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Fiber-bundle model with time-dependent healing mechanisms to simulate progressive failure of snow
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Snow is a heterogeneous material with strain- and/or load-rate-dependent strength. In particular, a transition
from ductile-to-brittle failure behavior with increasing load rate is observed. The rate-dependent behavior can
partly be explained with the existence of a unique healing mechanism in snow that stems from its high homologous
temperature (temperature close to melting point). As soon as broken elements in the ice matrix get in contact, they
start sintering and the structure may regain strength. Moreover, the ice matrix is subjected to viscous deformation,
inducing a relaxation of local load concentrations and, therefore, further counteracting the damage process. Ideal
tools for studying the failure process of heterogeneous materials are the fiber-bundle models (FBMs), which allow
investigating the effects of basic microstructural characteristics on the general macroscopic failure behavior.
We present an FBM with two concurrent time-dependent healing mechanisms: sintering of broken fibers and
relaxation of load inhomogeneities. Sintering compensates damage by creating additional intact, load-supporting
fibers which lead to an increase of the bundle strength. However, the character of the failure is not changed by
sintering alone. With combined sintering and load relaxation, load is distributed from old stronger fibers to new
fibers that carry fewer load. So as we additionally incorporated load redistribution to the FBM, the failure occurred
suddenly without decrease of the order parameter—describing the amount of damage in the bundle—and without
divergence of the fiber failure rate. Moreover, the b value, i.e., the power-law exponent of frequency-magnitude
statistics of fibers breaking in load redistribution steps, at failure converged to b ≈ 2, a value higher than that of a
classical FBM without healing (b = 3

2 ). These results indicate that healing, as the combined effect of sintering and
load relaxation, changes the type of the phase transition at failure. This change of the phase transition is important
for quantifying or predicting the failure (e.g., by monitoring acoustic emissions) of snow or other materials for
which healing plays an important role.

DOI: 10.1103/PhysRevE.98.023002

I. INTRODUCTION

Failure of heterogeneous materials by gradually increasing
load is a progressive process which starts from damage at
the microscale. Growth and interaction of the microstructural
damage leads to the breakdown of the macroscopic system
[1]. Fiber-bundle models (FBM) are widely used to study the
failure process of heterogeneous materials [2]. In FBMs a
complex behavior of the system arises from the interaction of
multiple single elements (fibers) with heterogeneous properties
(strength), which obey simple rules (e.g., elastic deformation).
Therefore, the FBM models allow investigating the influence
of local microscopic mechanisms on the (global) failure of the
whole system. FBMs are often used to study material failure
in the context of statistical physics and the analogy to phase
transitions and critical phenomena. A variety of modifications
of FBMs have been proposed to study the failure of different
types of heterogeneous materials (e.g., [2,3]).
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Snow, a highly porous matrix of ice, is an example of a
heterogeneous material with a peculiar failure behavior: if
the load is applied rapidly, snow fails in a brittle manner,
while if loaded slowly, it shows ductile failure behavior [4–6].
Postpeak strain softening behavior is typically observed for
displacement-controlled experiments at low strain rates [4,5].
In addition, snow strength and strain at failure are higher
for lower strain rates [4,5]. For all strain rates, snow fails at
strain and stress values that are much higher than the linear
elastic limit [7]. This rate dependence of the failure behavior is
also reflected in the acoustic emission (AE) response of snow
(e.g., [8,9]). The AE response in turn is used for measuring
precursors of material breakdown and to predict the time of
failure. A competition between damage and healing has been
proposed as an explanation of the rate-dependent properties of
snow [10,11]. Snow on the ground in its natural environment
typically has a temperature close to its melting point, i.e., it
has a high homologous temperature. The high homologous
temperature enables the growth of new bonds between ice
crystals as two crystals come in contact. The process of new
bond formation between contacting snow crystals is called
sintering [12]. Alternatively, it has been suggested that the
viscous deformation of ice (creep) and the ductile-to-brittle
transition for the failure behavior of ice are responsible for
the ductile-to-brittle transition of the failure behavior of snow
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[13]. As ice creep can also induce relaxation of local load
concentrations, preventing the initiation of a macroscopic
failure, it can be considered as a healing mechanism countering
the damage process.

