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Effective two-dimensional model for granular matter with phase separation
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Granular systems confined in vertically vibrated shallow horizontal boxes (quasi-two-dimensional geometry)
present a liquid-to-solid phase transition when the frequency of the periodic forcing is increased. An effective
model, where grains move and collide in two-dimensions is presented, which reproduces the aforementioned phase
transition. The key element is that besides the two-dimensional degrees of freedom, each grain has an additional
variable ε that accounts for the kinetic energy stored in the vertical motion in the real quasi-two-dimensional
motion. This energy grows monotonically during free flight, mimicking the energy gained by collisions with the
vibrating walls and, at collisions, this energy is instantaneously transferred to the horizontal degrees of freedom.
As a result, the average values of ε and the kinetic temperature are decreasing functions of the local density, giving
rise to an effective pressure that can present van der Waals loops. A kinetic theory approach predicts the conditions
that must satisfy the energy growth function to obtain the phase separation, which are verified with molecular
dynamics simulations. Notably, the effective equation of state and the critical points computed considering the
velocity–time-of-flight correlations differ only slightly from those obtained by simple kinetic theory calculations
that neglect those correlations.
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I. INTRODUCTION

Granular media, placed in vertically vibrated quasi-two-
dimensional (Q2D) shallow boxes are excellent systems to
study the nonequilibrium nature of these materials. Energy
is injected into the system via collisions of the grains with
the top and bottom walls. By this, grains gain energy into the
vertical direction, which is later transferred to the horizontal
degrees of freedom via grain–grain collisions. This mechanism
is also dissipative, by the effects of friction and inelasticity.
Hence, energy follows a well defined path, which violates the
detailed balance, placing the system in strong nonequilibrium
conditions. When the height of the box is smaller than two grain
diameters, it is possible experimentally to follow the motion
of all grains at the individual and collective scale, providing
elements to describe these systems in detail and test different
theoretical approaches of nonequilibrium matter. See Ref. [1]
for a review on the different properties of granular matter in
this geometry.

One of the most remarkable phenomenon of this geometry is
that when the vibration amplitude exceeds a certain threshold, a
nonequilibrium transition takes place and the system separates
between dense and dilute phases, where the later presents
a solidlike crystalline structure [2–4]. This transition has
been characterized in detail, describing its coarsening [5],
crystallization [6], and caging dynamics [7], the criticality of
the transition and its universality [8–10], and the existence of
a surface tension between the phases [11], to mention a few
properties.

Similar to the case of thick granular layers [12,13], this
phase separation is triggered by the negative compressibility
of the effective 2D equation of state, and it was demonstrated
experimentally that the pressure versus density curve reaches
a plateau precisely at the solid–liquid phase coexistence [14].

The origin of the negative compressibility is that in shallow
boxes, the granular temperature is not a slow field but, rather,
it is enslaved to the density. Denser regions dissipate more
energy, resulting in that the temperature is a decreasing func-
tion of density, as was experimentally observed [3]. Hence, the
pressure that in principle depends on density and temperature,
ends up depending only on density. When the temperature
decreases rapidly enough with density, the effective equation
of state can present van der Waals loops, resulting in a phase
separation [12,15–17].

The theoretical analysis of the Q2D geometry presents the
difficulty that grain–grain collisions must be parametrized con-
sidering the geometrical constrains imposed by the condition
that the box height H is smaller than twice the particle diameter
σ . To simplify the analysis, two-dimensional models have been
built where some mechanism is included at collisions to mimic
the energy injection that results from the three-dimensional
model. In Ref. [18], the restitution coefficient is taken to be
random with possible outcomes larger than one, thus injecting
energy. However, the model does not provide steady states
because it lacks an energy scale and the total energy performs a
random walk. In another approach, keeping a fixed restitution
coefficient, collisions are modified to add an extra velocity
to the relative motion [19,20]. These granular models have
the common feature that energy is injected and dissipated at
collisions, both being governed by the collision rate. Hence,
the stationary temperature is density independent, except for
weak effects that result from velocity correlations [19]. As a
result, the effective pressure is a monotonic function of density
and no van der Waals loop can appear. In this manuscript, we
propose a granular model where it emerges naturally that the
injected energy depends on the local density, giving rise to van
der Waals loops and the development of phase separation.

