
PHYSICAL REVIEW E 98, 022904 (2018)

Granular silo flow of inelastic dumbbells: Clogging and its reduction
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We study the discharge of inelastic, two-dimensional dumbbells through an orifice in the bottom wall of a silo
using discrete element method (DEM) simulations. As with spherical particles, clogging may occur due to the
formation of arches of particles around the orifice. The clogging probability decreases with increasing orifice width
in both cases. For a given width, however, the clogging probability is much higher for the nonspherical particles
due to their arbitrary orientations and the possibility of geometrical interlocking. We also examine the effect of
placing a fixed, circular obstacle above the orifice. The clogging probability depends strongly on the vertical and
lateral position of the obstacle, as well as its size. By suitably placing the obstacle the clogging probability can
be significantly reduced compared to a system with no obstacle. We attempt to elucidate the clogging reduction
mechanism by examining the packing fraction, granular temperature, and velocity distributions of the particles
in the vicinity of the orifice.
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I. INTRODUCTION

Clogging is a common, and unwanted, phenomenon during
the discharge of a granular material from a silo or hopper. It
is also observed in active matter like a herd of sheep passing
through a narrow door [1–3], in a crowd of pedestrians [4],
panic escape [5,6], and traffic jams [7,8]. Clogging is typically
the result of the particles forming an arch in two dimensions
[9,10], or a dome in three dimensions [11,12], next to the
orifice. Cates et al. [13] have termed clogged particles as
fragile matter since an entire assemblage can be collapsed
by applying a small external force at particular points of the
arch. Various methods, including hitting or vibrating the silo
[14–16], poking, or aiming compressed air at the arches, have
been proposed as practical methods to unclog silos. These
solutions, however, have certain limitations in practice. For
instance, vibrating a silo may not be economical since it
requires energy from an external source.

A recently proposed method to prevent, or reduce, clogging
is to place an obstacle above the orifice [2,17,18]. Zuriguel et al.
[18] have reported that a well-placed obstacle can reduce the
clogging probability (CP) by 2 orders of magnitude. They at-
tributed this decrease to the pressure drop in the arch formation
region. A similar phenomenon can be observed in active matter.
In particular, Zuriguel et al. [2] studied the effect of an obstacle
on the flow properties of sheep passing through a narrow
door. They observed an increase in CP when the obstacle is
close to the orifice as temporary clogging occurs between
the obstacle and the doorjamb. However, when the obstacle
is placed far from the orifice, it does not affect the clogging.
Time taken for the egress of sheep was noticed to be minimum
at an intermediate position of the obstacle. This suggests the
existence of an optimum position to place an obstacle so that
clogging will not occur. Recently, the effect of the shape of the
obstacle on clogging of spherical particles has been reported
[17]. The authors have considered three different shapes of
obstacle, namely, circular, triangular, and inverted triangular.

They reported that a triangular obstacle is more effective than
a circular one in reducing the clogging probability of a system
of spherical particles. The effect of height H and diameter
D of the obstacle on the dynamics of monodisperse spherical
particles discharging out of a silo was analyzed by Lozano
et al. [19] and that of a hopper by Alonso et al. [20].

Most of the 2D and 3D experimental and numerical studies
of clogging in silos and hoppers were carried out for sys-
tems of spherical particles. However, most granular materials
processed in industry, as well as those that occur in natural
processes, are aspherical to some degree. Hence, understanding
the flow dynamics of nonspherical particules is of great
importance. In this regard, Börzsönyi et al. [11] conducted 3D
experiments to determine the shape effect of granular particles
discharging out of a silo using x-ray tomography. They reported
that elongated particles prefer to align vertically in the flowing
zone. Ashour et al. [12] have analyzed the shape and size
effect of nonspherical particles on clogging probability, flow
rate, and avalanche statistics. Until now, most investigations
of nonspherical particulate systems [21–27] have focused on
the flowrate. There are few studies that try to understand
the physical mechanism above the orifice, where clogging
occurs. Moreover, the effect of an obstacle on the flow of
nonspherical particulate systems has not yet been investigated,
to the best of our knowledge. Therefore, here we present results
of 2D numerical simulations of dumbbell-shaped particles
discharging from a silo to analyze how the position and size of
an obstacle affects the flow dynamics in the region above the
orifice. First, we performed numerical simulations in the
absence of an obstacle for varying orifice width, W . Then,
we placed a circular obstacle of diameter D at various axial,
H , and lateral, L, positions while maintaining the orifice width
and obstacle diameter constant. Finally, we examined the effect
of varying D at fixed H and L = 0.