We propose a combination of the two mechanisms (sintering
and load relaxation) to be responsible for the rate-dependent
failure behavior of snow. Moreover, we suggest that the FBM
is an ideal tool to study the effect of the combination of
sintering and viscous deformation inducing load relaxation
during the failure of heterogeneous materials. In the classical
version of the FBM, the fibers fail irreversibly when a stress
or strain threshold is reached. Different versions of FBMs
with healing of broken fibers have previously been proposed
to reproduce the mechanical behavior of different materials.
For example, in the stick-slip FBM [14,15] the fibers recover
strength immediately after failure. The stick-slip FBM exhibits
a plastic macroscopic deformation behavior despite the brittle
constituents. Similar models have been proposed for modeling
the acoustic emission response produced by rearrangement
of the force chain networks in granular materials [16,17].
Fan et al. [18] used a FBM with time-dependent healing of
broken fibers to reproduce healing of soil strength and root
reinforcement after rainfall events for a landslide model at
hillslope scale. Bagchi and Mohanty [19] modeled species
extinction; their model is equivalent to a FBM with a simple
probability for broken fiber regeneration and can be solved
analytically. For snow Reiweger et al. [20] proposed a FBM
with time-dependent healing of broken fibers and found good
agreement with results of strain-controlled shear experiments;
the FBM calculations reproduced the well-known strain-rate-
dependent mechanical behavior of snow, including strain
softening for slow strain rates. We will build the sintering part
of our model on [18] but include as well the load relaxation,
as it may occur during creep deformation. Creep rupture
of fibrous materials has been modeled with two different
versions of FBMs [21–23]: with viscoelastic fibers following
the Kelvin-Voigt model (spring and dashpot parallel), and
with elastic fibers, which became Maxwell elements (spring
and dashpot in series) after failure. Both models showed a
transition with increasing load from a stable partially failed
state to an unstable state that ends with failure. Faillettaz
and Or [24] studied the roles of spatial correlation and load
redistribution rules in failure statistics and global failure of
the FBM and showed that the FBM failure mode varies
with increasing spatial correlation length and load-sharing
rules.

So far, no FBM with both time-dependent healing of broken
fibers as well as load relaxation has been presented, and
the combined effect of these two time-dependent healing
mechanisms on the type of transition at failure has not been
investigated yet. We therefore developed a version of the FBM
with two time-dependent healing mechanisms: (a) sintering of
broken fibers and (b) relaxation of load inhomogeneities due
to viscous deformation. We aim to analyze the effect of the two
healing mechanisms on the fiber-bundle failure characteristics
in the context of critical phenomena. We show that the combi-
nation of sintering and load relaxation significantly changes the
character of the failure. Finally, we discuss the implications of
our findings for the study of failure of heterogeneous materials
such as snow.

II. THEORETICAL CONSIDERATIONS OF FBM
MODEL WITH HEALING

The FBM consists of N parallel fibers with heterogeneous
strengths (we used a Weibull distribution). The load σ on the
fibers is increased stepwise to the strength of the weakest
intact fiber that then fails (adaptive load-controlled mode).
The load of the broken fiber is redistributed equally to the
intact fibers (called “equal” or “democratic load” sharing). This
load-sharing rule is equivalent to stiff clamping plates at the end
of the fibers and leads to a range of interaction equivalent to the
size of the entire bundle. The load redistribution may cause the
failure of other fibers; their load is subsequently redistributed,
possibly causing a cascade or avalanche of fiber failures. The
avalanche stops when the load redistribution no longer causes
any fiber to fail. At that point the external load is increased to
the strength of the next weakest fiber. The process is repeated
until all intact fibers fail within a final avalanche.

For the classical FBM (as described above) with force-
controlled load, democratic load sharing, and without healing
mechanisms, other authors have reported the following results
(see reviews, e.g., [3,25]): The avalanche size S (number of
broken fibers) is power-law distributed P (S) ≈ Sb with b =
5/2 for all avalanches. If just the avalanches near failure are
considered, the avalanche size is still power-law distributed but
has a lower exponent with b = 3/2. Moreover, the fiber failure
rate dS

dσ
(number of breaking fibers per unit stress increase)

diverges when approaching failure with dS
dσ

≈ (σc − σ )−α

with exponent α = 1/2 and critical load σc (i.e., the load when
all fibers break). The order parameter O(σ ) = U (σc) − U (σ )
is defined as the difference between the fraction of broken
fibers U at any load σ and at the critical load. U (σc) is the
fraction of broken fibers immediately before the bundle fails
and is smaller than 1. The order parameter O(σ ) continuously
decreases towards zero at failure with O = (σc − σ )κ with
exponent κ = 1/2. In other words, towards failure the fiber
bundle shows a continuous transition from a partially damaged
state to a completely failed state. This behavior corresponds to
a phase transition of second order.

In the present study, we assume the strength of the fibers to
follow a Weibull distribution,

p(σ |μ,k) = kμ−kσ k−1e
− ( σ

μ
)k
, (1)

with the shape factor k = 1.1 (e.g., [26]). We used the Weibull
distribution because it is commonly used for statistical fracture
models. The failure behavior of the classical FBM is not
influenced by the type of distribution and shape factor k [3,27].
The mean fiber strength is set to 1, adjusting the scale factor
μ accordingly. We supplemented the classical FBM with two
time-dependent healing mechanisms: resintering of broken
fibers and viscous relaxation of local load concentrations.

