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Fluctuation analysis of the atmospheric energy cycle
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The atmosphere gains available potential energy by solar radiation and dissipates kinetic energy mainly in
the atmospheric boundary layer. We analyze the fluctuations of the global mean energy cycle defined by Lorenz
in a simulation with a simplified hydrostatic model. The energy current densities are well approximated by the
generalized Gumbel distribution and the Generalized Extreme Value (GEV) distribution. In an attempt to assess
the fluctuation relation of Evans, Cohen, and Morriss we define entropy production by the injected power and use
the GEV location parameter as a reference state. The fluctuation ratio reveals a linear behavior in a finite range.
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I. INTRODUCTION

The global atmosphere is a physical system driven to a
nonequilibrium state by radiative forcing and friction in the
atmospheric boundary layer. A well-known diagnostic scheme
for the energy flow is the Lorenz energy cycle (LEC) [1], which
includes the zonal mean and the eddy parts of the available
potential and the kinetic energies and determines the injected
power, the dissipated energy, and internal conversions. The
LEC constitutes a network of energy currents and can be
considered as an atmospheric energy cascade. For the ocean
an analogous cycle can be defined [2]. The means in the LEC
constitute the climate from a dynamical point of view, and the
fluctuations are related to climate variability. The properties of
the climatological LEC require three-dimensional fields, which
are known from reanalysis data sets like ERA and NCEP [3].
These data sets are obtained by data assimilation and global
atmospheric models.

Our data are produced in a simulation with the atmospheric
model PUMA (Portable University Model of the Atmosphere,
University of Hamburg [4]), which is a dynamical core based
on the hydrostatic primitive equations implemented in complex
weather and climate models. PUMA is subject to linear surface
friction and hyperdiffusion. Since this model does not intend
to simulate climate, it neglects a radiation scheme and the
hydrological cycle (hence it is denoted as “dry”). Further
compartments like an ocean or a soil model are not considered
as well. The model is driven by a temperature relaxation
towards a steady state close to observations. The neglect
of complex parametrizations is outweighed by transparent
physical equations and a high numerical efficiency.

Few results for fluctuations in nonequilibrium systems
are known. A remarkable finding was that the fluctuation of
global observables can be approximated by the generalized
Gumbel distribution [5,6], which depends on a parameter
k denoting the order of the maximum. This parameter was
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identified as k ≈ π/2, hence a noninteger between the first
and the second maximum. A special form of the gamma
distribution (the chi-square distribution) has been fitted to
the kinetic energy and the dissipation rate in a spring-block
model [7]. Since different types of complex systems show
the generalized Gumbel distribution, a common origin can be
assumed. Hypotheses for the occurrence of this distribution
are self-similarity, extremal processes, and correlations [8,9].
Since the energy currents in the LEC are global averages and
the turbulent atmosphere is highly correlated, it is worthwhile
to test whether the fluctuations follow this distribution.

The Fluctuation Theorem (FT) [10–14] relates the probabil-
ities of negative and positive entropy productions in nonequi-
librium physical systems. This deviation from the second
law is found on finite timescales for small (or mesoscopic)
systems and vanishes in the thermodynamic limit. Gallavotti
and Cohen provided a proof of the FT for time-reversible
Anosov systems [11,12]. Dewar derived the FT based on a
maximum entropy production principle [15].

This study is guided by the steady state FT (see, e.g.,
Refs. [12,13])

lim
τ→∞

1

τ
ln

P (pτ = A)

P (pτ = −A)
= σ+A (1)

for the ratio pτ = στ/σ+ of the time averages στ of the entropy
production σ in τ windows (beyond the relaxation to the steady
state) and the long-term mean σ+. The FT can be derived
for the so-called dissipation function defined in phase space
which needs identification with an entropy-like macroscopic
observable [16]. In the following we will use the common
notion fluctuation relation (FR) for (1).

