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Pressure-induced phase transitions in liquid crystals: A molecular field approach
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A rigorous microscopic treatment of a nematic fluid system based on a pairwise interaction potential is
immensely complex. For studying such systems molecular field theories are often the standard method of
choice. In this paper we have chosen a simple effective potential U = u4

v4 − u2
v2 − Au2

v2 〈P2〉P2(cos ϑ ) to study
an isothermal-isobaric ensemble describing a liquid crystalline system. Using this we have studied in particular
the pressure dependence of liquid crystalline phase transitions.
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I. INTRODUCTION

Studies of phase transitions in liquid crystalline materials
are of extreme importance because of their various important
applications. For more than a century different experiments
and corresponding theoretical studies have established the
existence and behavior of different liquid crystalline phases.
These studies involve the measurement of variation of different
liquid crystalline properties such as orientational order param-
eter, dielectric constant, specific heat, isothermal compress-
ibility, isobaric expansivity, etc. with the temperature [1–3].
Most of these thermodynamic measurements have been done
on nematics at constant pressure, so that as temperature is
varied, the molar volume also varies as a result of thermal
expansion. The temperature dependence of orientational order
in a nematic liquid crystal at constant molar volume was
difficult to measure. This was first carried out by McColl
and Shih [4]. They published their results of the temperature
and volume variation of the orientational order parameter in
para-azoxyanisole (PAA).

One of the first experiments investigating the effect of
pressure on mesophase transitions were conducted by Hulett
in 1899 [5] just about a decade after the discovery of liquid
crystals. Most of the work involving pressure dependence had
been done during 1970s [4,6–9]. Then in 1975, Shashidhar and
Chandrashekhar [6] in their experimental work presented the
pressure variation of liquid crystalline materials in detail and
generated the phase diagrams, which clearly showed the liquid
crystalline phases and the appearance of tricritical points.
Horn [2,3], on the other hand, determined the dependence of
orientational order parameter with temperature by measuring
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refractive index. Later Horn along with Faber explained these
experimental data using a mean-field approach [7]. Wallis and
Roy [8] again by the proton NMR spectrum study, studied
the line width of proton resonance as function of temperature
and pressure for the nematogens 5, 6, 7, and 8 CB and also
for some other nematogens including PAA. They showed
that the value of the orientational order parameter at the
nematic-isotropic transition decreases with increasing pressure
for 5, 7, and 8 CB but remained constant for 6 CB. The
pressure and temperature dependence of the orientational order
parameter for different sites in a mesogen were reported by
Emsley et al. [9]. They showed that the quadrupolar splitting
at the nematic isotropic transition temperatures is independent
of pressure for different sites of the alkyl chain. In 1980,
Luckhurst and Romano [10] considered an anisotropic part
of the intermolecular potential along with the isotropic part
and carried out computer simulation studies to find the phase
diagram for some liquid crystals, but they had not considered
any variation in pressure. In 1999, Hess and Su [11] used a
generalization of the Lennard-Jones potential to study both
the pressure and temperature variation of their liquid crystal
model with density and observed a pseudotricritical point.

The stability of the nematic liquid crystal phase arises
from the existence of strong interactions between pairs of
the constituent molecules. This interaction between molecules
leads to a long-range orientational order in the nematic phase.
In most realistic situations, a rigorous microscopic treatment of
a nematic fluid system based on a pairwise interaction potential
becomes immensely complex. For systems of comparable
complexity, mean-field theories are often the standard method
of choice. The celebrated Maier-Saupe molecular field theory
[12] (also referred to as mean-field theory; for a clarification
of the terminology being used here see Ref. [13]) of nematic
liquid crystals correctly predicts the existence of a first-order
phase transition between the nematic and isotropic liquid
states. However, there has been no significant molecular field
study of the pressure dependence of liquid crystalline phase
transitions to date. In the present paper we have presented a
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molecular field calculation based on a very simple model for
an isothermal-isobaric (NPT) liquid crystalline system, with
the specific aim of exploring this facet of the topic. With the
advent of modern-day computing the problem of interacting
systems can often be tackled by using various computational
methods. We feel, however, that models such as ours, which
rely on simple physical principles, have their own role to play
especially in elucidating the physical features of a system.