The organization of the paper is as follows. Section II
outlines the simulation methodology and the force models
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FIG. 1. (a) A configuration from the DEM simulation. (b) View
near the orifice. W is the orifice width, H is height of the obstacle, and
L is the horizontal distance from axis to the center of the obstacle.
The orientation of each dumbbell is indicated by a line joining the
centers of the two fused spheres.

used. In Sec. III, results and corresponding interpretations are
discussed, and Sec. IV presents our conclusions.

II. SIMULATION METHODOLOGY

We simulated N = 8000 dumbbells (a rigid body formed
by two fused spheres of diameter d, that means dumbbell’s
aspect ratio is 2) in a system of size 100d × 150d along x and
y, respectively, enclosed by walls at x = ±50d and y = 0. A
gravitational force of magnitude g acts in negative-y direction.
The initial configuration is generated by placing particles
randomly in space with random orientations and letting them
settle in the presence of gravity. This fills the system to a
height of roughly y = 150d. The system is large enough so
that we can neglect any Janssen effect [28]. Figure 1 shows
the initial configuration for one of the many cases we have
considered in the study. We open the orifice at the beginning
of each simulation to allow the discharge of particles in the
presence of gravity. The origin is taken as the center of the
orifice that is located symmetrically between the two vertical
walls.

In our study, we employed the discrete element method
(DEM) [29,30] to simulate the gravity-driven flow of dumb-
bells, essentially a monolayer of dumbbells. We have adopted
the contact model suggested by Brilliantov et al. [30] to
compute the forces between two spheres in contact at a given
time. The contact force in the normal direction Fn

ij between
the particles i and j of radii Ri and Rj , respectively, with
an overlap of δij = Ri + Rj − Rij , where Rij is the distance
between i and j and for the relative velocity (normal direction)

of vn
ij is given by Fn

ij =
√

RiRj

Ri+Rj

√
δij (Knδij r̂ i j − meffγnv

n
i j ).

Here, meff is the effective mass of the two colliding parti-
cles, and Kn and γn are the nonlinear spring stiffness and
the normal damping coefficient, respectively, in the normal
direction. The contact force in the tangential direction F t

ij for
a relative velocity (tangential direction) of vt

ij and an overlap
of �sij and coefficient of friction μ is modelled as follows:
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FIG. 2. Number of dumbbells discharged N as a function of time
t for different values of the normal elastic constant Kn at W = 14d .

F t
ij = −min(

√
RiRj

Ri+Rj

√
δij (Kt�si j − meffγtv

t
i j ), μFn

ij ), where

Kt and γt are the nonlinear spring constant and the damping
coefficient in the tangential direction.

We take Kn = 2 × 106ρdg and Kt = 2.45 × 106ρdg for
a particle of density ρ (mass per unit volume). For a par-
ticle of density ρ = 5000 kg/m3 and diameter 20 mm in a
gravitational field of g = 9.8 m/s2, this represents roughly
a material with a Young’s modulus of 1 GPa and Possion’s
ratio of 0.3 [31]. Moreover, if we take Kn as high as 100
times its current value to represent materials such as steel, the
instantaneous flow rate, and number of particles discharged as
a function of time barely changes (see Fig. 2). Thus, we can
use Kn = 2 × 106ρdg to represent realistic materials, at least
in the context of the present study.

In our simulations, we choose a damping coefficient γn =
γt = 2500

√
g/d3 to represent a realistic coefficient of resti-

tution curve with respect to collision velocity. The coefficient
of friction as 0.5 and a time-step of 10−4√d/g is chosen in
our simulations. The positions and velocities of the dumbbells
are defined as the center of mass positions and center of mass
velocities of the two adjoining spheres. Forces between the
two fused spheres are turned off and by considering the force
and torque on the dumbbell as the sum of the forces and
torque on each of the constituent spheres. Each simulation is
carried out for the time it takes the system to fully discharge or
until clogging occurs. The initial configurations are generated
independent of each other. All the simulations are carried out
using LAMMPS [32] and we used OVITO [33] and VMD [34]
for visualization of the simulation trajectories.