The FT has been observed in a large number of laboratory
and numerical experiments using different observables. In
experiments the relation (1) is valid for timescales τ well
above characteristic timescales. Rayleigh-Bénard convection
was studied in Ref. [17] for the local entropy production as ob-
servable. In numerical experiments of thermal convection, the
authors of Ref. [18] analyzed the work term along Lagrangian
paths as a representation of the entropy production rate. The
work by the turbulent pressure force in two experiments was
subjected to an FT analysis in Ref. [19]. The relation (1) was
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found with modified slopes depending on the chosen time
window, and the impact of a new reference state was briefly
considered. The injected power was used as an observable
in different physical systems including the GOY turbulence
shell model [7]. A common problem in experimental data
is the sparsity of negative data [7]. In experiments with
the model PUMA finite time Lyapunov exponents for the
global circulation were observed with a frequency compatible
with the FT [20]. In all these hydrodynamic experiments
the time reversibility as a condition for the validity of the
FT is not satisfied. Ciliberto et al. [21] review applications
of the FT to experimental data and consider in particular
the appropriate choice of the entropy-like observable, time
reversibility, and possible prefactors of σ+A on the right-hand
side of relation (1). In a step towards the analysis of the FT in
a climatological context, Ref. [22] has found negative values
of the coarse-grained entropy production in a linear stochastic
model based on concepts of stochastic thermodynamics [23]
for the observed tropical sea surface temperature (in the period
1950–2000).

Our aim is twofold: First, we determine the probability
distributions of the energy input, the dissipated energy, and
the internal currents (conversions). We compare the general-
ized Gumbel distribution and the Generalized Extreme Value
(GEV) distribution. In the second step we attempt to assess the
fluctuation relation. Thus, our approach is closely related to
Ref. [24] on wave turbulence and to Ref. [25] on an electric
circuit. In both studies the FT could not be verified. A major
problem in our LEC data is the low frequency of negative data.
Furthermore, a reference state like the mean temperature in
Rayleigh-Bénard convection [17,19] is less clear in the global
atmosphere. Motivated by Ref. [17] where the mode (peak)
of the observed local convective heat flux distribution and
Ref. [24] where the mode of the injected power is close to zero,
we test the idea to shift the currents to reference states. The
first is the location parameter of the fitted GEV distribution,
which is close to the mode in our data, the second reference
state is the mean, and the third is the mode of the distribution;
mean and mode are independent of the fitted distribution. The
observed mean temperature has been used in Ref. [18] as a
reference state, and the shift to an arbitrary reference state
has been briefly considered in Ref. [19]. In simulated data a
method like the large deviation algorithm [26] might be useful
to increase the frequency of rare events.

The paper is organized as follows: The model is described in
Sec. II, and the Lorenz energy cycle is defined in Sec. III. The
results for the densities are in Sec. IV and for the fluctuation
ratios in Sec. V. A summary and discussion are included in
Sec. VI.

II. GLOBAL CIRCULATION MODEL

To determine energy currents we use the model PUMA
(Portable University Model of the Atmosphere, University
of Hamburg) [4,27]), a hydrostatic global atmospheric model
based on the primitive equations on the sphere. The model
simulates the large-scale atmospheric dynamics [28] and does
not make use of complex parametrizations (mostly repre-
sentations of subscale processes which have to be added in
weather and climate models). In PUMA only the forcing and

the friction are parameterized in linear terms (for details see
below). The model is driven towards an artificial zonal mean
temperature [29], which is chosen such that the mean state
(model climate) is close to the observations.

The dynamical variables are the relative vorticity (according
to the meteorological usage the vertical component of the
vortex vector), the horizontal divergence, temperature, and
the logarithm of the surface pressure. The set of equations is
the following:

∂tξ = s2∂λFv − ∂μFu − 1

τf

ζ − K∇8ζ, (2)

∂tD = s2∂λFu + ∂μFv − ∇2

[
s2

2
(U 2 + V 2)

+� + T̄ ln ps

]
− 1

τf

D − K∇8D, (3)

∂tT
′ = −s2∂λ(UT ′) − ∂μ(V T ′) + DT ′ − ˙̃σ

∂T

∂σ̃

+ κ
T ω

p
+ 1

τc

(TR − T ) − K∇8T ′, (4)

∂t ln ps = −s2U∂λ ln ps − V ∂μ ln ps − D − ∂ ˙̃σ

∂σ̃
, (5)