2470-0045/2018/98(2)/022901(8) 022901-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.022901&domain=pdf&date_stamp=2018-08-02
https://doi.org/10.1103/PhysRevE.98.022901


DINO RISSO, RODRIGO SOTO, AND MARCELO GUZMÁN PHYSICAL REVIEW E 98, 022901 (2018)

The manuscript is organized as follows. In Sec. II the gran-
ular model is presented in detail, where the three-dimensional
dynamics is encoded in an additional scalar degree of freedom
that accounts for the energy stored in the vertical direction.
Section III analyzes the model using kinetic theory arguments,
finding the conditions on the model which are necessary to
develop van de Waals loops. The predictions are compared
with molecular dynamics simulations, with excellent agree-
ment. For a more detailed analysis, a formal kinetic theory
approach is performed in Sec. IV, where correlations between
velocities and the additional degree of freedom are included.
The calculations show that these correlations can be safely
discarded to obtain estimates of the equation of state with good
accuracy. Finally, Sec. V gives a discussion of the results.

II. EFFECTIVE TWO-DIMENSIONAL MODEL

The most complex part in the description of Q2D granular
systems is the three-dimensional parametrization of collisions,
where the condition H � σ imposes severe restrictions on the
kinematics (see, for example, Ref. [21]). To build descriptions
that can be worked out in detail, we simplify the kinematics
reducing the motion to two dimensions, where particles are
disks that have equal mass m and diameter σ . To mimic
the three-dimensional motion, in which particles gain vertical
energy by collisions with the plates, we model each particle to
have an additional degree of freedom ε, which represents the
vertical energy and grows monotonically with time between
collisions. At collisions, energy is transferred to the horizontal
degrees of freedom depending on the values of ε of the colliding
particles and, immediately after, the values ε are reset to zero.
In combination with the restitution coefficient α, which is
responsible for energy dissipation, energy can have positive
or negative variations at every collision and it is possible to
reach steady states. The advantage of this model, compared to
the � model in Refs. [19,20], is that the amount of energy that
is injected at collisions depends on the particles flight time,
hence on density. Indeed, at low densities, the mean flight
time is large, allowing particles to reach large values of ε,
which is transferred at collisions, leading to large values of the
horizontal granular temperature T . On the contrary, at large
densities, the transferred energy is small and T is therefore
small. This monotonically decreasing relation between T and
density will lead, as shown below, to a nonmonotonic equation
of state with a van der Waals loop, giving rise to phase
separation. That is, the density is what fixes the timescale and,
therefore, the steady temperature. Due to the collisions with
the vibrating walls, in the Q2D geometry the vertical energy
and momentum are not conserved and rather evolve fast, in the
scale of the oscillation period. Hence, in this model, the role of
the vertical motion is reduced to provide energy to the in-plane
degrees of freedom, with the correct qualitative dependence
on density, and we do not aim to track the vertical energy in
detail.

Note that in the full Q2D, the vertical energy is not
necessarily a monotonic increasing function with time, being
it even possible to present chaotic behavior. In the spirit of
this article, we simplify the dynamics such that during free
flight, the new degree of freedom is modeled to grow with a
law ε = G(t ), depending on a monotonic increasing function

G that will be specified below. This energy is released to the
in-plane degrees of freedom in a collision rule that preserves
linear momentum. The postcollisional velocities and internal
energies are given by

c′
1 = h1(c1, c2, n̂, ε1, ε2) = c1 − Qn̂, ε′

1 = 0,
(1)

c′
2 = h2(c1, c2, n̂, ε1, ε2) = c2 + Qn̂, ε′

2 = 0,

where n̂ is the unit vector pointing from particle 1 to 2, Q > 0
is the transferred linear momentum, and h1/2 are the collision
rules written explicitly on the terms they depend on [19].
No rotation is considered and particles are smooth. There are
several options that generalize the collision rule for inelastic
hard spheres, taking into account the energy injection. Here, we
opt for the following collision rule, which allows us to advance
in the analytical calculations: Q is chosen such that the energy
balance at a collision is

�E ≡ m

2

(
c′2

1 + c′2
2 − c2

1 − c2
2

) = ε1 + ε2 − 1 − α2

4
mc2

12n,

(2)

where c12n = (c1 − c2) · n̂ > 0 is the normal relative velocity
prior to collision. This gives

Q = c12n

2
− 1

2

√
α2c2

12n + 4

m
(ε1 + ε2). (3)

When ε1 = ε2 = 0, the collision rule reduces to that of the
inelastic hard sphere model [24], while if α = 1, it is of an
exothermic collision. Other options for the collision rule, for
example, transferring only a fraction of the vertical energy,
that respect these limits give qualitative results similar to those
presented in the next sections.