II. OUR MODEL

Hard rod models, which mimic a nematic liquid crystalline
system are very sensitive to variations of density. This variation
can be studied best using the isothermal-isobaric ensemble,
denoted as the NPT ensemble. Any realistic theoretical model
of nematics must include both repulsive and attractive in-
teractions [14] as both the anisotropic attractions and steric
repulsions have equally important effects in nematics. Keeping
this in mind, in this paper we have modified the Maier-Saupe
potential energy [15] given by

UMS = − A

v2
〈P2〉P2(cos ϑ ) (1)

to include an isotropic volume-dependent term and have
studied a liquid crystalline material using a molecular field
approach. The effective single-particle potential we choose for
this purpose is given by

U = u4

v4
− u2

v2
− Au2

v2
〈P2〉P2(cos ϑ ), (2)

where u4, u2, and A are constants and v is the volume of
the fluid per molecule. Here the volume dependence of the
isotropic term has been chosen to mimic the scaling behavior
of the familiar Lennard-Jones potential. The attractive term
− u2

v2 serves to ensure that the molecules do not move too far
apart to form a liquid, while the repulsive term u4

v4 ensures
that the molecules do not collapse to zero volume under the
attraction. A is a phenomenological constant that expresses the
relative strength of the anisotropic interaction in comparison to
the attractive part of the isotropic term. Note that this is similar
to the kind of approach described in Ref. [15] that was used
by Maier and Saupe to arrive at the molecular field potential
[Eq. (1)]. It should be noted that this is a very simplified model
of a nematic liquid crystal, which ignores the departure of
real molecules from uniaxiality and does not take into account
the fact that real molecules are flexible. In spite of these
over simplifications the final results match predicted values
reasonably well, at least qualitatively.

The need for the isotropic part of the potential is not difficult
to see. In the canonical ensemble, the system is at a fixed
volume and although the strength of the anisotropic potential
as described by [Eq. (1)] has a volume dependence, the strength
A
v2 is effectively a constant. However, in the isothermal-isobaric
ensemble we allow the volume of the system to fluctuate. In the
absence of a term such as u4

v4 that penalizes very small volumes
(and hence very small intermolecular distances) the system
would have tended to zero volume in equilibrium, a result that
is obviously absurd. Again, it may seem that the attractive
term − u2

v2 is unnecessary because of a similar behavior of the
anisotropic term. However, note that the anisotropic term is not

uniformly attractive; it may also be repulsive depending on the
sign of P2(cos θ ) and this term alone leads to equilibrium mean
molecular separations that are too large for the formation of
liquid phases.

Using this potential the canonical partition function can be
written as

ZNV T = V N

N !�3N
(Z1 exp(β〈U 〉)N exp

[
−Nβ

(
u4

v4
−u2

v2

)]
,

(3)

where

Z1 = exp

(
−β

2

(
u4

v4
− u2

v2

)) ∫ 1

0
exp

×
(

βAu2

v2
〈P2〉P2(cos ϑ )d(cos ϑ )

)
(4)

is the single-molecule partition function, β = 1/kBT and V is
the volume of the system.

Hence the partition function for an isothermal-isobaric
ensemble is

ZNPT =
∫ ∞

0

1

V0
exp(−βpV )ZNV T dV, (5)

which becomes

ZNPT = NN+1

N !V0�3N

∫ ∞

0
exp [Nf (v)]dv, (6)

where

f (v) = −βpv + ln v + ln Z1 + β

2
〈U 〉 − β

2

(
u4

v4
− u2

v2

)
. (7)

f (v) depends on v and 〈P2〉 and on the constant parameters
p, β, u2, u4, and A. Here we are singling out its volume
dependence since we are going to use the saddle-point method
where the integral is only over volume. Since N � 1 we can
use the saddle-point approximation (see Appendix) to write

ZNPT = NN+1

N !V0�3N
exp[Nf (v∗)], (8)

where v∗ is the value of v that maximizes f (v).
To maximize f (v) we differentiate f (v) with respect to v

and equate it to zero. From ∂f

∂v
= 0 we obtain the equation

p − 1

βv∗
− 2u4

v5∗
+ u2 + Au2〈P2〉2

v3∗
= 0. (9)

Using this f (v∗) we can construct the Gibb’s free energy of
the system given by

Gβ = −Nf (v∗) − 3N

2
ln β

up to a constant. Hence the Gibb’s free energy of the system
in units of kBT is given by

Gβ = N

(
pβv∗ − ln v∗ + β

2

u4

v4∗
− βu2

v2∗

− ln Z1(λ) + Au2β〈P2〉2

2v2∗

)
− 3N

2
ln β, (10)

where λ = Au2β

v2 〈P2〉.
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Now by minimizing Eq. (10) with respect to 〈P2〉 we obtain

〈P2〉 = Z′
1

Z1
. (11)

Solving Eqs. (9) and (11) simultaneously we obtain the value of
〈P2〉 and ν∗. Again solving Eq. (9) for 〈P2〉 = 0 yields the value
of ν∗ for the isotropic phase. Out of these two possibilities the
equilibrium value of 〈P2〉 and ν∗ for a particular set of constant
parameters p, β, u2, u4, and A is decided by checking which
of these yield the lower value of G. This value of v∗ and 〈P2〉
globally minimizes the function G.