A. Sintering

We introduce the possibility of failed fibers to regain full
strength by sintering [see Fig. 1(a)]. The model works as
follows (see flowchart of Fig. 2). As in the classical FBM,
the load is increased incrementally and the load released from
failed fibers will be redistributed to all intact neighbors. At
each time step (or load step) we know the load on each fiber
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FIG. 1. (a) Example of the loading of a single fiber for the FBM with sintering. Initially the load is increased until the strength σth,1 is
reached and the fiber fails. After a certain number of load steps (depending on the sintering probability ps,i) the fiber sinters and gets a new
strength σth,2 independent of the previous strength; subsequently, it may fail and sinter again. (b) Dependence of the sintering probability ps,i

[Eq. (2)] on the load step length in time �t . The speed of the sintering process is controlled by the sintering time tp. (c) Schematic representation
of the FBM with load relaxation. Each fiber can be represented by a dashpot and a spring in series (Maxwell element). (d) Time evolution of the
load on the single fibers in case of load relaxation [Eq. (7)] with mean load 〈σ 〉 shown in red. The load decreases if it is higher than the mean
load (black line) or increases if it is lower (blue line), in both cases converging to the mean load. The speed of the load relaxation is controlled
by the characteristic loading time tr . All times can be transformed to loads (e.g., tp → σp).

and thus we know how much load is added until the next fiber
breaks. Thus for a given load rate (we look at the load rate
dependency of failure patterns) we know how much time �t

it will take until the next fiber breaks. (This time step is not
constant but depends on how much load is needed to break the
next fiber.) During this time period �t broken fibers have a
chance to heal, as described next.

Each time the load is increased, the broken fibers have a
certain probability to sinter. The strength of the new fibers is
independent of the previous strength and is drawn from the
initial strength distribution. (Such a rule is called annealed
disorder, in contrast to quenched disorder, where the new fiber
would obtain the same strength as before the failure.) The load
on the resintered fibers is zero immediately after sintering and
increases at the next load step with the external load or due
to load redistribution. (So within one time step �t the healed
fiber does not take load and is thus not affecting the time it
takes until the next fiber breaks.) The adaptive loading mode
causes load steps of variable size. Assuming a constant loading
rate σ̇ = dσ

dt
results in time intervals of variable length �t . The

probability ps,i that a given broken fiber i resinters during the
time interval �t depends on the number of broken fibers and
on �t :

ps,i(�t) =
(

1 − e
−�t

tp

)
Nbroken

N
, (2)

where tp is the characteristic sintering time [Fig. 1(b)]. There-
fore, accounting for all fibers, the portion of new fibers created

during the time interval �t is

ps(�t) = 1

N

∑
i

ps,i(�t) =
(

1 − e
−�t

tp

)(
Nbroken

N

)2

. (3)

The sintering probability is dependent on the number of
broken fibers because we assume that two fiber ends are
necessary to form a new bond. Hence, the probability of
forming a new fiber increases with the amount of broken fiber
ends available. This model assumption for sintering has been
previously used to describe the mechanical behavior of snow
[20,28].

We based our sintering model on the mechanism introduced
by Reiweger et al. [20] for a displacement-controlled version of
a FBM. Due to the variable size of the load steps, we substitute
the constant maximum sintering probability of [20] with the
time-dependent sintering probability p(�t)=1−e − (�ttp).
Moreover, Reiweger et al. [20] introduced a second time
dependence with the assumption that the resintered fibers do
not reach their final strength immediately at failure, but that the
strength increases with time and reaches the final strength only
after the time ts. We assume that the resintered fibers gain full
strength immediately after sintering. This means that a single
time variable controls the sintering process and the complexity
of the model is reduced. Our assumption is justifiable, since
the formation of initial bonds between ice crystals in snow
takes place almost immediately [29,30]. The further increase
of bond strength in snow (resulting in an increase of strength
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FIG. 2. Flowchart illustrating the FBM algorithm. The index j indicates the load steps.

and elastic modulus) occurs at a time scale beyond the time
scale of the failure process we consider in the model [31,32].

The load σ and the time t are related to t = σ
σ̇

. Therefore, the
characteristic time tp can be substituted with the characteristic
sintering load σp = σ̇ tp. Hence the exponential terms in Eq. (2)

can be written as e
−�t

tp = e
− �σ

σ̇ tp = e
−�σ

σp , and the loading
rate and the time can be eliminated, reducing the number of
parameters and the complexity of the model. The characteristic
sintering load σp represents the load increase over which the
probability of a fiber to sinter is 1 − 1

e
and it determines

the speed of the sintering process in dependence of the load
increase. Figure 3(a) shows a snapshot of the state of the FBM
with sintering during a load step.