In principle, both the collision rule Eq. (1) and the en-
ergy growth model G could be derived averaging the three-
dimensional dynamics under certain assumptions as the form
of the vertical distribution function and the impact parameter
distribution. However, these assumptions are generally uncon-
trolled and the averaging process leads to complex models,
which should be worked out numerically, being therefore
difficult to analyze and to interpret. Here, we choose to model
collisions and G considering the key elements, symmetries,
and conservations.

This granular model can be directly studied numerically
using event driven simulations of hard disks in two dimensions
[19,22], implementing the collision rule Eq. (1). Two kinds
of numerical simulations are performed. First, small systems
composed of N = 1000 hard inelastic particles, with restitu-
tion coefficient α = 0.9, in a square box of dimensions Lx =
Ly = √

N/n, and densities in the range nσ 2 = 0.05 to nσ 2 =
1.1, are considered to study the stationary homogeneous states.
This small system size disallows any possible phase separation
due to the high energy cost in forming an interface and,
therefore, permits to obtain the eventual van der Waals loop
in the equation of state. Second, to study the phase separation,
elongated systems of large aspect ratio are studied σ � Ly �
Lx = 5Ly . In both cases, periodic boundary conditions are
used in the two directions.
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III. QUALITATIVE ANALYSIS

A. General approach

Before performing a detailed analysis using formal kinetic
theory (see Sec. IV), we proceed to analyze qualitatively the
model, making some simple assumptions on the distribution
function, which will be justified a posteriori. The steady
state is characterized by a vanishing rate of change of the
two-dimensional kinetic energy Eq. (2). The average must be
done over collisions, meaning that it should be evaluated over
precollisional states and with a collision rate proportional to
c12n. As usual in the framework of the Boltzmann or Enskog
kinetic theories, it is possible to assume that the colliding
particles have no velocity correlations and spatial correlations
are taken into account via the pair distribution function at
contact χ [23,24]. Here, we will assume that χ conserves
its equilibrium form, valid up to moderate densities, χ (n) =
(1 − 7πnσ 2/64)/(1 − πnσ 2/4)2 [25,26]. For the average, we
need therefore the stationary distribution function f0(c, ε). As
ε grows monotonically, instead of ε, we can use the time-of-
flight since the last collision tf. Hence, the object under study is
f0(c, tf ). For small inelasticities, the equilibrium distribution
can be used as a good approximation. However, even at
equilibrium, natural correlations appear between the speed
and tf. Indeed, faster particles collide more frequently and,
therefore, their tf have smaller values than average. It is possible
to obtain an explicit expression for f0 at equilibrium, but it is
too involved to be of practical use. The marginal distributions,
for velocities and times of flight, are, however, simple: the
Maxwellian and exponential distributions, respectively. Hence,
for the purpose of computing the collisional averages, we
approximate

f0(c, tf ) = n

πc2
0tf0

e−c2/c2
0 e−tf/tf0 , (4)

where tf0 = [nχ (n)σ
√

2πc0]−1 is the mean flight time. In
Sec. IV we will improve the approximation Eq. (4) including
c-tf correlations. Note that if we had worked in the f (c, ε)
representation, an additional Jacobian factor would have been
necessary in Eq. (4). Within this approximation it is direct to
obtain

〈�E〉col = 2〈ε〉 − (1 − α2)T , (5)

where T = mc2
0/2 is the granular temperature, defined with

kB = 1 as usual, and

〈ε〉 =
∫ ∞

0
dtf G(tf )e

−tf/tf0/tf0. (6)

The steady state is characterized by 〈�E〉col = 0, which gives
implicitly the stationary temperature in terms of the density. To
solve it, we need to specify the internal energy growth model,
G(t ). Once solved, the stationary temperature T (n) can be
inserted into the equation of state [24,27] p = nT [1 + (1 +
α)nχ (n)πσ 2/4], to finally get the effective pressure p̂, which
is a function of density. For α ≈ 1, this expression simplifies
to

p̂(n) = nT (n)[1 + nχ (n)πσ 2/2]. (7)

The objective of this study is to show whether appropriate
choices for the energy growth function G can generate van der
Waals loops in the effective equation of state.