Now we obtain the critical constants Pc, βc, and νc for the
isotropic-vapor transition from Eq. (9) (setting 〈P2〉 = 0) in
terms of u2 and u4.

ν2
c

βc

= 3

2
u2 (12)

ν2
c = 20u4

3u2
(13)

1

βc

= 9u2
2

40u4
(14)

Pcβcνc = 8

15
. (15)

All the results that we will discuss in this paper have been
obtained in terms of reduced parameters π = p

pc
, ω = ν

νc
, ϑ =

T
Tc

. To compare with experimental data for any particular liquid
crystal we will need the critical constants of that substance. As
an example we cite that using the value of the critical con-
stants for 8OCB (Octyl-oxycyanobiphenyl), pc = 1.43 MPa
and TC = 1091 K [16] we have calculated the values of the
constants u2 = 19.03×10−50 and u4 = 8.97×10−103 in S.I.
units, which are of reasonable order in the molar context.

From Eq. (9) we obtain the reduced equation of state

π = 15ϑ

8ω
+ 3

8ω5
− 5

4ω3
(1 + A〈P2〉2). (16)

The corresponding free energy in terms of the reduced set of
parameters π , ω, and ϑ is

GR = 8πω

15ϑ
− log ω + 1

20ϑω4
− 1

3ϑω2

− log Z1

(
2A〈P2〉
3ϑω2

)
+ A〈P2〉2

3ϑω2
+ 3

2
log ϑ. (17)
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FIG. 1. Phase diagram showing the nematic, isotropic liquid, and
gaseous phases.
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FIG. 2. Variation of orientational order parameter with
temperature.

In this paper we have used Eqs. (16) and (17) and obtained
the values of 〈P2〉 and ω. Again solving Eq. (16) for 〈P2〉 = 0
yields the value of ω for the isotropic phase. Out of these two
values the equilibrium value of 〈P2〉 and ω is decided on the
basis of which of these two values yields a lower GR .

III. RESULTS AND DISCUSSIONS

Our results have been obtained in terms of reduced pressure,
volume, and temperature with A as a free parameter. For the
sake of definiteness, while converting to standard units we
have chosen pc = 1.43 MPa and Tc = 1091 K, which are the
critical pressure and critical temperature values for 8OCB, as
predicted by the Joback method [16]. We have taken the value
of A = 0.675, which helped us fit these predicted values for
8OCB quite well.

Figure 1 shows the phase diagram obtained by us indicating
the nematic, isotropic liquid, and the gaseous phases. We can
see that the isotropic liquid-gas transition ends in a critical
point. In the phase diagram obtained by us we can see that
even at low pressures the system exhibits a nematic phase
with the nematic-isotropic phase transition occurring at around
353 K. dTNI

dP
has been calculated from this phase diagram to be

221 K/MPa. Shashidhar and Chandrasekhar in 1975 studied
the effect of pressure on phase transitions [6]. On the basis of
their experiments they found pressure-induced mesomorphism
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FIG. 3. Variation of orientational order parameter with pressure.
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in methoxy and ethoxybenzoic acids. At atmospheric pressures
the compound showed just a single transition, the solid-liquid
melting transition. As pressure was raised both compounds
showed mesophases. However, propoxybenzoic acid and the
higher homologues show at least one liquid crystalline phase
at atmospheric pressure [17].

Figure 2 shows the variation of orientational order parame-
ter with temperature for different values of pressure. Here we
observe a first-order nematic-isotropic phase transition indi-
cated by a finite discontinuity in the value of the orientational
order parameter. The orientational order parameter jumps to
zero (for all constant values of pressure) at the transition
temperature TNI (note that the Y axis of the graph has been
truncated to clearly display the different curves). The transition
is seen to occur at higher and higher values of temperature with
the increase in pressure.