∂�

∂ ln σ̃
= −T , (6)

with μ = sin φ and s2 = 1/(1 − μ2). The variables ζ and ξ

denote absolute and relative vorticity, ζ = ξ + f , f is the
Coriolis parameter, D is the horizontal divergence, and ps

is the surface pressure. The temperature T is divided into
the background, T̄ , and the anomaly, T ′. Spherical coor-
dinates are λ and φ for longitude and latitude. � is the
geopotential, κ the adiabatic coefficient, and ω the vertical
velocity. We use the abbreviations U = u cos φ and V =
v cos φ for the zonal and meridional velocities u, v, and
the fluxes Fu = V ζ − ˙̃σ∂U/∂σ̃ − T ′∂ ln ps/∂λ and Fv =
−Uζ − ˙̃σ∂V/∂σ̃ − T ′s−2∂ ln ps/∂ sin φ. The vertical coordi-
nate is divided into equally spaced σ̃ levels, σ̃ = p/ps , with
the pressure p and the surface pressure ps . For more details
refer to Refs. [4,27].

A stationary state is maintained by driving the model
towards a constant temperature profile (Newtonian cooling)
with a prescribed equator-to-pole gradient. This means that a
term (TR − T )/τc is added to the temperature equation, where
τc is the heating-cooling timescale, T denotes the actual model
temperature, and TR refers to the prescribed reference temper-
ature [29]. Dissipation is formulated as Rayleigh friction active
in the boundary layer, i.e., terms −ζ/τf and −D/τf are added
to the equations for vorticity and divergence, where τf ≈ 30
days is the friction timescale. Hyperdiffusion (∝ K∇8) with a
coefficient K accounts for subscale processes and numerical
stability.

The horizontal resolution is given by the total spherical
wave number � = 21 with a triangle truncation and the vertical
resolution is 10 vertical levels. The equations are numerically
solved using the spectral transform method [30]: Linear terms
are evaluated in the spectral domain while nonlinear products
are calculated in grid point space. In this configuration the
model has O(105) degrees of freedom. The model is integrated
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FIG. 1. Northern hemispheric relative vorticity in the midtropo-
sphere (500 hPa) [10−5/s].

by a leap-frog method with a time step of 15 min. Orography
is not specified, and no external variability like annual or daily
cycle is imposed (“equinox conditions”). The model supports
baroclinic instability in the midlatitudes and the subsequent
development of a turbulent state; see a snapshot of the relative
vorticity ξ in Fig. 1.

III. LORENZ ENERGY CYCLE

The atmospheric Lorenz energy cycle (LEC) [1] describes
the general circulation from a perspective that emphasizes
energy transformations, i.e., how the incoming solar radiation
generates potential energy that is transferred to kinetic energy
and finally lost to frictional dissipation (Fig. 2). The LEC
distinguishes the zonal mean and deviations thereof. These
so-called eddies can be identified with synoptic cyclones and
anticyclones, with a length-scale of thousand kilometers and
a timescale of several days; they play an important role in the
atmospheric energy cycle. An early assessment of the LEC
can be found in Ref. [31]; for a recent analysis in reanalysis
data NCEP2 and ERA40 see Ref. [3]. The characteristics of the

FIG. 2. Lorenz energy cycle with energy compartments (boxes)
and energy currents (arrows). Available potential energy is P , ki-
netic energy is K , forcing is R, and dissipation is D; the zonal
means are denoted by m and eddies by e. Internal conversions are
C(Pm, Pe ), C(Pe, Ke ), C(Ke, Km), and C(Km, Pm). Intense currents
are thick, moderate thin, and weak dotted.

global atmospheric energy cycle are useful for the validation of
models, and it is expected that the Lorenz energy cycle changes
in a warmer climate [32].

We calculate the following terms in the energy cycle, and
the expressions can be found in Ref. [1] or in Ref. [28]:
the forcings of the zonal mean Rm and the eddy available
potential energy Re, the dissipation rates of zonal mean
Dm, and the eddy kinetic energies De. Conversion rates are
determined between the zonal means of the kinetic and the
available potential energies C(Km,Pm), the zonal mean and
eddy available potential energies C(Pm, Pe ), eddy available
potential and kinetic energies C(Pe,Ke ), and eddy and zonal
mean kinetic energies C(Ke,Km).