B. Energy growth models

The first model to be considered (M1) is just a linear growth
of the internal energy, G(t ) = � t , for which we describe in
detail the procedure used to obtain the effective equation of
state. Equation (6) gives 〈ε〉 = � tf0. Substituting this result in
Eq. (5) and imposing 〈�E〉col = 0 allows us to solve for the
stationary temperature,

Tst = Es

[
1

1 − α2

1√
π nσ 2χ (n)

]2/3

, (8)

which is in effect a decreasing function of density. Here, Es =
mσ 2[�/(mσ 2)]2/3 is an energy scale. Note that Tst diverges
in the elastic limit, as it is indeed the case for an elastic
particle bouncing between two vibrating walls. Substituting Tst

in Eq. (7), the effective pressure p̂(n) for this model becomes
monotonically increasing with density and no phase transition
takes place. The reason for this is the mild growth rate: as
discussed in Ref. [15], temperature must decrease sufficiently
rapid with density to generate a van der Waals loop.

Hence, the next model to consider (M2) is a superlinear in-
crease G(t ) = � tγ , with γ > 1. Now results in 〈ε〉 = � γ ! t

γ

f0,
allowing us to obtain the stationary temperature,

Tst = Es

{
1

1 − α2

2γ !

[2
√

πnσ 2χ (n)]γ

} 2
2+γ

, (9)

where now the energy scale is Es = mσ 2[�/(mσ 2)]2/(2+γ ).
For small densities the temperature diverges as Tst ∼
n−2γ /(2+γ ), and hence the effective pressure behaves like

p̂ ∼ n
2−γ

2+γ , (10)

which decreases with density for γ > 2. When all the density
contributions are considered in Eqs. (7) and (9), the pressure is
monotonically increasing in the full range of densities for γ �
2. However, for γ > 2, it changes from monotonically decreas-
ing to monotonically increasing at an intermediate density that
depends on γ and hence presents negative compressibilities for
densities smaller than this threshold (see Fig. 1). It is therefore
a good candidate to model the phase transition. However, for
γ � 2, the pressure does not vanish in the dilute limit, contrary
to what is observed experimentally [14,28]. The origin of this
anomalous behavior is that for low densities, the times of flight
and, consequently, the average values of ε get large values,
increasing therefore the stationary temperature, which diverges
in the dilute limit. When computed, the product p = nT does
not vanish.

To overcome this difficulty, we need to introduce a sat-
uration on ε, a feature that is well justified experimentally
when we consider the mechanisms by which the vertical energy
grows in Q2D systems by collisions with the vibrating plates.
Taking into account the superlinear growth, we model G(t ) =
ε∞(1 − e−t/τ )γ , (M3). Based on the Q2D geometry in absence
of gravity, the characteristic timescales as τ ∼ (H − σ )/(Aω)
and the maximum energy as ε∞ ∼ m(Aω)2(1 + α2)/(1 − α2),
where A and ω are the amplitude and angular frequency of
the vibration [29]. With this model the stationary temperature
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FIG. 1. Dimensionless pressure p̂/p0 against density in model
M2 for a set of values of γ around γ = 2. The pressure scale is
p0 = Es/σ

2{2γ !/[(1 − α2)2
√

π]γ }2/(2+γ ).

saturates at a value Tmax = 2ε∞/(1 − α2) for low densities and
the pressure effectively vanishes at zero density. Computing 〈ε〉
and defining x = τ/tf0, Eq. (5) can be written as

�(1 + γ )�(x)

�(1 + γ + x)x
= μ2, (11)

where � is the gamma function. Equation (11) can be solved
numerically for given values of μ = ν/[nσ 2χ (n)], where ν is
a dimensionless relaxation rate,

ν =
√

1 − α2

8π

√
mσ 2/ε∞

τ
. (12)