B. Load relaxation

The second mechanism that may support healing by re-
moving load from loaded fibers is the load relaxation between
the fibers during each time step �t . The heterogeneous load

redistribution stems from the sintering generating fibers that
are less loaded. To model the redistribution between fibers with
different loads, we assume that the fibers are viscoelastic and
each fiber can be described by a Maxwell element [spring and
a dashpot connected in series, Fig. 1(c)]. The corresponding
constitutive equation for a fiber i is given by

ε̇i = σi

η
+ σ̇i

E
, (4)

where σi is the stress on a single fiber, E is the fiber’s elastic
modulus, and η its viscosity. Since we assume that the fibers are
connected by two rigid plates, all fibers experience the same
strain ε = σ

E
. For simplicity we assume that for the short time

�t period the change in strain is small and Eq. (4) becomes

ε̇i = 0 = σi

η
+ σ̇i

E
(5)

with the solution

σi,rel(t + �t) = σi(t)e
− E

η
�t

. (6)
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FIG. 3. Snapshot of the FBM for a single load step in the form of 2D maps of the fiber bundle illustrating the sintering and load relaxation
processes. For the full time evolution see Supplemental Material [42]. (a) The red cross indicates the initially failed fiber and the black crosses
the subsequently failing fibers of the current avalanche. The open circles show the fibers that are sintering during the current load step. The size
of the dots indicates the strength of the intact fibers and their color shows the age with yellow representing the fibers that did not fail so far and
dark blue the most recently sintered fibers. (b) Representation of the load relaxation mechanism. The size of the dots shows the load carried
by a single fiber; the color indicates the load change due to relaxation for the current step (yellow decrease of load and green/blue increase of
load). Both figures show the same load step (σ = 0.64) with a load increase of �σ = 0.001 for a FBM of size N = 25 × 25, σp = 0.015, and
σr = 0.1. The two-dimensional representation of the fiber bundle does not reproduce a “real” spatial distribution of the fibers, since by applying
democratic load sharing the spatial position of the fibers becomes irrelevant.

Equation (6) describes the relaxation of the load for a single
fiber. Since the external load on the fiber bundle is constant,
the load σi,rel on fiber i decreases and the difference �σi,rel =
σi(t) − σi,rel(t + �t) must be distributed to the other surviving
fibers. Therefore, the total load on fiber i after the time �t is

σi(t + �t) = σi,rel(t + �t) + 1

NS

Nintact∑
k

�σk,rel

= σi(t) e
− E

η
�t + 1

NS

Nintact∑
k

(
σk(t)

[
1 − e

− E
η

�t
])

= σi(t) e
− E

η
�t + 〈σ 〉[1 − e

− E
η

�t
]

= 〈σ 〉 + [σi(t) − 〈σ 〉] e
− E

η
�t

, (7)

where 〈σ 〉 is the intact fiber mean load. According to Eq. (7),
the load applied on the single fibers converges (relaxation)
with time to the mean fiber load [see Fig. 1(d)]. The ratio
between viscosity and elastic modulus determines the speed
of relaxation and can be expressed as a relaxation time tr = η

E
.

As in the case of sintering, a characteristic time for relaxation
can be expressed and substituted with a load σr = σ̇ tr = η

E
.

Equation (7) can now be written as

σi(σ + �σ ) = 〈σ 〉 + [σi(σ ) − 〈σ 〉e] − �σ
σr . (8)

The relaxation load σr represents the load increase over
which 1

e
of a fiber load is distributed to the other fibers and it

determines the speed of the relaxation process in dependence of
the load increase, i.e., the lower σr the faster the load relaxation.
A snapshot of the fiber load redistributed through relaxation
for a single load step is shown in Fig. 3(b) in the form of a 2D
map.

C. Deformation

We assume that all fibers have the same elastic modulus
E and viscosity η. With democratic load sharing the load
increase at each step is the same for all surviving fibers, and the
bundle strain can be computed by summing up the mean strain
increase �εj for each load increase �σj up to load step J

with

εJ (σ ) =
J∑

j=0

�εel,j + �εvisc,j =

elastic part︷ ︸︸ ︷∑J

j=0
[

1

Uj E
�σj︸ ︷︷ ︸

load increase

+ 1

Ui E

∑
k∈Sj

σk,j︸ ︷︷ ︸
redistribution

+

viscous part︷ ︸︸ ︷∑J

j=0

1

η

〈σ 〉 j

Uj

�tj , (9)
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FIG. 4. (a) Fraction of broken fibers (failed minus healed) as a function of the applied load for different sintering loads. (b) Stress-strain
relations of FBM for different sintering loads σp. All simulations results shown here were obtained without considering relaxation (i.e., σr = ∞).

where Uj is the fraction of intact fibers, σk,j is the load of the
fiber k, and Sj is the set of fibers that failed at the load step j .
Again, the time can be substituted with the load σ using the
relation σr = σ̇ tr = σ̇

η

E
, and we obtain

εJ (σ ) = 1

E

elastic part︷ ︸︸ ︷∑J

j=0

1

Uj

�σj +
∑

k∈Sj
σk,j

Uj

+ 1

Eσr

viscous part︷ ︸︸ ︷∑J

j=0

〈σ 〉 j

Uj

�σj . (10)

The elastic part of the strain scales with εelastic ≈ 1
E

, whereas
the viscous part scales with εvisc. ≈ 1

Eσr
.