The model was run for 1000 years, and the LEC currents
are determined as global means on a daily basis. For the
interpretation it is relevant that the model is dry without
convection and latent heat release. The forcing of the syn-
optic cyclones in nature deserves special attention since two
processes contribute: (1) radiative forcing, which is zonally
symmetric and attenuates deviations from the zonal mean, and
(2) latent heat release, which forces the development of these
eddies. In our dry model only a zonally symmetric part like
(1) is included by the adjustment to a zonal mean temperature.
This means that in our model the mean of Re is negative.

If a hydrological cycle with latent heat release is included,
this damping is compensated and the forcing Re in observa-
tional data has a positive mean [3]. Note that forcing and dissi-
pative terms are available only indirectly in the observational
data.

IV. CURRENT DENSITIES

The frequency distributions of the forcing terms and the
dissipative terms in the LEC are shown in Fig. 3. For the eddy
forcing the negative values are included, −Re, since the zonal
mean forcing damps the eddies. The dissipative terms are split
in the zonal mean part Dm and the eddy part De. The means
of the external currents are Rm: 2.79, Re: −1.18, Dm: 0.48,
De: 1.12, and the means of the internal currents (conversions)
are C(Pm, Pe ): 2.97, C(Pe,Ke ): 1.79, C(Ke,Km): 0.66, and
C(Km,Pm): 0.18 (all values W/m2). Note that the sign of the
weak conversion C(Km,Pm) is unclear in observations [3].

The distributions can be approximated by the generalized
Gumbel (GG) and the Generalized Extreme Value (GEV)
distribution. In fits to the fluctuations of global quantities in
correlated systems the generalized Gumbel distribution has
been used (see Ref. [9] and references therein). The density of
the generalized Gumbel distribution is

Ga (x) = θaa
a

�(a)
exp{−[θa (x + νa ) + e−θa (x+νa )]} (7)

with

θ2
a = d2 ln �

da2
, νa = 1

θa

(
ln a − d ln �

da

)
. (8)

The GEV probability density is

f (z) = (1/s)(1 + ξz)−1−1/ξ , z = (x − μ)/s, (9)

with the location parameter μ, the scale s, and the shape
parameter ξ . For a vanishing shape parameter ξ the GEV
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FIG. 3. Normalized histograms of energy input and dissipation:
(a) zonal mean forcing (injected power) Rm, (b) negative eddy
forcing −Re, (c) zonal mean dissipation Dm, (d) eddy dissipation
De. The solid (red) line is a GEV fit, and the dashed (blue) line a
generalized Gumbel (GG) fit. The vertical lines indicate the GEV-
location parameters μ (solid, black) and the means m (dotted, black).

distribution reduces to the Gumbel distribution. The shape
parameters ξ of the currents in the Figs. 3 and 4 are in the
range ξ ≈ −0.2, . . . ,−0.1. The skewness of the currents is
positive and roughly 0.5.

As injected power in our model we consider the zonal mean
forcing Rm of the available potential energy. The forcing of the
eddies Re is not considered since it damps eddies and has a
negative mean (note that in nature solar radiation has a similar
effect). Friction takes place mostly in the lowest levels which
represent the atmospheric boundary layer, while the upper
troposphere is only subject to hyperdiffusion.

The forcing of the zonal mean potential energy, which is
the energy input in the present simulation, is used to define the
entropy-like quantity in the nonequilibrium system,

σ = Rm, (10)

with the long-term mean denoted by σ+ = 〈Rm〉 (the eddy
forcing Re acts as a dissipation since the relaxation to a zonal
mean temperature attenuates eddies). Note that the means
satisfy

〈Rm〉 = 〈Dm + De − Re〉. (11)

Thus Re should be added to Dm + De, and the common
definition of an entropy production in terms of friction is not
possible here.

V. FLUCTUATION RATIO

The ratio of negative to positive values in the currents is
low and insufficient for an analysis of the fluctuation ratio (1).