Variation of orientational order parameter with pressure
at different values of temperature also shows a first-order
nematic-isotropic phase transition as is shown in Fig. 3. The
first-order transition is indicated by a finite discontinuity in
the value of the orientational order parameter. The transition is
seen to occur at higher and higher values of pressure with the
increase in temperature. A marginal decrease in the value of
the discontinuity with the increase in the value of temperature
is observed here.
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Figure 4 shows the variation of orientational order parame-
ter with temperature at different constant values of volume. The
plots indicate that the value of the orientational order parameter
at the transition point is nearly independent of pressure as was
observed by Horn and Faber [7].

Figure 5 indicates that the thermal range of the nematic
phase increases to a huge extent at constant volume as com-
pared to constant pressure. This is consistent with the findings
of McColl and Shih who in 1972 [4] had reported experimental
studies on PAA, which showed that the thermal range of the
nematic phase is increased from 18 K at constant pressure to
47.5 K at constant volume by more than a factor of 2.5.

Figure 6 shows the variation of volume of the system with
pressure at different constant values of temperature. The figure
shows the isotropic liquid-gas phase transition. It is evident
from the plots that the discontinuity in volume gradually
decreases with the increase in temperature and at T = 1091 K
the discontinuity vanishes indicating the existence of a critical
point.

Figure 7 shows the variation of volume of the system with
pressure at different constant values of temperature. The figure
shows the nematic-isotropic liquid phase transition. From the
plots we can see that as temperature increases the discontinuity
in volume decreases but even at a very high temperature
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FIG. 7. Variation of volume with pressure for different constant
values of temperature showing the first-order nematic-isotropic liquid
phase transition.
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FIG. 8. Variation of isothermal compressibility with temperature
showing the nematic-isotropic phase transition.

of around 981 K there is a finite discontinuity showing that
the nematic-isotropic phase transition remains a first-order
transition throughout.

Figures 8 and 9 show the variation of isothermal compress-
ibility and volume expansivity respectively with temperature
near the nematic-isotropic phase transition for three different
pressures (below, above and at the critical point). From the
curves we can see that at the critical pressure Pc = 1.43 MPa
both the compressibility as well as expansivity diverges at
around 388 K showing a nematic-isotropic phase transition.

Figures 10 and 11 show the variation of isothermal com-
pressibility and volume expansivity, respectively, with tem-
perature near the isotropic liquid-vapor phase transition for
three different pressures (below, above and at the critical
point). From the curves we can see that at the critical pressure
Pc = 1.43 MPa both the compressibility as well as volume
expansivity diverges at around 1100 K denoting the isotropic
liquid-vapor phase transition.

IV. CONCLUSIONS

We note that the simple model potential that we have
introduced reproduces the known behavior of nematic systems
as far as the dependence of the transition on pressure is
concerned. Given the simplicity of the model, this qualitative
agreement gives us confidence in the basic soundness of

FIG. 9. Variation of volume expansivity with temperature show-
ing the nematic-isotropic phase transition.

FIG. 10. Variation of isothermal compressibility with tempera-
ture showing the isotropic liquid-vapor phase transition.

the underlying physical assumptions. As we have used it
here the procedure involves only one adjustable parameter
A. We have also used the critical parameters Tc, pc of the
isotropic-vapor transition of the material as input. As most
of the known nematics decompose before reaching critical
point, the latter values are usually available only in the form
of model-dependent estimates. We can adjust these as well to
get a better quantitative fit with experimental data.
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APPENDIX: SADDLE-POINT APPROXIMATION

Because of the very large value of N , the integral
∫

eNf (v)dv

is completely dominated by the peak value of f (v) at v∗.
Changing variables to

v = v∗ + δ√
N

we get

Nf (v) = Nf (v∗) + 1

2
f ′′(v∗)δ2 + 1

3!
√

N
f ′′′(v∗)δ3 + · · ·

FIG. 11. Variation of volume expansivity with temperature show-
ing the isotropic liquid-vapor phase transition.
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so that

eNf (v) = eNf (v∗ )eδ2f ′′(v∗ )/2

(
1 + f ′′′(v∗)

6
√

N
δ3 + · · ·

)

and hence

∫
eNf (v)dv = eNf (v∗ )

∫
eδ2f ′′(v∗ )/2

(
1+f ′′′(v∗)

6
√

N
δ3+ · · ·

)
dδ√
N

.

It is easy to see that this yields

ln

(∫
eNf (v)dv

)
≈ Nf (v∗) + ln

(√
2π

N |f ′′′(v∗)|

)
+ · · · .

Note that for very large values of N , the subleading term in
the above expression, which is of order ln N is completely
dominated by the leading term of order N so that we can
use

ln

(∫
eNf (v)dv

)
≈ Nf (v∗).
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