The unit of the elastic modulus is set to 1 and therefore the
load σ is dimensionless, with σ = 1 being the mean strength
of the fibers.

III. SIMULATIONS

To investigate the effects of sintering and load relaxation
we performed simulations using nine different sintering char-
acteristic loads σp (ranging from 5 × 10−5 to 5 × 10−1) and
eight characteristic loads σr (ranging from 5 × 10−5 to 50).
For each set of σp and σr we computed 100 realizations
of the FBM with size N = 3002 = 9 × 104, and the data
of the 100 realizations were merged for the computation of
complementary cumulative distributions and the b values. The
b values were computed with the PYTHON package POWERLAW

[33], which employs the method described by Clauset et al.
[34]. The exponents κ and α were computed with a least-
squares fit of the fiber failure rate and the order parameter.
To determine the exponents κ and α, ten realizations of size
N = 106 where used, since the quality of the fits increases
with increasing the number of fibers. In the following, we
first describe the effects of sintering of broken fibers without
considering load relaxation and subsequently analyze the effect
of load relaxation for a fixed sintering time.

A. Bundle strength and stress-strain relations

Sintering reduces the fraction of broken fibers as illustrated
in Fig. 4(a). The smaller the sintering characteristic load

(equivalent to short sintering times) the smaller the number
of broken fibers (number of failed fibers minus the resintered
fibers). If the sintering speed is high enough, after an initial
increase of the fraction of broken fibers, a sort of steady state
with moderate and constant increase is established. During
this more or less stable state fiber failures are compensated by
sintering, particularly evident for the simulations with small
sintering load (smaller than about 1.5 × 10−3). Shortly before
failure an increase of the number of broken fibers is observed.
The number of broken fibers just before global failure is lower
for lower characteristic sintering loads σp. Sintering of broken
fibers leads to an increase of the bundle strength or critical load
σc, since more fibers are available to support the load [Fig. 4].
The stress-strain curves for different sintering characteristic
loads σp are computed with Eq. (10) and are shown in Fig. 4(b).
Sintering makes the bundle stronger and stiffer, as the strain for
a given load is lower with fast sintering. For all characteristic
sintering loads the strain rate diverges near failure.

The load relaxation mechanism transfers load from highly
loaded fibers to less loaded fibers. For our FBM with demo-
cratic load sharing such load differences are created with
the sintering of broken fibers that do not carry any load
immediately after sintering. Therefore, load relaxation influ-
ences the failure behavior only in the presence of sintering.
The effect of relaxation is visualized in Fig. 5(a), where
the coefficient of variation of the fiber load CV = 〈σf −〈σf 〉〉

〈σf 〉
is shown as a function of the bundle load for different
relaxation characteristic loads σr and a constant value of the
sintering characteristic load σp = 1.5 × 10−2. In the absence
of relaxation, the load inhomogeneity increases continuously
towards failure, whereas with relaxation the load difference
is reduced and even completely suppressed for very low σr

values, since low σr results in faster relaxation. The effects
of load relaxation on the fraction of broken fibers are shown
in Fig. 6(a). Load relaxation reduces the number of broken
fibers and in particular, reduces the increase of the fraction
of broken fibers shortly before failure. Figure 5(b) shows the
critical load σc for different relaxation characteristic loads σr

and sintering characteristic loads σp. The critical load σc, which
increases with sintering, becomes even higher with fast load
relaxation [Fig. 5(b)]. More specifically,σc increases forσr < 1
and reaches a steady value for σr < 10−2. The relative increase
of σc reaches a maximum for σp ≈ 10−2.
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FIG. 5. (a) Coefficient of variation of the fiber load CV = 〈σi−〈σi 〉〉
〈σi 〉 as a function of the bundle load σ for different relaxation characteristic

loads σr and a constant characteristic load of sintering σp = 1.5 × 10−2. (b) Critical load σc as a function of the relaxation time σr , and of the
sintering time σp.

Figure 6(b) shows the stress-strain relation for different
values of σr . The strain was scaled with the strain at failure
εc. The scaled stress-strain curves collapse into two groups
depending on which deformation type is predominant [see
Eq. (10)]. The critical strain εc is constant for low relaxation
speeds, whereas it is inversely proportional to σr for high
relaxation speeds [see inset Fig. 6(b) and Eq. (10)]. This means
that for high relaxation characteristic loads σr the fibers deform
mainly elastically, while for σr < 2 × 10−1 the viscous defor-
mation is dominant. For high σr the slope of the stress-strain
curve decreases monotonically to almost zero at failure. This
corresponds to a divergence of the strain rate towards failure.
On the other hand, for low σr , the strain rate after an initial
increase is almost constant up to failure.