In terms of these variables, the stationary temperature is Tst =
2ε∞μ2x2/(1 − α2), allowing us to obtain the pressure using
Eq. (7). For γ � 2 the pressure is monotonically increasing
with density, independent of the value of ν. Whereas, for
γ > 2 a set of critical points exist [nc(γ ), νc(γ )] (see Fig. 2),
for which dp̂/dn = 0 and d2p̂/dn2 = 0. When ν < νc(γ ), a
van der Waals loop shows up around nc(γ ). Note that when
γ approaches 2, both the critical density and relaxation rate
vanish. A second branch of critical points appears at higher
densities, which depends on the specific details of the model
for densities close to packing. It is necessary for topological
reasons to separate the regions where pressure is monotonically
increasing [ν < νc(γ )] to where it presents a van der Waals
loop [ν > νc(γ )].

Therefore, the system is predicted to present a phase
separation when prepared at the appropriate conditions. The
simulations in an elongated box exhibit, as predicted, a phase
separation and the dense phase orders in a crystalline clus-
ter with triangular symmetry. However, the density of this
phase does not saturate and, finally, the simulation presents
inelastic collapse [30]. This feature, which is not observed
in experiments, where the dense phase is stable and presents
fluctuations [3,14], is due to a singularity of the model M3.
Indeed, when the system approaches the close packing density
nCP = 2/(

√
3σ 2), the flight times go to zero and therefore the

stationary temperature vanishes rapidly enough to compensate
the density divergence in χ . Combined with the density diver-
gent factor χ (n) in Eq. (7), the pressure goes to a finite value at
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FIG. 2. Critical values nc (top) and νc (bottom) for models M3
(circles) and M4 (triangles) with α = 0.9. The solid symbols indicate
the maximum γ where a critical point exists, with values γ ≈ 2.98,
nc ≈ 0.35/σ 2, and νc ≈ 5.21 × 10−3 for model M3 and γc ≈ 3.20,
nc ≈ 0.44/σ 2, and νc ≈ 7.75 × 10−3 for model M4 with ε0 = 10−4.
The light lines are visual guide lines. In small symbols with dashed
lines, the high density branch of critical points.

close packing. That is, there is no pressure divergence at close
packing and the van der Waals loop is not closed. Therefore, it
is not possible to determine the steady state by performing an
analog to the Maxwell construction with finite densities.

Experimentally, the inelastic collapse does not take place
because particles and plates are not perfect and there is always
a remaining energy after collisions. Although small, this effect
is enough to create a repulsive pressure that avoids the collapse.
In the final model (M4), we can simulate this property by
considering that there is always a small energy ε0 � ε∞, such
that the energy balance equation changes to

�E ≡ m

2

(
c′2

1 + c′2
2 − c2

1 − c2
2

)
= ε1 + ε2 + 2ε0 − 1 − α2

4
mc2

12n. (13)

Now the transferred momentum Q is given by Eq. (3) substi-
tuting ε1/2 by ε1/2 + ε0. Then, even for a very rapid sequence of
collisions, there is always a finite energy that is transferred to
the horizontal degrees of freedom leading to a finite stationary
temperature. The pressure is determined as in model M3,
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FIG. 3. Pressure versus density when using model M4 with α =
0.9, ν = 0.00267, ε0 = 10−4, and a set of γ values above and below
the critical γc ≈ 2.8. From top to bottom, γ = 2.5, 2.6, . . . , 3.5. The
scaling pressure is p0 = 2ε∞/(1 − α2). The solid symbols are the
simulational results using small boxes to keep the system homoge-
neous and prevent the phase separation. The lines are the theoretical
prediction using the Luding expression for the pair distribution
function χ [27], which remains up to close packing for equilibrium
hard disks. The thick line corresponds to γc.

adding the term (ε0/ε∞)x−2 to the left-hand side of Eq. (11).
For ε0/ε∞ = 10−4 a set of critical points are obtained for 2 <

γ < 3.196, shown in Fig. 2. Other values of ε0 only change the
critical values but the whole picture remains qualitatively valid.
Similar to model M3, a second branch of critical points appears.

Figure 3 shows the pressure computed in simulations of
a small box for different values of γ and a fixed value of ν,
which are compared with the predicted values for the pressure,
showing a very good agreement, even at high densities when
a refined expression χ is used [27]. Notably, van der Waals
loops appear for γ > γc ≈ 2.8 consistently in simulations and
theory.

