

3/5.
If the Rayleigh number is positive (that is, denser fluid on

top), we find that the fastest growing perturbation for a given
wave number corresponds to a real number (imaginary part
equal to zero), regardless of the value of the Schmidt number.
In all these cases the growth rate is positive for wave numbers
sufficiently close to zero, therefore the flat front will be unstable
to some perturbations. In Fig. 6 we show the largest growth
rates for different values of the Schmidt number for the same
Rayleigh number (Ra = 1). We chose the same values of Sc as
in Fig. 5. We found that the growth rate has a maximum value
located at smaller wave numbers for increasing Sc. This shift
towards smaller wave numbers is reflected in the case when
the Schmidt number approaches infinity, where the dispersion
relation has a positive asymptote at q = 0, indicating that
the fastest growing perturbations correspond to large wave
numbers.

As the front propagates in a vertical rectangular domain, its
behavior is determined by the horizontal width (a) of the box.
This box resembles a two-dimensional narrow tube where the
front propagates upward. The linear stability analysis tells us
that flat fronts are stable for perturbations of wave numbers
greater than a critical wave number qc, therefore they will be
stable as they propagate in tubes of width smaller than ac =
π/qc. For fronts propagating in tubes with width greater than
ac, we solve numerically the nonlinear equations (32) and (33).
We first choose Ra = −0.66, γ0 = 0, and Sc = 0.588, which
results in real unstable growth rates for values of qc < 0.862,
with a corresponding value of ac = 3.64. As predicted from the

FIG. 7. The speed of steady fronts confined in a two-dimensional
tube of width a. Here we have Ra = −0.66, γ0 = 0, and Sc = 0.588.

linear stability analysis, small random perturbations vanish if
the tube width is smaller that ac. However, for widths greater
than ac but smaller than 4.71 we find a curved steady front
moving with constant speed, having a single maximum near
one side, similar to the nonaxisymmetric fronts described in
Ref. [19]. We display our the results for the increase of speed
as a function of the tube width in Fig. 7. As the width increases
the front propagates faster, reaching a maximum value before
the speed slows down, eventually reaching zero increase of
velocity. For values of a greater than 4.71, the front is flat
again, losing stability as the width is further increased beyond
a = 7.29, where an axisymmetric front appears. The ax-
isymmetric front continues to increase its speed, reaching a
maximum, and then finally becoming a flat front for values
of a greater than 9.43. We notice that the maximum speed in
both types of fronts are the same. This takes place because the
axisymmetric front consists of two nonaxisymmetric solutions
linked at the center of the domain. This fact is also reflected in
the values of the width where the flat front changes stability: the
value for the axisymmetric transition is exactly half of the value
required for the nonaxisymmetric transition. The increase of
speed of the axisymmetric front is equal to the increase of
speed of the nonaxisymmetric front in a domain with half the
size of the original width.

In the case where the flat front presents an oscillatory
instability, we still find stable flat fronts using small domain
widths. Increasing the width beyond a critical value results
in the formation of an oscillatory front. The shape of this
front resembles nonaxisymmetric fronts [19] but having an
oscillatory amplitude. The instantaneous speed of the average
front position oscillates between a maximum and minimum
value, as shown in Fig. 8. The maximum front speed increases
after the transition at width a = 5.40 but eventually drops
back after a reaching a peak value. The minimum value of
the front speed is small but nonzero, reaching a highest value,
and becoming the same as the flat front speed once the width
is large enough. We also notice that increasing the width
beyond a = 9.29 brings back stable flat fronts. These fronts
lose stability once again to become oscillatory fronts for widths
a > 10.76. As in the case of steady convective fronts, the
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FIG. 8. The maximum and minimum speeds of the average front
position as a function of tube width for oscillatory fronts. Here we
have Ra = −1.6, γ0 = 0, and Sc = 0.4.

new oscillations correspond to two nonaxisymmetric fronts,
joined at the domain center, forming an axisymmetric front.
The speeds of the axisymmetric fronts as functions of the
width a are the same as the speeds of the corresponding
nonaxisymmetric fronts formed in half the domain width.

The evolution of oscillatory fronts propagating in two-
dimensional tubes depends on the width of the tube. In the case
of a very narrow tube only a steady flat front can propagate.
Increasing the tube width beyond a critical value results in
an oscillatory front for appropriate values of Ra and Sc. In
Fig. 9 we display the changing shape of an oscillatory front in
a tube of width a = 6.28. This width is just above the critical
width (ac = 5.40) for instability corresponding to the values
of Ra = −1.6, and Sc = 0.4. In this figure we display the
local front height measured with respect to the average front
position. Under these conditions the front oscillates raising one
side of the front while lowering the opposite side. The higher
side continues to increase until its value reaches a maximum,
then this height lowers to a minimum, with the inverse behavior
taking place at the other side. As we increase the front width

FIG. 9. Time evolution of an oscillatory front. The color map
indicates the front deviation relative to the average front position. In
this case, the oscillatory front has a maximum on one side of the tube,
changing into a minimum as the front oscillates.

FIG. 10. Time evolution of an oscillatory front. The color map
indicates the front deviation relative to the average front position. In
this case, the oscillatory front is symmetric relative to the center of the
tube, with its center oscillating between a maximum and minimum
values.

slightly above a = 9.29, we find that the oscillations disappear,
as discussed in the previous paragraph. Then, as a increases
to a = 14.2 and above, we find an oscillatory front once again
but of different shape (Fig. 10). At a particular moment, the
front has a relative maximum located in the center of the
domain, but as time evolves, the relative maximum becomes a
relative minimum, alternating values periodically. The front is
symmetric with respect to the center of the tube. On the sides
of the tube, the front height opposes the central maximum
(minimum) by taking its minimum (maximum) value.

IV. SUMMARY AND DISCUSSION

We found an oscillatory transition to convection in fronts
separating fluids with the lighter fluid on top. Without fluid
motion, the front shows direct instabilities for perturbations of
large wavelengths, with zero growth rate (real and imaginary
parts) at the transition to instability. Taking into account
fluid motion, density gradients can help stabilize a flat front.
Nevertheless this stabilization requires a finite density dif-
ference between the substances, as reflected by the critical
Rayleigh number for front stability. The interaction between
the front instability and the stabilizing buoyancy force can
lead to a transition to oscillatory behavior. At criticality, the
growth rate of the perturbations can have a nonzero imaginary
part, signaling a transition to oscillatory convection. However,
depending on the Schmidt number, the transition can also
be stationary. In the limiting case of an infinite Schmidt
number the transition has a growth rate with zero imaginary
part. Only when the Schmidt number is set below a certain
value, we find the oscillatory transitions. Experiments in
autocatalytic reaction fronts took place in aqueous solutions,
where the Schmidt number is large. Oscillatory transitions
can take place if the propagating medium is a low viscosity
fluid.

The front instability is reflected in nonlinear calculations
set in small rectangular domains. If the width of the domain
is narrow, flat fronts are stable, since only perturbations of
small wavelength are permitted inside a narrow tube. In the
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case of the stationary transition, a front of constant shape
and higher speed appears for widths beyond a critical value.
However, increasing it further results in the disappearance of
the convective front going back to a stable flat front. For even
larger widths, a new stationary, steady, axisymmetric front
appears. This behavior is once again observed when the flat
front has an oscillatory instability for an appropriate Schmidt
number. As the width of the domain is increased, an oscillatory
front appears. Increasing it further allows a stable flat front once

again, with a new axisymmetric oscillatory front developing for
larger width values.
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