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Orientation-dependent properties of nanoparticle impact
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The mechanical properties of nanoparticles cannot be reliably described by bulk material characteristics due to
their atomic structure, leading to pronounced anisotropic behavior. By means of molecular dynamics simulations,
we study the impact of 5-nm Ag particles on an adhesive rigid wall. We show that the main characteristics of
the impact such as the coefficient of normal restitution, the sticking probability, the maximal contact force, and
the degree of plastic deformation of the particle depend sensitively on the angular orientation of the nanoparticle
prior to the impact. We introduce the scalar parameter � describing the orientation and show that the impact
characteristics can be described as functions of �.

DOI: 10.1103/PhysRevE.98.022902

I. INTRODUCTION

The contact of nanoparticles with surfaces is a key aspect
to several technical processes such as comminution, filtration,
agglomeration, etc. Therefore, the contact of nanoparticles
is the subject of intensive research (for recent reviews see,
e.g., [1,2]). Despite intensive research, the available model
descriptions are still insufficient to reliably characterize the
process of a nanoparticle impacting a solid plane.

Macroscopic contact models such as the (dissipative)
Hertzian contact force [3,4] or the Johnson-Kendall-Roberts
(JKR) model [5,6] consider the particle as homogeneous
and isotropic. While this approximation is well justified for
ordinary granular particles, for nanoparticles it fails for two rea-
sons: (i) Nanoparticles consisting of a few thousand atoms only
cannot be considered isotropic due to their atomic structure,
and (ii) the surface to volume ratio of nanoparticles is large,
such that their mechanical behavior is determined not only by
bulk properties but also to a large extent by surface effects. The
size effect of the mechanical properties was quantified, e.g., in
[7]. By means of molecular dynamics (MD) simulations it is
shown that the effective Young’s modulus of metal particles
of size 30–40 nm agree with the macroscopic bulk value up to
1%; however, for smaller particles, the deviation increases to
about 30% for 2-nm particles.

An important characteristic describing the dissipative colli-
sion of particles is the coefficient of normal restitution, that is,
the ratio of the normal components of the rebound velocity and
the impact velocity. While for larger particles, the coefficient of
restitution can be derived from bulk properties by integrating
Newton’s equation [8,9] this concept fails for nanoparticles
when the molecular or crystal structure of the material becomes
apparent [10]. A striking example was provided by Kuninaka
and Hayakawa [11], who investigated thermal rebound, where
thermal energy of colliding particles may be transferred into
kinetic energy, leading to large fluctuations of the coefficient
of restitution, including in rare cases values exceeding unity,
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from which one could erroneously conclude a violation of the
second law, valid for thermodynamic systems.

Given non-negligible influence of (attractive) surface
forces, colliding nanoparticles may stick to one another, similar
to adhesive granular particles [12], that is, the coefficient of
restitution drops to zero. By analyzing the reassignment of
kinetic energy into other degrees of freedom upon impact,
it was found that the minimal sticking probability coincides
with an impact velocity where no energy exchange mode is
dominating [13]. These very general findings are investigated
in more depth in terms of a plastic deformation analysis in
[14], where a fcc-hcp transition is observed. This transition
can be reversible or irreversible, but causes dissipation through
heating in both cases. While for macroscopic bodies the loss of
mechanical energy quantified by the coefficient of restitution
is due to local deformation in the contact zone, (see, e.g., [4]),
such a local description is not sufficient for nanosized crys-
talline particles. Here, for large enough impact velocity, dissi-
pative deformations are not restricted to the contact region but
nonlocal plane gliding of the particle material is observed. The
interplay of these different deformation modes leads to scaling
relations for the coefficient of restitution [15] different from
what is known from macroscopic theory [4]. For macroscopic
bodies other than single crystals or other exceptionally well
ordered materials, due to inhomogeneities of the material,
plane gliding is much less important, which may be considered
as a major difference of the physics of collisions of granular
particles as compared to nanoparticles. Obviously, crystallo-
graphic plane gliding depends strongly on the orientation of
the impacting particles, which was, however, not investigated
in [15], where only a single orientation of the particle was
considered.

From the theory of crystals, it is well known that many
physical properties of a crystalline material depend on the
angular orientation such as Young’s modulus, the specific
electric resistance, the speed of sound, the rate of solution,
and others, where the amount of anisotropy depends on the
material (see, e.g., [16]). This anisotropy affects, of course,
also the impact mechanics of nanoparticles. While this fact
is generally acknowledged, currently there is virtually no
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FIG. 1. Initial state of the system nanoparticle-wall.

systematic investigation of anisotropy effects of impacts of
nanoparticles beyond [17], where the impact of extremely
small particles with McKay icosahedra geometry was con-
sidered. For such particles, three characteristic orientations
are identified, leading to different impact behaviors. However,
the particles considered are extremely small such that there
is no bulk phase present, that is, practically all atoms belong
to the surface. Consequently, the impact properties are mainly
determined by the shape of the surface patch that gets in touch
with another object at impact.

Recently, Millán et al. [18,19] studied the critical velocity
for elastic-plastic transition of nanoparticle impacts. Their
work succeeds in finding a dislocation-emission based model
that is able to describe their simulation results. In their case,
averaging over 1000 random orientations prior to the impact
was performed to obtain orientation-independent averaged
data.

In the present paper, we study systematically the anisotropy
of the impact mechanics of a silver particle of diameter 5 nm
with an adhesive rigid wall by means of molecular dynamics
simulations. The precollisional structure of the particle is
described by a fcc lattice. Depending on the orientation of the
particle, the process of impact is determined by both surface
shape effects and volume effects, corresponding to plane
gliding of the crystal structure. We present a characteristic
measure to describe the orientation dependency and show
that it characterizes the impact properties in a certain velocity
range more adequate than the largest Schmid factor, which is
considered the dominant crystallographic parameter in shear
mechanics. For smaller impact rate, surface shape dominates
the impact properties.

II. NUMERICAL SIMULATION METHOD

A. Interaction models and system geometry

We investigate the collision of a nanoparticle with a solid
adhesive wall by means of molecular dynamics. It was shown
that MD simulations of low-pressure impaction deliver reliable
results for the coefficient of restitution [20], well in agreement
with experiments. The initial state is sketched in Fig. 1.