To verify that indeed under the adequate conditions a phase
separation takes place, molecular dynamics simulations are
performed on large boxes over long times. Figure 4 shows
stationary configurations for α = 0.9, ν = 0.00267, and γ =
3.5, which is deep in the developed region where the van
der Waals loop appears (see Fig. 2). In the bottom panel,
the pressure computed in the simulations is presented as a
function of the global density n. Homogeneous configurations
are obtained for nσ 2 � 0.05 and for nσ 2 � 0.6, where the
pressure is monotonically increasing. The difference in the
particle distributions between the two homogenous cases is due
to the high contrast in compressibilities. In the range 0.05 <

σ 2 < 0.6, the system displays phase separation. However,
contrary to equilibrium, no plateau appears and the pressure
does not appear to follow a Maxwell construction. Similar
simulations are performed for other values of ν, making
it possible to construct a phase diagram where the system
presents phase separation in the n-ν space, shown in Fig. 5.
To test that the cases with no phase separation are not the
result of long metastable states, additional simulations were
ran with initially seeded clusters. In all of these cases, the

FIG. 4. (a) Instantaneous configurations of simulations of the
model M4 in the steady state with N = 5000, α = 0.9, ν = 0.00267,
γ = 3.5, and ε0 = 10−4. From top to bottom the global densities are
nσ 2 = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. Note that for different
densities the system sizes are different. In the density range 0.1 �
nσ 2 � 0.5 the system separates in two phases. (b) Pressure obtained in
the simulations as a function of the global density, using small (croces)
and large (circles) boxes. In solid circles, the selected densities for
which the configurations are displayed in top panel. The scaling
pressure is p0 = 2ε∞/(1 − α2).

clusters evaporated to finally reach homogeneous states. With
the theoretical expression for the pressure it is possible to
compute the spinodal curve that delimits the region with nega-
tive compressibility and the coexistence curve, obtained using
the Maxwell construction, which are presented in the same fig-
ure. Consistent with the previous result, phase separation takes
place only when the compressibility is negative, for which there
is a very good agreement between theory and simulations, and
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FIG. 5. Phase diagram of the model M4 with γ = 3.0 and ε0 =
10−4, in the n-ν space. Symbols are the results of simulations made
with N = 5000 and α = 0.9, with open circles representing cases
where the system remains homogeneous and solid circles cases
when phase separation takes place. The solid line is the theoretical
prediction of the coexistence curve computed using the Maxwell
construction, while the dashed line is the theoretical prediction of
the spinodal curve.

no equivalent results to a Maxwell construction is observed.
Note that in far from equilibrium systems, there is no reason
for the Maxwell construction be obeyed except very close to
the critical point [12], but in this region the coexistence and
spinodal curves merge and the precision of the simulations do
not allow to distinguish them. Finally, close to the critical point
additional correlations can emerge, invalidating the prediction
of the model.

IV. KINETIC THEORY

A. Kinetic equation

In Sec. III it was shown that, discarding the velocity–
time-of-flight correlation, a phase separation takes place when
the internal energy grows according to model M4. However,
discarding correlations is an uncontrolled approximation. To
quantify the effect of these correlations, we proceed to describe
model M4 with the tools of kinetic theory. Assuming, as
usual, that there are no precollisional velocity correlations, it is
possible to write an Enskog–Boltzmann-like equation for the
distribution function f (r, c1, tf1),

∂f

∂t
+ c1 · ∂f

∂r
+ ∂

∂tf1
[θ (tf1)G′(tf1)f ] = J [f ], (14)

where J = J+ − J− is the collisional term, giving the rate
of change of the distribution function by collisions, which is
written adopting the form used in Ref. [19],

J+ ≡ σχ

∫
f (1∗)f (2∗)|c∗

12 · n̂|θ (c∗
12 · n̂)δ(tf1)δ(tf2)

× δ(c1 − h1(1∗, 2∗,−n̂))δ(c2 − h2(1∗, 2∗,−n̂))

× dn̂ d2 d1∗d2∗, (15)