B. Avalanche size distribution

Load redistribution of broken fibers may cause an avalanche
of ruptures. The size of the rupture avalanches follows
a power law characterized by its exponent the b value.
Figure 7(a) shows the complementary cumulative distribution

of the avalanche size P (S) for different sintering characteristic
loads σp. Sintering causes a deviation from the original power
law, with b values decreasing with faster sintering [smaller
characteristic load σp, see inset Fig. 7(a)]. This means that for
fast sintering larger avalanches are more frequent (b value is
2.1) than without sintering (b value is 2.5). For all scenarios
the deviation from the power law for big avalanches (tail of
the distribution) is due to an exponential cutoff induced by
finite-size effects [25].

Figure 8 shows the b value obtained for all avalanches
[Fig. 8(a)] and for the avalanches close to global failure
occurring in the interval (σc − σ ) < 10−3 [Fig. 8(b)] for
different relaxation characteristic loads σr and the sintering
characteristic load σp. Figure 7(b) shows the evolution of the
b value with increasing load for representatively chosen com-
binations of σp and σr. Without healing (σp = ∞) we obtained
a b value of 2.57, which is in fair agreement to the theoretical
value of b = 5

2 [27]. In absence of relaxation, the b value
decreases continuously with decreasing sintering load σp down
to b = 2.15 for σp = 5 × 10−5 [inset Fig. 7(a)]. A lower
b value indicates that the portion of large avalanches is higher.

FIG. 6. (a) Fraction of broken fibers as a function of the bundle load σ for different relaxation characteristic loads σr and a constant
characteristic load of sintering σp = 1.5 × 10−2. (b) Stress-strain relations of FBM for different relaxation characteristic loads σr and a constant
sintering characteristic load σp = 1.5 × 10−2. The strain was scaled with the strain at failure εc. The inset shows the strain at failure εc as a
function of the relaxation characteristic load σr .
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FIG. 7. (a) Complementary cumulative distribution (CCDF) of the avalanche size for different characteristic loads σp and no load relaxation.
For the CCDF curves we used the data of 100 different realizations of the FBM (N = 9 × 104) for each σp. The inset shows the b value as
a function of the sintering characteristic load σp. (b) Evolution of the b value with increasing load σ . The b value was computed from the
avalanches produced at the load between σ and σc. The dashed horizontal lines mark the power exponents of the classical FBM (2.5 for entire
bundle and 1.5 close to global failure).

The power-law distribution of the avalanche size of the
classical FBM presents a crossover with lower b value (b =
1.5) in the vicinity of failure [35,36]. Without load relaxation
for all sintering characteristic loads σp the b value decreases
with increasing load from the different initial values and
converges to b ≈ 1.5 [Figs. 8(b) and 7(b)].

Load relaxation causes an increase of the b value
[Fig. 8(a)]. For σr < 2 × 10−1 the decrease of the b value
caused by sintering is compensated by the load relaxation and
the b value is higher than in the case of the classical FBM
without healing. Also, with load relaxation, a decrease of the
b value towards failure is observed for all combinations of σp

and σr. However, in the presence of load relaxation the b value
at failure converges to a higher b value ≈2 [Figs. 8(b) and
7(b)]. Moreover, for very low values of σr, the b value initially
decreases below 2 and later increases, converging to b ≈ 2,
whereas for the FBM without load relaxation and for moderate
values of σr the decrease of the b value with increasing load
is monotonic. The nonmonotonic decrease of the b value is
observed for very high relaxation speeds independently of the
sintering speed.

C. Fiber failure rate

In addition to the b value of avalanche statistics, another
interesting feature characteristic of the failure process and
prediction is the fiber failure rate dS

dσ
. Without relaxation

the fiber failure rate increases following a power law to-
wards global failure dS

dσ
∼ (σc − σ )−κ and diverges at failure

[Fig. 9(a)]. The exponent κ increases with decreasing sintering
characteristic load σp from κ = 0.45 ± 0.01 (close to 1

2 for
classical FBM) without sintering to κ = 0.85 ± 0.08 for σp =
10−5 [Fig. 9(a), inset]. With load relaxation the divergence at
bundle failure is suppressed and the fiber failure rate increases
exponentially with the applied load [Fig. 9(b)].

D. Order parameter

For the classical FBM without healing the order parameter
(difference in fraction of broken fibers at the critical load and
a smaller load) converges to zero towards failure following
a power law O ∼ (σc − σ )α with α = 1/2 [3]. Figure 10(a)
shows the order parameter O as a function of σ and the
exponent α for the FBM with sintering and no relaxation. The

FIG. 8. Avalanche-size b value for different relaxation characteristic loads σr and of the sintering characteristic load σp. (a) b value for
all avalanches, and (b) just for the avalanches with (σc − σ ) < 10−3 (close to global failure). The b values are obtained by combining the
avalanche-size data of 100 different realizations of the FBM (N = 9 × 104) for each set of σr and σp. Avalanches with size S < 4 were not
considered in the computation.
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FIG. 9. (a) Evolution of the fiber failure rate towards failure for different sintering loads σp and no relaxation. The inset shows the average
value of the exponent κ with standard deviation for different σp obtained from 10 realizations of the model with size N = 106. (b) Evolution of
the fiber failure rate towards failure for different σr and constant σp = 1.5 × 10−2. The fiber failure rate was computed with a running window
of size 1000. In both figures, the different curves of the fiber failure rate were shifted to improve representation by multiplying dS

dσ
by C = 2n,

with n = (0,..,9) increasing from the lowest curve to the top one.