C(Pm,Pe)   [W/m2]

P
(C

(P
m

,P
e)

)

10−4

10−3

10−2

10−1

100

0 1 2 3 4 5 6 7

GEV
GG

μ m

(a)

C(Pe,Ke)   [W/m2]

P
(C

(P
e,

K
e)

)

10−4

10−3

10−2

10−1

100

0 1 2 3 4 5

GEV
GG

μ m

(b)

C(Ke,Km)   [W/m2]
P

(C
(K

e,
K

m
))

10−4

10−3

10−2

10−1

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0

GEV
GG

μ m

(c)

C(Km,Pm)   [W/m2]

P
(C

(K
m

,P
m

))

10−4

10−3

10−2

10−1

100

−0.5 0.0 0.5 1.0 1.5

GEV
GG

μ m

(d)

FIG. 4. Normalized histograms of internal currents (conversions):
(a) zonal mean to eddy available potential energy C(Pm, Pe ), (b) eddy
available potential energy to eddy kinetic energy C(Pe, Ke ), (c) eddy
kinetic energy to zonal mean kinetic energy C(Ke, Km), (d) zonal
mean kinetic energy to zonal mean potential energy C(Km, Pm). The
fits are as in Fig. 3.

Therefore, we test shifts of the currents to reference states.
In the following we consider three reference states JR for
the currents: (1) the location parameter μ of the fitted GEV
distribution, (2) the mean of each current, and (3) the mode
(pdf maximum) of each current.

The currents are transformed to anomalies

J ′ = J − JR (12)

with the reference state JR .
The anomalies are averaged in windows with length τ :

J ′
τ = 1

τ

∫ t+τ

t

J ′(t ′) dt ′. (13)

All averaged current anomalies J ′
τ are nondimensionalized by

the long-term mean entropy production σ+ = 〈Rm〉:
pτ = J ′

τ /σ+. (14)

The fluctuation ratio (1) is determined for the anomaly ratios
p for the entropy production σ , and all other currents

1

τ
ln

P (pτ = A)

P (pτ = −A)
= αAσ+, (15)

where we have introduced a slope α. The normalized timescale
τ̃ is obtained by a typical correlation time of all currents, τc = 5
days,

τ̃ = τ/τc. (16)

In the original versions of the FT the factor α equals unity;
this is not satisfied if the used entropy-like observable deviates
from the entropy production as defined in Refs. [12,13].
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FIG. 5. Fluctuation ratio for the shift to the location parameters:
(a) injected power σ = Rm (defined as the entropy production),
(b) eddy dissipation De, (c) conversion of zonally averaged potential
to eddy potential energy C(Pm, Pe ), (d) i.i.d. GEV random variates r

with the distribution of Rm.

A. Location parameter as reference state

The first reference state JR is the location parameter defined
for each current by JR = μJ , determined by a GEV fit to
the current J . In Fig. 5 the results for (a) the injected power
Rm, (b) the eddy dissipation De, (c) the current C(Pm, Pe ),
and (d) surrogate data r are shown. The current C(Pm, Pe ) is
used as an example to represent the currents in the LEC. The
surrogate data r are independent random variables with a GEV
distribution and parameters determined by a fit to Rm (injected
power and entropy production σ ). These data are added to
extract the impact of the distribution independent of the
correlations. Unfortunately, a robust quantitative estimation
of the slopes is not possible (this is common in experimental
data [21]), thus we refer to the slopes indicated in Fig. 5.

The fluctuation ratios in (15) for the injected power Rm are
linear with slopes between 2σ+ and 3σ+. The eddy dissipation
De reveals linear slopes of the order of 2σ+. The conversion
C(Pm, Pe ) is linear with slopes below σ+. The surrogate
data r show slopes ≈ 4σ+ independent of the average time
τ̃ since the data are uncorrelated. The slope in the injected
power does not reach this value even for the longest times
analyzed. The deviation from α = 1 is probably caused by an
incorrect definition of the entropy production by the entropy-
like quantity in (10).

B. Mean as reference state

For an assessment of the location parameter as the reference
state we compare it to the mean of each current which could be
considered as a first and nearby choice to increase the number
of negative values. In Fig. 6 the results for the same currents
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FIG. 6. Fluctuation ratio for the shift to the means of the current
distributions: (a) injected power σ = Rm, (b) eddy dissipation De,
(c) zonally averaged potential to zonally averaged kinetic energy
conversion C(Pm, Pe ), (d) i.i.d. GEV random variates r with the
distribution of Rm.

as in Fig. 5 are shown. Obviously the fluctuation ratios are
far from being linear. However, for large averaging times the
slopes bend towards high values possibly close to the slopes
obtained for the location parameter (Fig. 5).