The nanoparticle and the plane are both cut out from a fcc
grid. The wall is modeled as an ideally stiff cylindrical [100]-
terminated fcc grid, that is, the atoms of the wall are located at
fixed positions (no significant differences could be found when
using the [111]-terminated plane instead). The diameter of the
flat cylinder is chosen to be six times the radius of the impacting

particle. Its height is three layers of atoms (see Fig. 1). We
checked that the size of the cylinder is large enough such that
boundary effects due to the finite size of the target are not
noticeable for all sets of parameters used. The nearest neighbor
distance of the grid is the distance at which the Lennard-Jones
potential, Eq. (2), vanishes.

For the interaction between the atoms the particle consists
of, we assume an embedded atom model (EAM) [21]. The
energy of atom i is given by

EEAM
i = F

⎛
⎝∑

j �=i

ρ(rij )

⎞
⎠ + 1

2

∑
j �=i

φ(rij ), (1)

where F is the embedding energy functional, ρ is the atomic
electron density function, and φ is a pair interaction potential
as a function of the distance, rij , of the atoms. This model
is reliable in reproducing material properties of bulk crystals
like the sublimation energy and the elastic constants (see [22]).
For the simulation, we use the material parameters for silver
provided in [22]. For the interaction between wall atoms and
particle atoms we applied a cutoff and smoothed Lennard-
Jones-Potential

ELJ
i = 4ε

∑
j �=i

(
σ

rij

)12

− C

(
σ

rij

)6

+ C1rij + C2, (2)

where ε = 5.521×10−20 J, σ = 2.644 Å, and C = 0.35 are
the depth of the energy well, the characteristic Lennard-Jones
distance, and a dimensionless parameter modeling a weakly
adhesive contact, based on the assumption of a partial oxide
layer weakening the interaction [23]. The constants C1 and C2

are chosen to ensure smooth transition at the cutoff distance
rc = 2.5 σ .

B. Preparation of the initial state

The equations of motion due to Eqs. (1) and (2) are
integrated using the MD code LAMMPS [24] with time step
6×10−16 s. Initially, the spherical nanoparticle of diameter
5 nm cut out from a fcc grid was placed such that a unit cell is
centered at the origin and the orientation of the grid coincides
with the orientation of the target plane. Using the parameters
of silver [22], the nanoparticle comprises 3513 atoms.

The particle was equilibrated at temperature 300 K using
a Nosé-Hoover thermostat and then the nanoparticle was
simulated as a microcanonical ensemble for 20 000 time steps,
in order to obtain a stable equilibrium state. The equilibrated
particle was placed just outside of the Lennard-Jones interac-
tion range of the wall in the positive z direction (see Fig. 1).
After thermal equilibration the desired impact velocity in the
rangevi ∈ [10, 400] m/s was subtracted from the z component
of each atom the particle consists of, that is, the particle
impacts the plane at vi with the atoms fluctuating due to
thermal noise.

The main part of the scatter of the results presented below
results from the relative position of the lattices of the wall
and the particle. Therefore, for each simulation of impact, the
particle is randomly shifted in the direction of the target by up to
one lattice period in both directions, x and y. Thus averaging
over the lattice structure of the target was achieved by 1000
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repetitions of the simulation at random shift. The scatter due to
the initial temperature of the particle was significantly smaller
than the scatter due to the shift of the lattices. The influence of
temperature is not systematically studied here.

Finally, in order to study the effect of anisotropy of the
nanoparticle that is the focus of the current paper, we rotate
the nanoparticle with respect to a rotation axis and a certain
angle. This procedure will be explained in detail in the next
section.

C. Initial orientation of the particle and the parameter �

To investigate the orientation dependency, we determined
1000 uniformly distributed random rotations of the particle
with respect to the wall. Considering the embedding sphere of
the cluster, the aim of this rotation is to assure that (a) each point
of the sphere is located at the south pole with equal probability,
that is, when the particle moves in the negative z direction each
point has the same probability to touch the target plane first,
and (b) the angle between the orientations of the lattices of
the target material and the particle is equally distributed. Such
a transformation is achieved using the method by Miles [25],
where a rotation axis is determined by the center of the sphere
embedding the particle and a randomly chosen point on its
surface [26]. The particle is then rotated around this axis by
the random angle α with probability density

p(α) = 2

π
sin2 α

2
, α ∈ [0, π ]. (3)

In the following, the orientations are characterized by the
orientation parameter � which arises from the coordinate
transformation of the load direction from reference into the
crystal coordinate system (see Fig. 2):

�(γ1, γ2, γ3) ≡ γ 2
1 γ 2

2 + γ 2
2 γ 2

3 + γ 2
3 γ 2

1 (4)

= (cos2 φ sin2 φ − 1) sin4 θ + sin2 θ. (5)

In Eq. (4), γi are the direction cosines from the coordinate
transformation, and φ and θ are the axes of the spherical
coordinate system (see Fig. 2).

Before describing the properties of �, let us discuss the
symmetry of the problem: The projection of a cubic unit cell
onto the the unit sphere delivers 48 spherical triangles as can
be seen from Fig. 3 (left). These triangles are equivalent due
to the symmetry of the fcc structure [see Fig. 3 (right)].

Therefore, � is completely determined on the whole sphere
by its values on the spherical triangle bound by the points
(0, 0, 1), (1, 0, 1)/

√
2, (1, 1, 1)/

√
3, which we call the critical

triangle in agreement with the literature, e.g. [16] [see Fig. 3
(left)].

D. The probability measure P�

To obtain the cumulative probability distribution, P�(�),
which will be used to analyze the properties of the impact
with respect to the orientation of the particle, we calculate
the integrals P�(� < x), 0 � x � 1

3 exploiting the symmetry
of the fcc structure, that is, by reducing the problem to the
calculation of the distribution on the critical triangle.