absolute value of O is lower for lower σp, since the number of
failed fibers immediately before failure is lower. With sintering
and no relaxation, the order parameter O initially decreases
rapidly with increasing load and then reaches a steady state and
a more moderate decrease. Shortly before failure, O decreases
to zero, following a power law. The exponent α decreases with
increasing σp from 0.5 (the expected value for classical FBM)
to 0.2 [inset in Fig. 10(a)]. The power-law decreasing phase of
O is shorter for lower σp. With load relaxation (σr < 2 × 10−2)
the power-law decrease of O before failure is suppressed so
that O decreases linearly until failure [Fig. 10(b)] with α = 1.

IV. DISCUSSION

A. Sintering

Sintering compensates the damage process and creates new
fibers that support the additional load and therefore reduces
the number of broken fibers at a given load. Since more fibers
support the load, the strength of the bundle increases. For the

same reason, the strain at the same load is lower, i.e., the bundle
is stiffer [Fig. 4(b)].

In the case of sintering without relaxation the damage
process of the bundle can be separated into three phases:

During the first phase the damage in the bundle (number
of broken fibers) increases without any significant influence of
sintering. This is due to the fact that the sintering frequency
depends on the number of broken fibers [Eq. (2)] and therefore
a certain damage level must be reached for the sintering process
to become relevant.

In the second phase sintering and damage are in equilibrium.
The number of broken fibers increases and consequently the
order parameter decrease is moderate. For very low sintering
characteristic loads σp the slope is almost zero.

In the third phase an acceleration of the damage process
followed by catastrophic failure of the bundle is observed.
This phase is characterized by a divergence of the fiber failure
rate dS

dσ
and a power-law convergence of the order parameter

O to zero. The strain rate diverges as the bundle is approaching
failure.

FIG. 10. (a) Evolution of the order parameter O towards failure for different sintering loads σp and without load relaxation. The inset shows
the average value of the exponent α with standard deviation for different σp obtained from ten realizations of the model with size N = 106. (b)
Evolution of the order parameter O towards failure for different σr and constant σp = 1.5 × 10−2 (N = 106).
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The lower b value with lower sintering characteristic loads
σp [Fig. 8(a)] indicates that the portion of large avalanches
is higher with faster sintering. The higher amount of large
avalanches is explained by the larger number of fibers available
for failure when the load of a failed fiber is redistributed. On
the other hand, the b value in the vicinity of failure does not
depend on σp [Fig. 8(b)], indicating that the distribution of the
damage events close to failure is not influenced by sintering.
Moreover, close to global failure, the sintering speed neither
has influence on the order parameter O, which continuously
converges to zero [Fig. 10(a)], nor the fiber failure rate dS

dσ
,

which diverges as the critical load is approached [Fig. 9(a)].
Those findings, in addition to the unchanged b value at failure,
indicate that the nature of the transition towards failure does
not change with sintering. The main effect of sintering is (a)
to shift the failure to a higher load, (b) to reduce the length of
the damage acceleration phase, and (c) to increase the speed
of both the divergence of the fiber failure rate dS

dσ
as well as

the convergence of the order parameter O (decrease of α and
increase of κ).

The same b value in the vicinity of failure (b = 3/2) was
reported by Bagchi and Mohanty [19] for the species extinction
model with a simpler healing mechanism (fixed maximum
sintering probability without time dependence). They also do
not report any influence of the value of the sintering probability
on the type of transition. Based on our results and the results of
[19], we can assume that the failure behavior is not influenced
by sintering, i.e., does not depend on the sintering speed and
the mechanism governing the sintering probability.

B. Load relaxation

Load relaxation reduces the load inhomogeneity by trans-
ferring load from fibers with higher load to fibers with lower
load. The load inhomogeneity arises as the new fibers do not
carry any load immediately after sintering. Therefore, load
relaxation transfers load from the old fibers to the new ones, so
stronger, older fibers survive while the new weaker fibers fail.
In this way, the load is distributed more efficiently among the
fibers, allowing higher loads to be sustained and thus increasing
the strength of the system [in addition to the strength increase
caused by the sintering, see Fig. 5(b)]. Similar results were
obtained for FBM, where the load was redistributed according
to the fiber strength [37]. Moreover, load transfer explains the
higher b value observed in the case of low relaxation loads
[i.e., fast relaxation; σr < 2 × 10−1 see Fig. 8(a)]. Since mostly
weaker fibers fail due to load transfer, the amount of load redis-
tributed after a fiber failure is lower, reducing the probability
of a large cascade of failures and, therefore, smaller avalanches
prevail. The fiber’s deformation develops from mainly elastic
for high σr to mainly viscous for low σr. Accordingly, the
strain-stress curves collapse into two groups depending on the
sintering speed [Fig. 6(b)]. Without load relaxation the strain
rate diverges before failure, whereas for low σr the strain rate
before failure is almost constant. Similarly, the fiber failure
rate and the order parameter do not diverge while approaching
failure (α = 1), indicating that the load relaxation suppresses
the acceleration of the damage process which is normally
observed before failure or shifts the acceleration to the imme-
diate vicinity of failure. The absence of damage acceleration