III. RESULTS AND DISCUSSION

In this section, we present the main results of our numerical
simulations and their interpretation. We have considered four
different parameters in our study: the orifice width W , the axial
height H , the lateral position L, and diameter D of the obstacle
[see Fig. 1(b)]. In Sec. III A, we present the results for the case
without any obstacle for varying orifice widths. In Sec. III B,
the results for various values of H for L = 0 are discussed,
while in Sec. III C, the results for various values of L for a fixed

022904-2



GRANULAR SILO FLOW OF INELASTIC DUMBBELLS: … PHYSICAL REVIEW E 98, 022904 (2018)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  7  9  11  13  15  17

(a)
Ψ

W/d

μ = 0.5
μ = 0.0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 5  7  9  11  13  15  17

(b)

Φ

W/d

μ = 0.5
μ = 0.0

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 5  7  9  11  13  15  17

(c)

T
g/

dg

W/d

μ = 0.5
μ = 0.0

FIG. 3. The variation of (a) clogging index �, (b) packing fraction �, and (c) granular temperature Tg with respect to an orifice width of
W for a silo without an obstacle.

H are discussed. In Sec. III D, we report results for various
values of D for constant H and L = 0.

We calculate the clogging index � for a given run i as the
ratio of undischarged particles to the initial number of particles.
The particles that cannot undergo motion in the silo, such as
those in the stagnant zone next to the orifice, are subtracted.
The number of particles in the stagnant zone corresponds to
the number of undischarged particles when clogging does not
happen:

� = 1

n

n(≈30)∑
i=1

Nundis,i − Nu

Ntotal − Nu

. (1)

Here, Nu = (Nundis,i ) =∑
i Nundis,i/m, where m is the number

of cases in which clogging does not occur, Ntotal = 8000 is the
total number of dumbbells in our system, and Nundis,i is the total
number of particles that remain in the silo before the system’s
kinetic energy approaches zero for a given run i. Naturally,
Nundis,i ≈ Nu for the case of full discharge.

Region R is defined above the orifice as shown in Fig. 1(b)
with a length of (W + 2d) along x and 10d along y. The
packing fraction � of the particles in region R is calculated
as the ratio of the volume of particles contained within it to
the total volume of the region R. Since this system is quasi-
two-dimensional, its thickness is taken as d for calculating the
volume of region R. The granular temperature is computed
for region R as Tg = 1

2 〈(vx− < vx >)2 + (vy− < vy >)2〉
where < . > denotes the spatiotemporal mean. All the results
presented, including the velocity distributions, are averaged
over approximately 30 independent runs using different initial
configurations. We calculate all the quantities of interest
by averaging over time until clogging, or full discharge,
occurs. We neglected any run in which clogging occurs
before a minimum of 100 dumbbells are discharged from the
silo.

A. Without obstacle

In this subsection, clogging of dumbbells in the absence
of an obstacle is discussed for various orifice widths W . The
discharge of the dumbbells is initiated by opening the orifice
at time t = 0.

In Fig. 3(a), we show the clogging index � as a function of
the orifice width W for frictionless (μ = 0.0) and frictional
(μ = 0.5) particles. One observes that the clogging index
of frictional particles is almost unity for W � 9d, while it
is approximately zero for W � 14d. Börzsönyi et al. [11]
and Ashour et al. [12] performed experiments to understand
the flow of shape-anisotropic particles of different aspect
ratios in a 3D silo with a circular orifice. They considered
the existence of critical orifice radius above which clogging
events are improbable and they argue that this critical orifice
radius (typically defined as the ratio of orifice radius Wc to
the equivalent radius of a spherical particle of volume equal
to that of an aspherical particle, leq) is very high for elongated
grains. For disks in two dimensions, this ratio is found to lie
between 4 and 5 [35]. In our case, however, we observe that
the critical width Wc lies between 13d and 14d corresponding
to a critical ratio in the range 10.3 < Wc/leq < 11.1. This is
in contrast to what is observed in the case of circular particles.
Even if we consider the longest dimension of the dumbbells
2d, Wc/lmax comes out to be around 6.5 to 7.0. Moreover, for
frictionless dumbbells, critical orifice width lies between 8d

and 9d, while it is slightly larger than d for hydrogel particles
(practically frictionless) used in Ref. [36]. This high critical
width ratio is due to many factors, including an orientational
barrier, geometrical interlocking, and a larger surface area of
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FIG. 4. The probability distribution of (a) velocity component
along x and (b) velocity component along y in region R for a silo
without an obstacle.
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FIG. 5. The variation of (a) clogging index �, (b) packing fraction �, (c) granular temperature Tg with respect to the vertical position of
obstacle H at L = 0, W = 11d , and D = 22d . All parameters are computed for particles in region R.