C. Mode as reference state

As a further alternative for a reference state we have
tested the mode MJ (the maximum of the pdf) for each
current, JR = MJ . The choice of the mode can be motivated
by the observation of cusps in the distributions of fluxes in
laboratory experiments, e.g., for the local convective heat flux
in Rayleigh-Bénard convection [17] and the injected power in
wave turbulence [24]. The results for the mode (not shown)
are close to the results for the location parameter in Fig. 5. The
reason is that the mode M of the GEV distribution is

M = μ + s[(1 + ξ )−ξ − 1]/ξ, (17)

which is close to the location parameter μ in our data, since
M ≈ μ − sξ , for small shape parameters as found here (ξ =
−0.2, . . . ,−0.1). A clear advantage of the mode is that it can
be estimated without an assumption on the distribution.

VI. SUMMARY AND DISCUSSION

We have analyzed the atmospheric energy cycle defined
by Lorenz [1] in a 1000-year simulation with a simplified
atmospheric model. The Lorenz energy cycle (LEC) assesses
the energy cascade in the atmosphere by a separation of the
total energy in available potential and kinetic energy and a split
in zonal parts and deviations (the so-called eddies). Energy
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is injected as the forcing of the available potential energy
and removed by frictional dissipation of kinetic energy. Both
apply to the zonal mean and the eddy parts. The assessment of
the realistic LEC needs three-dimensional atmospheric data,
which are available only as model output; most common are
the reanalysis data sets ERA and NCEP compared in Ref. [3]
for the period 1979–2001.

Since an analysis of the FR is impossible with the short
data sets available in complex climate models (order of 100
years; see, e.g., Ref. [32]), the LEC data used here with
the duration of 1000 years are produced with the simplified
atmospheric model PUMA [4]. PUMA simulates the so-called
dynamical core based on the hydrostatic primitive equations.
The simplification is obtained by the neglect of a radiation
scheme and the hydrological cycle. Thus the model represents
the nonlinear physical dynamics without complex processes
like, for example, cloud formation and precipitation. The
forcing is given by a linear temperature adjustment and
friction by a drag of the velocity, mainly at the lowest level.
The forcing is chosen to obtain a steady state close to the
observations.

The first finding is that the LEC current distributions can
be approximated by the generalized Gumbel distribution [5,6]
and the Generalized Extreme Value (GEV) distribution.

The second result pertains to the asymmetry of the dis-
tribution. After a shift to the GEV location parameter (as a
new reference state) an asymmetry similar to the fluctuation
ratio (FR) emerges for the considered energy currents. The
entropy production σ in this analysis is defined as the injected
power. We define anomalies of the currents with respect to
the reference states and nondimensionalize them with the
long-term mean σ+ of the entropy production. A nondimen-
sional timescale is defined by τ̃ = τ/τc, where τc = 5 days is
a typical correlation timescale of the currents.

The shift to a reference state is motivated by the analysis of
observational [17] and simulated data [24] where the maximum
of the pdf (mode) is close to zero. Further reference states
considered here are the mean of the data and the mode of the
distribution.

We find that for the location parameter reference state,
the entropy production, the current C(Pm, Pe ) (zonal mean
to eddy available potential energy conversion), and the eddy
dissipation follow fluctuation relations with linear slopes
in the range σ+ . . . 4σ+. A surrogate data test is included
which uses i.i.d. random variables distributed like the entropy
production (available potential energy forcing). The slope for
these data is close to 4σ+.

We would like to add a remark on time reversibility in our
data. In meteorology a common notion is the so-called free
atmosphere above the boundary layer (the lowest hundreds of
meters where friction takes place) [28]. If we neglect friction
on short timescales in the equations of motion (see Sec. II)
and identify these as microscopic dynamics, it is reasonable to
assume that the atmosphere is approximately time-reversible
on the corresponding timescales. Therefore, it is possible that
the FT applies to the components of the LEC.

Since no physical constraints for the distributions of at-
mospheric energy currents are known, we expect that our
findings might be useful for model assessment, global warming
studies [32], and possibly the behavior of extremes [33,34].
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