On the critical triangle, � depends strictly monotonously
on θ and φ with �((0, 0, 1)) = 0, �((1, 0, 1)/

√
2) = 1/4,

e1

e ∗
1

e2

e ∗
2

e3

e ∗
3

φ

θ

rotation axis

α

FIG. 2. Definition of the polar and azimuthal spherical coordinate
system angles, θ and φ (curved line arrows), and the canonical
standard coordinate system vectors, �e1 ≡ (1, 0, 0), �e2 ≡ (0, 1, 0),
�e3 ≡ (0, 0, 1). By application of the orthogonal rotation given by
the random rotation axis and the angle α, it is transformed into the
coordinate system {�e ∗

1 , �e ∗
2 , �e ∗

3 }. The direction cosines used in Eq. (4)
are given by γi ≡ �ei · �e ∗

i .

and �((1, 1, 1)/
√

3) = 1/3 (see Fig. 4). For convenience of
integration, we divide the critical triangle into the areas (i) and
(ii) separated by the isoline � = 1/4 (see the dashed line in
Fig. 4).

(i) 0 � � � 1
4 .

(ii) 1
4 < � � 1

3 .

FIG. 3. Definition of the critical triangle. Left: The projection of
the cubic unit cell onto the unit sphere delivers 48 spherical triangles.
Right: Layer of atoms located at the center of the particle in initial
(nonrotated) position with the critical triangle superimposed (blue).
Due to the symmetry of the FCC structure, all 48 spherical triangles
are equivalent.
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FIG. 4. Left: The function �(φ, θ ) on the unit sphere. The
position of the critical triangle is indicated. Right: On the critical
triangle, � is a strictly monotonous function of θ and φ. For the
computation of the probability distribution, P�(�), we divide the
critical triangle into the areas (i) and (ii), separated by the isoline
� = 1/4 (dashed line). The pink line shows the big arc used for
the computation of the distribution function for area (ii) [Eq. (11),
see the text for explanation].

The integration domain due to area (i) can be characterized
as limited by 0 � φ � π/4 and 0 � θ � θ̃ , where θ̃ is a
function of � and φ. This function is obtained by solving
Eq. (5) for θ with respect to � and φ in this critical triangle:

θ̃ (�, φ) = arcsin

√
−1 +

√
1 + 4�(cs2φ −1)

2(cs2φ −1)
, (6)

with cs2φ ≡ cos2 φ sin2 φ. The tilda in Eq. (6) indicates that
this solution is restricted to the critical triangle. Using the
identity cos[arcsin(x)] = √

1 − x2 and taking into account that

the area of one triangle is 4π
48 , we obtain inside area (i)

P�

(
� � 1

4

)

= 48

4π

∫ π
4

0

∫ θ̃ (�,φ)

0
sin(θ ) dθ dφ

= 12

π

∫ π
4

0

⎡
⎣1 −

√
1 − −1 +

√
1 + 4�(cs2φ −1)

2(cs2φ −1)

⎤
⎦ dφ.

(7)

The boundaries of the integrals corresponding to area (ii) are
more complicated since here the boundary with respect to φ

depends on �. This third side of the triangle is part of the big
arc containing (1, 0, 1)/

√
2 and (1, 1, 1)/

√
3 [see the pink line

in Fig. 4 (right)]. Therefore, a normal vector to it is given by
(1, 0,−1), concluding x = z on this side of the triangle. Now
let θ∗ and φ∗ be the restrictions of the spherical coordinates to
this boundary to area (ii). Then

cos(φ∗) sin(θ∗) = cos(θ∗), (8)

θ∗(φ) = arccot[cos(φ∗)]. (9)

Inserting Eq. (9) into Eq. (5) and rearranging delivers the
boundary of area (ii) [pink line in Fig. 4 (right)] as a pure
function of �:

φ∗(�) = arccos

√
1 − � + √

1 − 3�

1 + �
. (10)

Consequently, the limits of area (ii) are given by φ∗(�) �
φ � π

4 and θ̃ (� = 1
4 , φ) � θ � θ̃ (�, φ). For the computation

of the remaining part of the distribution function [area (ii)] we
exploit the above-denoted formula for P (� = 1

4 ), and write

P�

(
� >

1

4

)
= P�

(
� = 1

4

)
+ 12

π

∫ π
4

φ∗(�)

∫ θ̃ (�,φ)

θ̃ ( 1
4 ,φ)

sin(θ ) dθ dφ

= P�

(
� = 1

4

)
+ 12

π

∫ π
4

φ∗

⎡
⎣

√
2cs(φ) + 1

2(cs(φ) + 1)
−

√
1 − −1 +

√
1 + 4�(cs2φ −1)

2(cs2φ −1)

⎤
⎦ dφ. (11)

The derivatives of the integrals in Eqs. (7) and (11) can be calculated analytically (using MAPLE or another symbolic formula
manipulation tool) to yield the probability density, p�(�). Since this expression is rather cumbersome, for convenient practical
application we provide a fit to the ansatz:

pfit
� (�) = a ln

∣∣� − 1
4

∣∣ + b � + c, (12)

where a, b, and c are real numbers for both sides of the singularity at � = 1
4 :

pfit
� (�) =

{
−1.402 ln

(
1
4 − �

) − 2.493 � − 0.4388 for � < 1
4

−1.328 ln
(
� − 1

4

) + 2.989 � − 1.287 for � > 1
4

. (13)

Integrating pfit
� (�) delivers handy equations for P fit

� (�):

P fit
� (�) =

{
�(0.9632 − 1.2465�) + 1.402

(
1
4 − �

)
ln

(
1
4 − �

) + 0.4859 for � � 1
4(

� − 1
4

)[
1.4945

(
� − 1

4

) − 1.328 ln
(
� − 1

4

) + 0.78825
] + 0.6489 for � > 1

4

. (14)

We point out that this fit is universal for the probability
density of � for a randomly rotated particle impacting the

plane. It is independent of any material properties but only
restricted to the fcc lattice structure. The quality of the fit can
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FIG. 5. Top: Probability density, p�(�), of a randomly rotated
particle. The figure shows the analytical solution, Eq. (11), the
logarithmic fit, Eq. (13), and the results of a Monte Carlo sampling
(in extension of the 1000 random orientations, a total of 107 random
orientations were determined to check coincidence with the other
curves). The simulation data set coincides up to good agreement
with the other datasets. The analytical solution, Eq. (11), the fit,
Eq. (14), and the MC sampling coincide even up to linewidth. Bottom:
Corresponding cumulative probability, P�(�). The function P�(�)
is used to draw the second horizontal axis in the top figure.

be assessed in Fig. 5 (top) showing the analytical solution for
the probability density p�(�), according to Eq. (11) together
with the fit given in Eq. (13) and the results of a Monte Carlo
sampling. The coefficient of determination (R2 value) of the
fit is R2 � 0.999 for both parts with 107 uniformly distributed
sampling points in [δ, 1

4 − δ] and [ 1
4 + δ, 1

3 − δ]. The value
δ = 10−6 is needed to deal with the discontinuity of the density
such that near the pole about 6×10−6 of the total range of �

remains unsampled, which is good enough for all practical
considerations. The curves are plotted together with the values
obtained for the 1000 random orientations of the particle shown
in Fig. 5. The bottom panel of Fig. 5 shows the cumulative
probability distribution, P�(�), according to Eqs. (7) and (11)
which we will use in the subsequent text.