interaction compared to spheres. Clogging can be induced due
to an improper orientation. An example of this in real life
would be attempting to get a couch through a door. If the couch
is improperly oriented it will not pass through. Similarly, an
aspherical particle will experience the same difficulty. This, in
turn, also induces anisotropy in the orientational ordering as
seen in Ref. [11]. Geometrical interlocking plays a role not just
in enhancing clogging but also in stabilizing the clogged arch
that is formed. Spherical particles have the least interlocking
of all the particle shapes.

In Figs. 3(b) and 3(c), we plot the packing fraction � and
the granular temperature Tg (nondimensionalized by dg), re-
spectively, of the dumbbells contained in region R as a function
of W . We notice that � is almost constant, indicating that �

remains independent of � in the absence of an obstacle. The
granular temperature Tg , however, increases with the orifice
width. This can be explained by the increase in fluctuations of
the velocity components as W increases, which is due to an in-
crease in the collision rate between the particles when particles
on either side of the silo meet at the orifice. This increase in Tg

with W can also be explained by plotting the horizontal and
vertical velocity distributions, vx and vy , respectively, as shown
in Fig. 4. The width of the distribution of horizontal and vertical
velocity components of particles in region R increases as W is
increased.

B. Axial variation of the obstacle position

In the silo flow of spherical particles, Zuriguel et al.
[18] observed that placing an obstacle at an appropriately
chosen height above the orifice can greatly decrease clogging
compared to a system with no obstacle. In this subsection we
examine how effectively the presence of obstacle (D = 22d)
can reduce the clogging of dumbbell-like particles while they
are flowing through a narrow opening at the bottom of a
silo. Here we varied the vertical position of the obstacle
H above an orifice of width W = 11d. (At this width in
the absence of an obstacle, � = 0.66, and so we expect
the clogging to be sensitive to perturbations induced by the
obstacle). In Fig. 5(a), we see that the clogging index is
very high when the obstacle is close to the orifice. This is
due to the formation of arches between the obstacle and

exiting particles. However, we see that when the obstacle
is positioned sufficiently far above the exit, the clogging
index tends to approach that of the no obstacle case. This
is explained by the fact that as the height of the obstacle
increases, the more its effect on the flow at the exit diminishes,
thus mimicking the no obstacle case. At intermediate heights,
however, low values of the clogging index are observed. We
see two local minima in � [see Fig. 5(a)] at which � ≈ 0.2.
i.e., about a threefold reduction compared to a silo with no
obstacle.

Another intriguing observation is the presence of a max-
imum at H = 22.5d. This behavior is explainable in terms
of the type of clogging arch that is formed. We observe
that in the presence of an obstacle two types of clogging
arches occur, namely one that involves and one that does not
involve the obstacle. When the obstacle is very close to the
orifice, clogging is mostly due to the first type while when
it is far away, the clogging arches are formed only by the
particles. Both types of arches are displayed in Fig. 6. When
H = 10d, only the first type of arch is observed while for
H = 15d and 17.5d both types are observed. The first decrease

FIG. 6. Clogged states at H = (a) 10d , (b) 15d , (c) 17.5d ,
(d) 20d , (e) 22.5d , and (f) 25d with an orifice width of W =11d .
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TABLE I. Average width wavg and height havg and standard
deviation of width σw and height σh of the arches averaged over n

clogged states. The first row represents the case without an obstacle,
the next set of rows are for a case with an obstacle and the last two
rows represent the case of frictionless system without an obstacle.