J− ≡ σχ

∫
f (1)f (2) |c12 · n̂|θ (c12 · n̂)dn̂ d2, (16)

where i ≡ (ci , tfi), di ≡ d2ci dtfi, and χ accounts for the
configurational correlations at finite densities. The first two
terms of the left-hand side of Eq. (14) are the usual streaming
terms, while the third term accounts for the steady growth
of tf, where the Heaviside step function θ indicates that tf is
always positive. J+ is the Boltzmann gain term, where the
Dirac δ’s indicate that after collisions, particles have tf reset
to zero and the velocities are those that result when applying
the collision rule Eq. (1). J− is the usual loss term where the
integrations should be done over velocities and times of flight
of the partner particle. For the sake of simplicity we have
written the collision terms of a homogeneous system, but the
extension to an inhomogeneous case is straightforward. For
this equation to properly conserve mass, one must have that
θ ′(x) = δ(x) consistently. We have chosen the convention that
θ (0) = 0 and, hence,

∫ ∞
0 δ(x)dx = 1. Despite the apparent

complexity of J , the collision integrals, used below to compute
the rate of change of average quantities, are simple and direct.
For any function ψ (c, tf ) [20,31],∫

ψ (c1, tf1)J [f ] d1

= 1

2
σχ

∫
f (1)f (2) |c12 · n̂|θ (c12 · n̂)

× [ψ (1′) + ψ (2′) − ψ (1) − ψ (2)]dn̂ d1 d2, (17)

with 1′ and 2′ the postcollisional states of the particles given
by Eq. (1).

B. Stationary distribution and equation of state
in the dilute regime

Similar to the case of undriven granular matter, it is not
possible to obtain an exact solution of the Boltzmann–Enskog
equation, even in the steady state for α < 1 [24]. We recall
that the distribution function will be used to compute the
temperature and pressure. Hence, we look for expressions in
the thermal sector, i.e., when c ∼ √

T/m, in which case it
is possible to take into account the c-tf correlations with a
polynomial approximation,

f0(c, tf ) = n

πc2
0tf0

e−c2/c2
0 e−tf/tf0

[
1 + 4a

(
c2 − c2

0

)
(tf − tf0 )

]
,

(18)

where a quantifies the strength of the correlations and the factor
4 has been introduced for later convenience.

In equilibrium (α = 1 and G = 0), the temperature, hence
c0, is set by the initial condition and tf0 is the corresponding
mean flight time. The correlation intensity a is computed
as in the Grad moment method, by imposing that in the
kinetic equation the average of c2tf is stationary. Multiplying
Eq. (14) by c2tf, integrating over velocities and time-of-flight,
and using Eq. (17) gives aeq = −1/35. This negative value
indicates, as anticipated, that particles with larger speeds tend
to have smaller times-of-flight because of their larger collision
frequencies. Note, however, that the value is small and, as
will be shown below, weak modifications to the pressure are
obtained by including these correlations.

We now proceed to consider the inelastic case (α < 1) in
the dilute regime, considering first the internal energy growth
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law of model M3. The parameters of the distribution function
Eq. (18) are obtained by imposing now that the averages of
c2, tf, and c2tf are stationary, resulting, respectively, in the
following equations:

�(x)�(1 + γ )

�(1 + γ + x)

{
1 − a

x
− a[ϒ(x) − ϒ(1 + γ + x)]

}
= μ2,

(19)

c0σntf0(1 + a)
√

2π = 1, (20)

c0σntf0(5 + 39a)
√

2π = 4, (21)

where ϒ is the digamma function.
The last two equations, which remarkably do not depend

on the specific choice of the energy growth model, give a =
aeq = −1/35 and c0 = 1/[σntf0(1 + a)

√
2π ]. Using the value

of a, the first equation gives, implicitly, x as function only of
μ and the exponent γ . The pressure, under the assumption of
low densities is simply that of an ideal gas p̂ = nmc2

0/2 =
p0x

2μ/(1 + a)2, where p0 =
√

ε∞/[2π (1 − α2)mσ 2]m/τ .
The rescaled pressure p̂/p0 is only a function of μ and γ . For
values of γ lower than 2.3 a monotonic increasing behavior is
obtained, while for γ > 2.3, there are values of μ in which the
compressibility is negative, revealing a phase separation. It is
worth pointing out that, as expected for model M3, the pressure
vanishes as the density goes to zero and, also, it does not
diverge at close packing, which it is also not possible to capture
in the framework of the Boltzmann equation. Notably, the
c-tf cross correlations, which can be suppressed by imposing
a = 0, have weak effects on the behavior of the pressure. This
result justifies, a posteriori, the factorization approximation
performed in Sec. III.