FIG. 6. Slip planes and slip directions of the FCC structure inside
of a particle. The four colors distinguish the different stacks of FCC
slip planes.

III. SIMULATIONS OF NANOPARTICLE IMPACT

A. Characteristics of inelastic interaction

We investigated the impact of a particle of random ori-
entation and position as described above. In particular, we
consider four characteristics of inelastic collisions, that is,
dissipative interaction: (1) the amount of plastic deformation;
(2) the maximal contact force, Fmax; (3) the coefficient of
normal restitution, en; and (4) the sticking probability, ps.
All of these characteristics of the crystalline particle are
intimately related to plane gliding. Figure 6 shows the four slip
planes and corresponding three directions to each slip plane,
amounting to a total of 12 slip directions. The four colors
belong to the different layers of slip planes. The sensitivity
of a crystalline particle against sliding due to stress in a
certain direction is characterized by the Schmid factor [16]:
According to Schmid’s law, the critical resolved shear stress,
τ , relates to total stress, σ , applied to a material in a certain
direction via τ = σm = σ cos ϕ cos ϑ where ϕ is the angle
of the stress, σ , with the glide plane and ϑ is the angle of
the stress, σ , with the glide direction. The Schmid factors are
then defined as 2 cos ϕ cos ϑ with the corresponding values
of ϕ and ϑ . As the Schmid factors, especially the largest
and second largest, are key parameters to characterize plastic
deformation of crystalline materials under stress, in many
places we will refer to these numbers. We will show, however,
that for the description of the impact dynamics of nanoscale
particles � is more significant than the largest Schmid
factor.

B. Plastic deformation

We quantify the plastic deformation of a particle due to an
impact by the number of atoms which change their neighbor-
hood relations. The neighborhood of an atom is defined by the
set of other atoms located in a sphere of radius=1.5× (nearest
neighbor distance of the lattice), and the neighborhood of an
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

0-3 4-5 6-7 8-9 10-11 ≥11

FIG. 7. The degree of plastic deformation of a particle impacting a plane in perpendicular direction depends on the impact velocity, vi,
and the relative orientation of the lattice structures of the particle and the plane. The figure shows examples of particles impacting the plane
at vi = (40, 100, 150, 300, 400) m/s (columns from left to right) and at angular orientation characterized by P� = 1, 0.75, 0.5, 0.25, 0 (rows
from top to bottom). The images show the particles at the instant of maximal compression when the center of mass velocity changes its direction.
The number of changed neighbors of the atoms is coded by color. The labels (a)–(y) refer to the marks in Figs. 8, 10, 12, and 13.

atom are called changed if the set of neighbors before the
impact differs from the set after the impact. Because of the finite
temperature of the impacting particle there is a certain thermal
noise in the neighborhood, concerning in particular the atoms
close to the surface the total binding energy of which is low. The
average amount of atoms which change their neighborhood
due to thermal motion amounts to approximately 3 for the
parameters used. Figure 7 shows typical examples of particles
at the instant of maximal compression when the center of
mass velocity changes its direction. Rows in Fig. 7 correspond
to the same impact velocity, vi ; columns correspond to the

same value of P� characterizing the angular orientation. The
degree of plastic deformation is coded by color.

Figure 8 shows the plastic deformation as a function of
the impact velocity vi and the orientation measure, P�. The
data points are sampled with increments of �vi = 10 m/s and
�P� = 0.025. For each data point, (vi, P�), we averaged over
1000 impacts at different orientations all characterized by the
same values of vi and P�.

As expected, the degree of plastic deformation increases
with increasing impact velocity. From the plot Fig. 8 (bottom),
which is averaged with respect to velocity, we see that for
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FIG. 8. Top: Plastic deformation as a function of the impact
velocity, vi, and the orientation, P�. Color codes for the fraction
of atoms with changed neighborhood. Bottom: The same data but
normalized for each velocity individually. The color indicates the
plastic deformation (fraction of atoms with changed neighborhood)
normalized by the plastic deformation at the given velocity but
averaged over all orientations, �. The marks (a)–(y) refer to the labels
in Fig. 7 showing a representative of an impact with the corresponding
(vi, �) combination. The labels (a)–(y) refer to the marks in Fig. 7.

vi = 10 m/s the amount of plastic deformation is much higher
for P� > 0.5 as compared to P� < 0.5. A band of high
relative plastic deformation moves to lower values of P� with
increasing vi until vi ≈ 100 m/s. This can be understood from
the fact that the particle surface is not perfectly spherical due to
its crystalline structure: In the [1,1,1] direction, corresponding
to P� = 1 (� = 0.3), and the [0,0,1] direction, corresponding
to P� = 0 (� = 0) (see Fig. 4), the surface of the particle
is terminated by very small portions of crystal planes. For
P� = 1, the three outermost layers contain 12, 61, and 102
atoms and are of maximal planar density. In contrast, for

FIG. 9. Averaged values of the largest six Schmid factors Si (P�)
with respect to P�.

P� = 0, the three outermost layers contain 32, 69, and 88
atoms, and the layers are of submaximal packing density. At
low impact velocities, plastic deformation develops in the form
of irreversible plane gliding, that is, shearing of the outermost
layers, since atoms located in these layers have only one
neighboring crystal layer. Since plane gliding happens only
in planes of maximal planar density, the amount of plastic
deformation is bigger for P� > 0.5 as compared with the
orientations P� < 0.5. Consequently, as can be seen from
Fig. 9, the largest Schmid factor is always larger than 0.8;
therefore, for the cases P� < 0.5, the plane gliding is reversible
and happens more on the inside of the particle (see Fig. 7
bottom left images).