W or H wavg σw havg σh n

W = 11d 12.43 0.54 8.47 2.22 10
H = 10d 12.75 0.76 18.99 4.19 14
H = 15d 12.26 1.15 18.08 10.59 10
H = 17.5d 11.74 0.68 9.31 8.91 12
H = 19d 12.19 1.02 8.47 7.73 10
H = 20d 11.84 0.77 6.59 2.23 12
H = 21d 11.54 0.75 7.13 2.22 13
H = 22.5d 12.23 0.68 7.94 1.95 10
H = 25d 12.25 0.9 7.86 3.61 10
H = 30d 12.12 0.7 8.13 2.07 15
H = 35d 12.04 0.65 6.96 1.5 14
W = 7d 8.5 1.33 4.75 2.35 14
W = 6d 6.6 0.72 3.81 2.02 10

in the clogging index at H = 15.0 − 17.5d [see Fig. 5(a)]
corresponds to the transition from the first type of clogging
arch to the second type. For H � 20d, only the second type
of arch is observed. This can be explained by the difference in
standard deviations in vertical heights of the arches as shown in
Table I. The decrease in � at H = 25d, which is not observed
in the case of spherical particles, could be due to the changes
in orientation dynamics of the particles due to the presence
of obstacle as shown in Fig. 7. Analyzing the orientation
dynamics of anisotropic particles in silo flows, is an important
future problem. Figures 5(b) and 5(c) show the variation of �

and Tg in region R with respect to H of the obstacle. We see
that the packing fraction increases gradually while the granular
temperature decreases with respect to H and both quantities
saturate for H > 21d. The presence of an obstacle close to the
orifice reduces � due to the wake formed below the obstacle. It
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FIG. 8. The probability distribution of the (a) horizontal and
(b) vertical velocity component of particles in region R for a silo
with W = 11d containing an obstacle of D = 22d .

also increases the fluctuation in velocities of particles in region
R as the particles moving on the alternate side of the obstacle
collide in region R giving rise to high fluctuations. This can be
seen in Fig. 8, which shows the distributions of the horizontal
and vertical velocity components.

C. Lateral variation of the obstacle position

Earlier studies have shown the existence of optimal location
of an obstacle for reducing clogging in the discharge of
spherical particles from a silo [17], as well as for sheep passing
through a narrow door [2]. In the present work, we examine if
a lateral displacement of the obstacle leads to the reduction in
the clogging. When the obstacle is displaced laterally, particles
flowing around the silo interact differently with the stagnant
zones present on either side of orifice, and this may lead to a
change in the clogging index �.

We observe that displacing the obstacle laterally may reduce
clogging. Although the clogging index shown in Fig. 9(a)
shows variability it does show that there exists at least
one location at which the clogging index � is lower when
compared with the case for L = 0. Moreover, the presence
of an obstacle away from L = 0 also increases the packing
fraction of the particles in region R up until L/d ≈ 10
beyond which there is no dependence. The wake formed below
the obstacle lies completely inside the region R for L = 0
and H = 10d. However, for L � 5d, only a part of wake
lies in region R thus providing more room for particles to
fill.

The granular temperature Tg decreases with L [see
Fig. 9(c)]. When an obstacle is located symmetrically, i.e.,
L = 0, then the flow is separated into two halves that collide
below the obstacle. However, as we increase L the flow rate
on the right side of the obstacle decreases thereby reducing the
collision rate as shown in Fig. 10. This could be the reason
behind the decrease in granular temperature.

The distribution of the horizontal velocity component at
H = 10d is shown in Fig. 11(a). The plot is symmetric and
the width of distribution is greater at L = 0, since in this
position the obstacle forces the particles to flow on either
side of the obstacle. However, for L � 5d, the obstacle blocks
particles flowing from the right side. Now if we focus on the
case of L = 5d, even the particles on the right side are forced
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FIG. 9. Variation of (a) clogging index �, (b) packing fraction �, and (c) granular temperature Tg for particles in region R with respect to
the lateral position L of the obstacle for W = 11d and for three values of H . Here, D = 22d .

to flow from left side. The above phenomena coupled with
the absence of collisions with particles flowing on the right
side results in high horizontal and vertical velocities. This
is consistent with the large width on the right side of plot
for L = 5d in horizontal velocity distributions. However, for
L � 10d, the width of the plot on the right side decreases
gradually. As the obstacle is displaced further towards right,
most of the particles can reach orifice without detouring
around the obstacle. As a result lateral collisions, which are
responsible for major variations in velocities, are almost absent
for L � 10d explaining the smaller widths on right side of the
plots.