C. Dense regime

For dense systems, we have already discussed in Sec. III
that model M3 does not show the correct behavior near close
packing and M4 should be used instead. At the level of the
kinetic equation, the factor χ should be considered on the
balance equations for c2, tf and c2tf. Eqs. (20) and (21) only
change by the addition of a global prefactor χ on the left-hand
side, resulting in the same value for a, while c0 is simply
divided by χ . The balance equation for c2, Eq. (19), which does
depend on the energy growth model, is modified by adding the
term (ε0/ε∞)x−2 on the left-hand side. The structure of the
equation of state is more complex than in the dilute regime,
for the dimensionless pressure p̃ ≡ p̂τσ/

√
ε∞m depends now

on four dimensionless parameters: μ, ε0/ε∞, ν, and γ . The
effect of ε0/ε∞ �= 0 is simply to produce a divergence of the
pressure at close packing and we can fix it to an arbitrarily
small value. As in Sec. III, van der Waals loops appear for
0 < ν < νc(γ ), while for higher values of ν the effective
pressure is monotonic. Figure 6 shows p̃ for γ = 3 (which
shows negative compressibility in the low density regime) for
increasing values of ν, comparing the results with and without
speed–time-of-flight correlations. Notably, the effect on the
pressure of the cross correlations is weak as well as on the
critical values νc(γ ) and nc(γ ) (not shown). The coexistence
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FIG. 6. Dimensionless pressure p̃ of model M4 as a function of
the dimensionless density nσ 2 for γ = 3, ε0/ε∞ = 10−4, and different
values of ν, from top to bottom 0.02, 0.03, 0.04, 0.05, and 0.06. Solid
lines give the full result of kinetic theory and dashed lines are obtained
neglecting the speed–time-of-flight correlations (a set to 0).

and spinodal curves computed considering the correlations are
almost identical to those presented in Fig. 5.

V. DISCUSSION

It has been shown that the phase transition observed in
vertically vibrated quasi-two-dimensional granular fluids can
be described by a simple effective two-dimensional model.
The major advantage is that it is not necessary to work out
in detail the three dimensional collision in the constrained
geometry as the model is purely two-dimensional. The vertical
motion is included by adding an additional scalar degree of
freedom that gives the kinetic energy stored in this direction,
which is released to the horizontal degrees of freedom upon
collisions. This dimensional reduction allows to perform de-
tailed analytical calculations and build kinetic theories which
can be used to compute the pressure and other quantities.
There are several conditions the vertical kinetic energy growth
function must obey to obtain an equation of state that presents
a van der Waals loop and, hence, a phase transition can
appear. First, the energy growth must be superlinear so that
the stationary temperature decreases rapidly when increasing
the density, resulting in an effective pressure that can show
negative compressibilities. Second, the vertical energy must
saturate at long times to get finite temperatures and vanishing
pressure for vanishing density. Finally, at collisions a small
residual energy must be kept, mimicking the microscopic
asperities of the granular system, which results in a finite
granular temperature and a divergent pressure at close packing.
All these conditions, except for the superlinear growth, are well
justified from experimental conditions. It would be interesting
to investigate in the future if the average energy growth in
quasi-two-dimensional systems follows this or similar laws
as well as to relate the model parameters with the grains’
inelasticities [32] and with the amplitude and frequency of
the vibration.
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In the full quasi-two-dimensional case, depending on vari-
ous forcing parameters, the dense phase can present different
crystalline phases by forming one or two interlaced layers
[4]. For the present model, the dense phase always shows
a triangular crystalline order. More phases are not possible
to obtain for hard two-dimensional particles, but it could be
possible to include additional degrees of freedom to model
these phases and the defects that can show up.

The molecular dynamics simulations of the model present
the phase separation. This takes place only when the pressure
presents negative compressibility, that is inside the spinodal
region, but not in the coexistence region that can be built using

the Maxwell construction. Although for far from equilibrium
systems the Maxwell construction is not mandatory because
there is no thermodynamic minimization principle, it remains
to be understood why in this system the only criterion is the
compressibility.
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