As velocity increases, the force due to the impact causes
plastic deformation also for orientations corresponding to
smaller P�. The mentioned band structure comes from the
fact that the shear angle for the outermost layer is equal to zero
for P� = 1 and increases for orientations with smaller values
of P� such that the average number of the dislocated atoms
increases with vi due to increased impact energy and, thus, the
number of dislocated atoms with larger P� decreases relative
to the average.

For vi < 100 m/s, the lowest values of P� show almost no
plastic deformation (see Fig. 8). For these orientations, the
stress due to impact leads only to reversible plane gliding
but not to plastic, persistent deformation. At vi ≈ 100 m/s,
we observe a transition of irreversible plane gliding due to
increased impact energy, leading to persistent changes of the
neighborhood for many atoms simultaneously. Essentially, two
cases can be distinguished: Either a single dislocation travels
through the entire particle on a certain slip direction, and hits
the other boundary of the particle, or two dislocations hit each
other to also generate a persistent stacking fault (see Fig. 8). At
this point, surface effects or close-to-surface effects become
unimportant regardless of the orientation, since the number
of atoms changing their neighbors due to irreversible plane
gliding dominates.

The behavior at larger impact velocity can be understood
from the discussion of the Schmid factors characterizing the
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sensitivity of a crystalline particle against sliding due to stress
in a certain direction (see Sec. III A). For slow forcing and given
orientation, the largest Schmid factor determines whether slip
occurs, where a minimum of 45◦ between impact plane and
crystal layer is required classically. Since � describes the
orientation of the crystalline structure of the particle with
respect to the target, obviously, the maximal Schmid factor
Smax and � must be related (see Fig. 9). The relation between
Smax and � is not a mathematical function since several
orientations � belong to the same value of Smax and vice versa.
Such a relation exists only for the sum of all Schmid factors of
the FCC lattice:

� = 1

2
− 3

8

∑
i

S2
i . (15)

Nevertheless, Fig. 9 shows that the six largest Schmid factors
grow from P� = 1 to 0, except for some intervals where the
Si are nearly constant and some rather short intervals where
they even decrease. Thus, as a rule of thumb, small values of �

correspond to good slip systems, that is, only small deformation
due to compression is required to activate a second, third, or
fourth slip plane. Therefore, for orientations corresponding to
large values of P�, stress is released by shear of the outermost
layers, that exhibit quite weak slip systems, but only one layer is
neighboring, weakening the cohesive attraction. This effect is
of microscopic nature and cannot be observed for macroscopic
impaction which is implied by weak adhesion and very high
volume to surface ration. While the maximum Schmid factor
characterizes slip for slow (quasistatic) deformation, it is not
entirely adequate for stress due to impact at high velocity as the
dynamics is due to shocks and other nonequilibrium effects.
As a consequence not only is the slip plane corresponding to
the maximum Schmid factor activated but also other slip planes
related to other Schmid factors (in particular the second largest)
become activated. Moreover, close to the contact zone, atoms
leave their fcc lattice positions and are densified. This process
consumes a lot of energy and thereby the total amount of atoms
getting plastically deformed depends less on vi as compared to
smaller values of P�.

Starting from vi ≈ 200 m/s, this effect becomes dominant
for the lowest 15% of P�, where many slip planes are
activated, causing plastic shear deformation additionally to
the irreversible plane gliding. Eventually at vi = 300 m/s,
almost all atoms are involved in plastic deformation for this
part of the distribution. As velocity is further increased, the
impact energy becomes so large that most of the fcc structure
is converted upon impact. This deformation causes local
transformations of the crystal structure leading to mostly bcc
structure, corresponding to larger values of free energy and a
more compact and, thus, pressure resistant unit cell.

Before discussing the main macroscopic characteristics of
the impact, the maximal contact force, Fmax, the coefficient of
restitution, en, and the sticking probability, ps, quantitatively
in dependence on the orientation of the impact, we wish to
recall the significance of �: Obviously, the unique description
of the orientation of the particle needs two parameters, θ and φ

(see Fig. 2). However, as we show here, certain combinations
of θ and φ lead to the same macroscopic behavior of the
impact, characterized by Fmax, en, and ps. It turns out that

FIG. 10. Top: Maximal contact force, Fmax(vi, P�), normal-
ized with respect to velocity. The labels (a)–(y) refer to the
marks in Fig. 7. Bottom, blue curve: Normalized maximal force,
〈Fmax〉P��0.5(vi )/〈Fmax〉P�

(vi ) where 〈Fmax〉P��0.5(vi ) stands for the
average over all impacts at vi and orientations with P� � 0.5 and
〈Fmax〉P�

(vi ) stands for the average over all impacts at vi and all
orientations, P�. Red curve: Same for P� < 0.5. Vertical lines are
error bars indicating the standard deviations. The color of the error
bars correspond to the average data of the same color. Black curve and
error bars correspond to all orientations. Here, the average is identical
unity, of course.

the two-dimensional manifold, (θ, φ), may be expressed by a
one-dimensional manifold, �. That is, impacts characterized
by the same value of � reveal the same characteristics, despite
the fact that they correspond to different combinations (θ, φ).
The reason for this mapping is the fact that not θ and φ directly
but the Schmid factors (in particular the two largest ones) are
responsible for the impact behavior, supported by Eq. (15),
expressing � in terms of the Schmid factors.

C. Maximal contact force, Fmax

The maximal interaction force during a collision as a
function of impact velocity, vi, and orientation, P�, is shown
in Fig. 10. To understand this figure, we refer to Fig. 9: the
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orientation P� = 0 represents active systems, corresponding to
small contact force at impact. With increasing P�, the particle
appears more and more rigid since slip in the bulk of the particle
relates to large loss of energy of the impact. Therefore, the con-
tact force assumes its maximum for orientations corresponding
to P� = 1 where plastic deformation dominates (see Fig. 10).