The distribution of the vertical velocity component for
different values of L is displayed in Fig. 11(b). The width
of the plot is least at L = 0, indicating that obstacle hinders
the free flow of particles, thus reducing the vertical velocities
in region R. Whereas, the widths of plots are slightly broader
for L = 5d, 10d as interference of the obstacle in free flow

FIG. 10. Velocity magnitude and vector field for the case of H =
10d and L = 10d at a particular instant. The figure also shows the
interaction of obstacle with the stagnant zone. The reduction in Tg

with L is a consequence of the reduced collision rate due to blocking
of the flow on the right.

of particles gradually decreases. However for the case of
L = 15d, absence of lateral collisions seems to influence
both the vertical and horizontal velocity components leading
to a decrease in the width of distributions as shown in
Fig. 11.

D. Variation of the obstacle size

Here we consider the effect of varying the obstacle size D

(for L = 0 and three different values of H ) on the clogging
index. Figure 12 displays �, �, and Tg as a function of D

at W = 11d and constant H . � increases with increasing D

for H = 10d. During the discharge of the particles from the
silo a stagnant zone on either side of the orifice is present. As
D increases, the distance between the obstacle and stagnant
zone(Sd ) decreases as shown in Fig. 13. Moreover, the surface
exposed to the stagnant zone increases with increase in D.
This coupled effect enhances the resistance to the free flow of
particles at H = 10d as displayed by high values of �. At
H = 15d, arches are generally formed involving the obstacle
as shown in Fig. 6(b), where Sd should be small enough to
form a clog. Though, Sd decreases with increase in D as
shown in Fig. 13, at H = 15d, its effect is significant only
at large diameter of the obstacle, at D = 44d as indicated
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FIG. 11. The probability distribution of the (a) horizontal and
(b) vertical velocity component of particles in region R for a silo
containing an obstacle with H = 10d , W = 11d at various values
of L.
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FIG. 12. The variation of (a) clogging index �, (b) packing fraction �, and (c) granular temperature Tg with respect to diameter of the
obstacle D for various H at W = 11d and L = 0.

by the greater clogging probability �. However, at H = 20d,
� exhibits a nonmonotonic variation with D. This could be
attributed to the changes in the orientational dynamics of
particles due to the presence of obstacle, which needs to be
investigated further. At H = 20d, arch formation involving
the obstacle is almost negligible as Sd is large. So, the only
possibility of arch formation is by particles near the orifice.
An increase in D creates a larger wake region below the
obstacle, as the particles have to traverse longer path before
colliding with particles flowing from opposite side. Thus, �

decreases with increase in D for H � 15d. However, � is
almost constant for H = 20d as in this case the wake is formed
above region R. Tg increases as D increases for H � 15d

in accordance with the distribution of horizontal velocities
in region R for D � 22d as shown in Fig. 14(a). The dis-
tributions of the vertical velocity components are displayed in
Fig. 14(b).

IV. CONCLUSION

In the present work, we studied the flow of a monolayer
of dumbbells through an orifice at the bottom of a silo. We
performed simulations of discharge flow for several orifice

FIG. 13. Representative images showing Sd for (a) D = 11d ,
(b) D= 22d , (c) D= 33d , and (d) D= 44d . In all cases, H = 15d .

widths and observed that the clogging probability is close
to zero when the orifice width is greater than 13d. This is
equivalent to 6.5 times the particle length (major dimension of
the dumbbell). We also studied the effect of placing an obstacle
in the vicinity of the orifice on the granular flow. The size and
position of the obstacle have a marked influence on the
probability of clogging. While a previous study examined the
effect of changing the vertical position only, we also considered
changes in the lateral position. Even small displacements away
from the vertical axis, can substantially lower the clogging
probability.

Compared with spherical particles, the clogging probabil-
ity of the aspherical dumbbells is markedly higher, though
velocity distributions of particles in the vicinity of orifice,
which characterize the particle dynamics, are qualitatively
similar. It would be interesting to understand the particle
dynamics near the orifice for aspherical particles of larger
aspect ratios and complex shapes and to investigate whether we
can relate their dynamics to the clogging. Another important
observation from the present study is the nonmonotonoc-
ity of the clogging index as a function of height of the
obstacle which is not observed in the case of spherical
particles.
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FIG. 14. The probability distribution of (a) velocity component
along x and (b) velocity component along y in region R for obstacle
position H = 15d , L = 0 in a silo with an orifice of width W = 11d .
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