before failure indicates a change in the type of transition. A
further indicator of a change in the failure dynamics is the
change of the b value at failure from 1.5 to 2 [see Figs. 7(b)
and 8(b)]. For a FBM where the load of the failing fibers
was redistributed to the stronger fibers, Biswas and Sen [37]
reported a similar change in the type of transition with α = 1,
indicating a change of the universality class. It appears that load
relaxation in combination with sintering changes the failure
behavior from continuous to abrupt. These model results are in
accordance to results of loading experiments of snow, where at
high loading rates precursors to failure were observed, whereas
for slow loading rates, for which sintering and load relaxation
are supposed to be most relevant, no precursors were noted [9].

C. Consequences for failure prediction

The power-law distribution of the avalanche size and
the resulting b values are scale invariant and, therefore,
independent of system size. Moreover, it has been shown
that the b value does not depend on the type of fiber strength
distribution [27]. For these reasons the change of the b value
towards failure is considered to be a good precursor, and the
divergence of the order parameter and fiber failure rate can
be used to predict the time when the bundle fails (e.g., [3]).
Potentially damaging bursts or avalanches can be measured
from outside without influencing the failure process (e.g., by
acoustic emissions) and therefore the FBM theoretical results
can be applied in practice. In the case without load relaxation,
the type of transition does not change substantially with respect
to the classical FBM, and accordingly, the precursors do not
change much either. A minor limitation is the shorter duration
of the acceleration phase, which reduces the time span before
failure at which the prediction can be made. For the case with
load relaxation, the failure occurs suddenly without divergence
in the fiber failure rate or decrease in the order parameter;
also the b value converges to another value. Therefore, for a
material such as snow, if loaded at a low loading rate for which
sintering and load relaxation play a role, it may be difficult to
find suitable precursors. Shortly before failure the fluctuations
from the mean value increase for both order parameter and
fiber failure rate. This increase may be used to predict failure.

V. CONCLUSIONS AND OUTLOOK

We presented a version of a fiber-bundle model including
a combination of two healing mechanisms: (a) sintering,
which is equivalent to creating new fibers with a probability
depending on time and the number of broken fibers, and (b)
time-dependent relaxation of load inhomogeneities between
fibers. The load inhomogeneities arise since the new fibers
do not carry any load. The rate of the two healing processes is
regulated by the two characteristic loadsσp andσr . For the FBM
with only sintering the bundle strength is higher than of the
classical FBM, but the nature of the phase transition at failure
is unchanged apart from an increase of the critical exponentκ of
the fiber failing rate and a decrease of the critical exponent α of
the order parameter. Introducing load relaxation, the strength
of the bundle further increased, since load is transferred to
those fibers carrying fewer load. Moreover, for the FBM with
both sintering and load relaxation, the failure occurs suddenly
and the divergence of the order parameter and the fiber failure
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rate is suppressed. The b value at failure changes from 1.5 to 2
for increasing relaxation speed. Hence, we show that healing
as described by the combined effect of sintering and load
relaxation can change the type of phase transition occurring
at failure.

The failure of fibers in the FBM corresponds to the occur-
rence of damage in real materials, which can be monitored
by acoustic emissions. The possibility of the occurrence of
failure without clear precursors that we have shown must
be considered for the interpretation of the acoustic emission
response of snow or other materials for which healing plays an
important role.

Certainly, our model represents a strong simplification of
reality. Model improvements may include introducing local
load-sharing rules (e.g., [2,26]) and using a more complex
model for the load rheology instead of the Maxwell model (e.g.,
power-law creep [13,38]). Moreover, with a model capable
of reproducing a more complex three-dimensional geometry
(e.g., discrete element model DEM (e.g., [39,40]) the effect of
the complex structure of the ice matrix could be studied. Snow

failure leading to snow avalanches occurs under mixed-mode
loading (shear and compression) [41]. Hence, the model could
be improved by considering the more realistic load mix. On the
other hand, we regard the complexity of the proposed model
sufficient for investigating the basic effects of sintering and
load relaxation on the failure behavior.

We consider our model as a theoretical framework appropri-
ate for the interpretation of acoustic emissions and for the de-
velopment of numerical models of heterogeneous materials for
which healing is important. In particular for snow, our results
are useful to explain observed differences in failure behavior
during experiments with varying load or displacement rate.
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