For vi � 100 m/s, this general argument does not describe
the orientation dependency of the interaction force completely,
since specific details of the crystalline structure at the contact
point have a significant influence: For P� = 0 up to about
P� ≈ 0.15, the two largest Schmid factors and, thus, stress
transmission increase (see Fig. 9), explaining the island of
high maximal contact force Fmax(P� � 0.15, vi � 100 m/s).
Correspondingly, the comparatively low value of Fmax(P� �
0.85, vi � 100 m/s) can be explained by the fact that the shear
angle is close to zero for such orientations. Consequently, the
impact leads to a transfer of linear momentum into angular
momentum causing particle rotation (see Fig. 7 top left). These
effects are less significant for larger impact rate and also
for other values of P�, corresponding to bigger shear angle
and irreversible plane gliding (i.e., shearing of the outermost
layers).

Starting at vi ≈ 100 m/s, plane gliding becomes dominant
and, therefore, the properties of the slip system govern the
impact behavior. For large shear stress, shear along a sin-
gle plane corresponding to the largest Schmid factor is not
sufficient to resolve all stress and, thus, other shear planes
are activated corresponding to the second largest and further
Schmid factors. Here, the pertinence of the here introduced
parameter � characterizing the impact behavior becomes
particularly obvious as the general rule of thumb stated at
the beginning of this subsection applies: Decreasing P� = 1
to 0, the particles’ resistance against volume shear and plane
gliding decreases and so does the maximal contact force. For
vi ≈ 120–200 m/s, the relative values for the contact force
span from 75 to 125%, the largest observed interval.

When the impact velocity is further increased, dislocation
emission can be observed for all orientations (see Fig. 7 right
columns). Additionally, we notice flattening of the contact area
regardless of the orientation, due to very large impact energy.
In this region, thus, we observe a combination of compression
and plastic shear. For such impact parameters, the variation
of the relative contact force decreases. The description of the
orientation by P� allows us to subdivide the possible particle
orientation into families of classes revealing similar behavior.
For example, Fig. 10 (bottom) shows the maximal contact force
as a function of the impact velocity, normalized by the average
value for all orientations for impacts with the same velocity.
Thus, the average normalized force assumes the value 1 for
all velocities, by definition. If we plot the data separately for
classes of orientations belonging to P� < 0.5 and P� > 0.5
(red and blue lines), we see that P� indeed classifies the
orientations in a meaningful way. This can be quantified by the
standard deviations of the cases P� < 0.5 and P� > 0.5 which
are much smaller than the standard deviation of the averaged
data (black line).

After this detailed discussion, we can restate the arguments
by means of the here introduced parameter �: The orientation
P� = 0 stands for good slip systems corresponding to small
contact force at impact. With increasingP� the particle behaves

FIG. 11. Coefficient of normal restitution, en, and sticking proba-
bility, ps, as functions of the impact velocity. Top: Expectation values
of en and ps averaged over all orientations and corresponding error
bars. Bottom: Expectation values of en and ps evaluated separately for
arbitrary P� (black lines), P� � 0.5 (red lines), and P� � 0.5 (blue
lines). See the text for discussion.

more and more rigidly since slip in the volume of the particle
becomes more and more unfeasible. Thus, maximum contact
force is achieved for orientations corresponding to P� = 1
where plastic deformation dominates. The relevance of the
parameter P� can also be seen in the examples shown in Fig. 7.
In conclusion, the introduction of � allows for a convenient
one-parameter description of the impact behavior.

D. Coefficient of restitution, en, and sticking probability, ps

The coefficient of normal restitution, en, defined as the
ratio of the normal components of the rebound velocity and
the impact velocity, and the sticking probability, ps, at which
the rebound velocity drops to zero, are important global
characteristics of a particle impacting a plane. Here we discuss
the dependence of these parameters on the impact velocity
and in particular on the orientation of the particle prior to
impact, shown in Fig. 11. For small impact velocity up to about
100–200 m/s, the coefficient of restitution reveals large scatter
indicated by large error bars (variance). This is again due to the
crystalline structure of the particle and the variations of the slip
properties in dependence on the orientation of the crystalline
particle structure with respect to the target. Similar to the way
in which this orientation characterized by the Schmid factors
or �, respectively, has large effect on the interaction force
discussed at length in Sec. III C, it affects also the global
properties, en and ps. This coincidence appears quite natural
as the coefficient of restitution is a direct consequence of
the interaction force; that is, given the interaction force as
a function of impact velocity, the coefficient of restitution
can be derived by integrating Newton’s equation of motion.
Examples for such analytical calculation for homogeneous
(noncrystalline) materials have been done for viscoelastic
spheres [8,9,27] and cylinders [28], simplified linear dashpot
forces [29], and adhesive viscoelastic materials [12,30].

The coefficient of restitution as a function of the impact
velocity, averaged over all angular orientation of the impacting
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FIG. 12. Coefficient of normal restitution, en, and sticking proba-
bility, ps (both indicated by color), as functions of the impact velocity,
vi , and the angular orientation, P�. The labels (a)–(y) refer to the
marks in Fig. 7. For discussion see the text.

particle as drawn in the upper part of Fig. 11, reveals large error
bars indicating a variance of the same size as the data itself.
Analyzing the data separately for P� < 0.5 and P� > 0.5
(bottom part), we obtain a clear separation of the data, that
is, the average values for P� < 0.5 and for P� > 0.5 are well
separated, indicating that P� indeed groups families or angular
orientations of similar behavior caused by the slip properties
along different directions in the crystalline particle material.
Figure 12 depicts this property of the � description in more
detail. In the top panel, we can clearly see very different be-
havior for the families of orientation, P� < 0.5 and P� > 0.5,
which is particularly prominent for small impact velocity, vi �
100 m/s, in agreement with the integral presentation shown
in Fig. 11 bottom. Obviously, at large impact velocity, vi �
150 m/s, a lot of irreversible, and thus dissipative, shear takes
place at any orientation, leading to a small coefficient of resti-

tution. In this velocity interval, the expectation values for P� <

0.5, P� > 0.5, and all values of P� do not deviate much and the
variance is small [see Fig. 11 (bottom), Fig. 13 (bottom left)].

The situation is different for small impact velocity, vi �
100 m/s. Here the orientation of the particle prior to impact
makes a significant difference. For small P�, slip is active
already for small stress (good slip system), thus much energy
can be stored in reversible slip deformation during the impact.
When the contact terminates, the particle relaxes and the elas-
tically stored energy is retransformed into rebound velocity.
Therefore, for small velocity and small P� we find large values
of the coefficient of restitution [see Fig. 12 (top)]. For large
P� we have a bad slip system, therefore the particle cannot
elastically store a significant amount of energy. Instead, a large
part of the kinetic energy of the impacting particles is dissipated
due to plastic (nonreversible) deformation. Consequently, for
small vi and large P� we obtain small values for the coefficient
of restitution. The coefficient of restitution assumes its largest
possible value en � 1 at P� ≈ 0.14, where the largest Schmid
factor attains its maximal value 1.0 (see Fig. 9).

The sticking probability, ps, is closely related to the
coefficient of restitution. It describes the situation that the
impacting particle loses so much energy due to an impact that
the postcollisional velocity is not sufficient to overcome the
attractive adhesion force [see Eq. (2)], such that the coefficient
of restitution drops to zero. Figure 12 (bottom) shows the
sticking probability as a function of the impact velocity vi

and the orientation P�. According to the close relation of ps

and en its behavior can be understood using exactly the same
arguments as for the discussion of en(vi, P�) above.

Both ps and en become special at very low impact rate,
vi � 15 m/s. In this range, the attractive part of the interaction
force [Eq. (2)] causes the particle sticking to the surface,
independently of the orientation. Even for perfectly elastic
interaction corresponding to elastic slip, the energy of the
postcollisional velocity would not be sufficient to overcome the
attractive force. This effect can be seen in both panels of Fig. 12
in the form of a small vertical strip of nearly homogeneous
color at the very left side.

An interesting feature can be seen in Fig. 12 (bottom) for
P� � 0.15 and vi ≈ 300 m/s, close to the label (x): Here the
sticking probability reveals a sharp increase. This effect is
due to a pancake flattening [compare Fig. 7(x) against the
neighboring subfigures, (r), (s), and (w)]. At this value of �

four slip planes are activated simultaneously and the energy
of the impacting particle is, thus, sufficient to cause a large
(pancakelike) deformation. The behavior of the crystalline
nanoparticle in this parameter region deviates strongly from the
mechanics of a homogeneous, viscoelastic particle impacting
a plane where sudden changes in the macroscopic behavior are
not found.

E. Comparison of the significance of P� and PSF for the
description of the orientation of the impacting particle

The Schmid factors are of fundamental importance for
the description of materials subjected to shear stress. Of
particular importance is the largest Schmid factor describing
the onset of yield. In most places in the present paper, we
characterize the impact of nanoparticles on a solid plane by
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FIG. 13. Comparison of standard deviations for the description of the orientation by means of P� (left figures) and PSF (right figures). Top:
Fmax(vi, P�) and Fmax(vi, PSF), averaged with respect to velocity. Bottom: en(vi, P�) and en(vi, PSF). Hereby, PSF is constructed in a similar
manner: PSF � x corresponds to the area of the critical triangle with relative size 1

x
, where all Schmid factors lie below a certain value PSF(Smax).

The labels (a)–(y) refer to the marks in Fig. 7.

means of the parameter �, defined in Eq. (4), and its cumulative
distribution, the measure P�, defined in Eqs. (7) and (11).
We employ additionally the two largest Schmid factors when
necessary.

Obviously, the description by the full set of Schmid factors
carries more information than the parameter � being a scalar
value only. Nevertheless, we believe that for the problem
considered in this paper the description by means of � is
superior to the description by means of Schmid factors since
it allows for a characterization of the impact orientation in
an intuitive way. Obviously, a single parameter description
is advantageous for a graphical representation of the system
properties; more than one characteristic would require, at least,
a four-dimensional representation. Thus, considering more
than one orientation parameter for the plots makes them more
difficult to understand and to interpret by a crystal-layer based
understanding of the particle-wall impact system. It turns out

that the extremal values of � together with the singular big arcs
are clearly understandable in the sense of a layer model and
also lead to distinct behavior, as the presented results show.

From a topological point of view, a consideration of the
fcc crystal structure and a quasispherical outer boundary of
the particle lead directly to the critical triangle (see Fig. 3).
Thus, � is the simplest smooth function on the sphere that
accounts for the underlying symmetry and exhibits extremal
values at the geometrically most interesting points. But apart
from providing a more intuitive representation, for the case of
the impacting nanosphere, � indeed describes the orientation
dependency better than the largest Schmid factor, Smax, in the
sense that accumulated standard deviations with respect to
velocity of descriptions using � are smaller than those using
PSF. As an example, Fig. 13 shows the standard deviations
of the maximal force, Fmax, as a function of the velocity and
angular orientation of the impacting particle, drawn in (vi, P�)
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FIG. 14. Top: PSF in relation to P�. Bottom: Accumulated stan-
dard deviations of F rel

max(P�, vi ) and en(vi ).

coordinates and (vi, PSF), respectively (top figures) and the
same for the coefficient of normal restitution, en.

From Fig. 13 (top left and right) it can be seen that the de-
scription by PSF exhibits large standard deviation in the inside
of the image (0.2 < PSF < 0.7, 100 m/s < vi < 300 m/s) as
compared to P�. So � possesses far better sensitivity for the
investigation of Fmax than Smax and its probability measure
PSF, respectively. In the description of the plot Fig. 13, the
construction of PSF is sketched. The further advantages of
P� over � should be clear now: We are able to compare
percentages of all possible orientations.

The bottom plots in Fig. 13 show the standard deviations
for the determination of en. Here, two things can be seen. First,
for velocities below about 100 m/s, P� exhibits a larger region
of low standard deviation in the vicinity of the orientation
P� = 0.14 with the largest observed coefficient of restitution
en. Second, the localization of the pancake flattening within
P� < 0.15 for vi ≈ 300 m/s is much sharper as compared to
0.15 < PSF < 0.8. For the relation between P� and PSF, see
Fig. 14 (top). They are considerably different in the sense of
that there is no one-to-one map between them. All together,
� and P� map the geometric positions on the critical triangle
more cleverly to the intervals [0, 1

3 ] and [0,1], respectively.
Speaking quantitatively, Fig. 14 (bottom) shows the ac-

cumulated sums of the standard deviations with respect to

velocity from Fig. 13. In the vicinity of the impact velocity,
where en attains its maximal value, this sum is about 20%
bigger for PSF. For Fmax, the sum for PSF even doubles over
the entire deformation driven impact regime vi � 100 m/s.

Concluding, P� is better suited to describe the point of
maximal en and the deformation driven impact regime vi >

100 m/s with respect to the maximal contact force during
impact Fmax, and able to observe the pancake flattening at
around 300 m/s, where PSF is not.

IV. CONCLUSION

For macroscopic spheres, the properties of impact with a
wall or with one another are frequently characterized by the co-
efficient of restitution, ε. This description relies on two approx-
imations, namely, the assumptions of instantaneous collisions
and the homogeneity of the particle material. With appropriate
description of the particle material, ε can be quantified. It turns
out that ε is a function not only of the material characteristics
but also of the impact rate. Such calculations have been done
for realistic cases, e.g., for viscoelastic materials [8,9,27] and
adhesive viscoelastic materials [12,30]. While the assumption
of homogeneity certainly fails for nanoparticles due to the ap-
pearance of the atomar crystalline structure, qualitatively, their
rebound resembles adhesive viscoelastic spheres: For small
impact velocity, the energy of the postcollisional velocity is not
sufficient to overcome adhesion. Therefore, the particle sticks
to the surface, that is, ε(0) = 0. In the limit of large impact
velocity, dissipative bulk deformations consume a large part of
the precollisional kinetic energy, therefore limv→∞ ε(v) = 0.
For moderate impact rate, the rebound of adhesive viscoelastic
spheres resembles the rebound of nonadhesive spheres (com-
pare [12] with [30]) since at the corresponding compression
during impact the surface energy due to the adhesion can
be neglected compared with the elastic energy of the bulk.
Consequently, the function ε(v) has a maximum for moderate
impact velocity.

For nanoparticles, the description by means of the coeffi-
cient of restitution is insufficient due to lack of homogeneity.
Instead, the crystalline structure of the bulk material leads
to a pronounced dependence of the rebound behavior on
the angular orientation of the particles at the instant of the
collision. Nevertheless, if we average the rebound velocity over
the orientation, we obtain a similar behavior of the averaged
coefficient of restitution as for the case of adhesive viscoelastic
spheres, for the same reasons as discussed above.

In the current paper, we present a description of the impact
behavior of nanoparticles beyond the description through an
averaged coefficient of restitution. That is, we investigated the
collision of a fcc crystalline nanoparticle with a crystalline
wall with emphasis on the influence of the angular orientation
of the particle at the instant of impact. We considered the
main observables, that is, the degree of plastic deformation
characterized by the perturbation of the lattice structure upon
impact, the maximal interaction force during the process of
impact, the coefficient of normal restitution, and the sticking
probability. While all of these quantities reveal very large
fluctuations when averaged naïvely, we show that the scatter
is reduced largely when averaging by means of a variable,
�, describing the angular orientation. Thus, orientations
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characterized by similar values of � lead to similar mechanical
characteristics such as plastic deformation, interaction force,
coefficient of restitution, and sticking probability. Therefore,
we conclude that the orientation of the particle prior to impact
may be well characterized by the here introduced calculus �

and its probability measure P�. Consequently, we conclude
that � is a suitable measure to characterize impact properties.
In particular, we come to the following results.

(1) In the meta size range from about 2.5 to 7.5 nm,
there exists no large bulk phase inside of the particle, the
pressing upon impact is quite low, and thus the change of the
shear angles is quite low. This is the reason why we observe
anisotropy effects that could not be observed for particles with
a size above about 10 nm. For even smaller particles than
2.5 nm, the surface forces completely dominate the volume
forces and thus the required shear stress for plane gliding
is not easily obtained. It is this delicate interplay between
surface and volume forces that arises from the particle size that
is responsible for the observed orientation-dependent effects,
not the material itself. So the results should generalize to any
material that is not too soft.

(2) The analysis of numerical molecular dynamics simula-
tion of the impact properties as functions, f (vi, P�) (where f

stands for the above-mentioned characteristics), of the impact
velocity, vi , and the angular orientation characterized by �,
reveals a rich phenomenology of orientation-dependent effects.
By means of � and P� we are able to explain these effects in
full detail.

(3) Describing the system by vi and �, we obtain quantita-
tive results for the parameter space corresponding to certain
characteristic behavior and identify regions of orientations
with clearly distinct behavior for all observables considered.

(4) We identified a yet unknown high-velocity effect at
vi ≈ 300 m/s for 15% of all orientations arising from a so-
phisticated interplay of impact energy and multiplane gliding.
With increasing impact velocity, this effect deteriorates and the
behavior becomes independent of the particle’s orientation.

(5) By comparison of the standard deviations of
Fmax(vi, P�) and en(vi, P�) with Fmax(vi, PSF) and en(vi, PSF)

we argue that the orientation-dependent impact properties are
more significantly characterized by means of P� than PSF.
Therefore, we believe that �, which has a direct and intuitive
relation to the geometric arrangement of the fcc planes prior
to the impact, is better suited as a quantitative measure than
the maximal Schmid factor to characterize the orientation-
dependent impact mechanics.

In the present paper, we consider the orientation depen-
dence of the impact properties for a specific set of material
parameters. An exhaustive study of the dependence on material
properties is not feasible due to enormous computer time
requirements. Nevertheless, we believe that the results and
the corresponding explanations apply for a certain range of
material parameters and, more important, particle size, d.
For very small particles (d � 2.5 nm) the behavior is fully
dominated by surface effects, thus volume effects such as
plane gliding are suppressed. In contrast, for larger particles
(d � 7.5 nm), the deformation of the impacting particle is
restricted to a small volume close to the contact region. In
the bulk of the particle, the required shear stress for plane
gliding is not achieved and, thus, the crystalline structure of the
particle would not lead to a significant orientation dependence.
Therefore, we conclude that the size of the particles and the
corresponding relation of surface and volume forces are more
relevant for the orientation-dependent behavior of the impact
rather than the pure material properties entering the atom-atom
interaction force via Eqs. (1) and (2).
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