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Debye-Hückel theory of weakly curved macroions: Implementing ion specificity through a
composite Coulomb-Yukawa interaction potential
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The free energy of a weakly curved, isolated macroion embedded in a symmetric 1:1 electrolyte solution
is calculated on the basis of linear Debye-Hückel theory, thereby accounting for nonelectrostatic Yukawa pair
interactions between the mobile ions and of the mobile ions with the macroion surface, present in addition to the
electrostatic Coulomb potential. The Yukawa interactions between anion-anion, cation-cation, and anion-cation
pairs are independent from each other and serve as a model for solvent-mediated ion-specific effects. We derive
expressions for the free energy of a planar surface, the spontaneous curvature, the bending stiffness, and the
Gaussian modulus. It is shown that a perturbation expansion, valid if the Yukawa interactions make a small
contribution to the overall free energy, yields simple analytic results that exhibit good agreement with the general
free energy over the range of experimentally relevant interaction parameters.
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I. INTRODUCTION

Debye-Hückel theory accounts for the influence of
Coulomb interactions between the ions of an electrolyte in
the dilute limit. Its foundation is the description of the ionic
atmosphere using the linearized Poisson-Boltzmann equation.
When applied to individual ions of a bare and uniform
electrolyte, the theory is able to rationalize measured ion
activity coefficients at very low electrolyte concentrations
[1,2]. Another line of application is the description of the
electric double layer (EDL) near weakly charged macroions
such as proteins [3], lipid membranes [4], microemulsions [5],
and polyelectrolytes [6]. It also has been used extensively to
describe interactions between these macroions [7–9].

The Debye-Hückel model relies on significant approx-
imations such as the neglect of ion shape, polarizability,
hydration, and spatial variations of the dielectric constant.
The model nevertheless has significant appeal because it is
simple, linear, serves as the (often analytically accessible)
dilute limit of classical Poisson-Boltzmann theory, and can be
used to develop extensions [10,11]. One of these extensions is
to complement the Coulomb interaction by an additional non-
electrostatic pair potential to describe soft, solvent-mediated
hydration interactions [12–16]. These additional interactions
are a means to incorporate ion specificity [17–19] into the
modeling of the EDL [20]. The Yukawa potential has received
special attention [21–26], despite the fact that molecular-level
simulations suggest solvent-mediated ion-ion potentials ex-
hibit an osciallatory component [27,28]. Recent work has pre-
sented the systematic incorporation of independent Yukawa-
like anion-anion, cation-cation, and anion-cation interactions
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in addition to the Coulomb potential [29,30] and compared
the predictions of mean-field theory with Monte Carlo sim-
ulations. Analytic solutions of the full nonlinear mean-field
model are not available, not even for a single planar surface.
However it is feasible (and, in fact, one of the goals of
the present work) to derive analytic expressions for the free
energy in the Debye-Hückel regime.

When charged surfaces in an electrolyte are curved, the
EDL undergoes a spatial reorganization. The corresponding
free-energy change can be expressed in terms of a set of cur-
vature elastic constants that have been calculated previously
within the framework of Debye-Hückel [31] and nonlinear
Poisson-Boltzmann [32–34] theory. However, predictions of
the curvature elastic properties in the presence of composite
Coulomb-Yukawa pair interactions have not been investigated
so far. We therefore include the analysis of weakly curved
surfaces into this work.

We calculate the free energy of a weakly curved macroion
embedded in a symmetric 1:1 electrolyte in the limit of lin-
earized Debye-Hückel electrostatics, where ion-ion and ion-
surface interactions derive from composite Coulomb-Yukawa
pair potentials. While the Coulomb potential describes the
electrostatic properties of the EDL, the Yukawa component
serves as a convenient model for ion specificity. More specif-
ically, two anions separated by a distance r interact through
the electrostatic potential lB/r , where lB is the Bjerrum length
and where here and in the following, all interaction potentials
and energies are expressed in units of the thermal energy
kBT (Boltzmann’s constant kB times the absolute temperature
T ). The corresponding expressions for two cations and an
anion-cation pair are lB/r and −lB/r , respectively. Note that
lB = 0.7 nm in an aqueous solution at room temperature. In
addition to that, ions also interact through Yukawa potentials:
āe−κ (r−ā)/r for two anions, b̄e−κ (r−|b̄|)/r for an anion-cation
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pair and c̄e−κ (r−c̄)/r for two cations. Here 1/κ is a character-
istic decay length that is set by the structure of the solvent,
and the constants ā, b̄, c̄ determine the Yukawa interaction
strengths. We have defined these constants in analogy to the
Bjerrum length. That is, the Yukawa interaction between two
anions is equal to the thermal energy unit if their mutual
distance is r = ā and similarly for two cations (r = c̄) and
anion-cation pairs (r = |b̄|). Note that in the latter case we
use the absolute value |b̄| because b̄ may adopt negative
values, whereas we demand ā and c̄ to be non-negative due
to symmetry. It will be convenient to reexpress the interaction
strengths as a = āeκā , b = b̄eκ|b̄|, and c = c̄eκc̄, so that the
three Yukawa potentials read ae−κr/r , be−κr/r , and ce−κr/r .
Our model also includes solvent-induced ion-surface interac-
tions; they emerge naturally as boundary conditions of the
differential equations that describe our composite Coulomb-
Yukawa interactions.

II. CLASSICAL DEBYE-HÜCKEL THEORY

For an electrolyte of uniform dielectric constant that con-
tains monovalent salt ions of bulk concentration n0, electro-
static interactions can be described by a dimensionless poten-
tial �e = �e(r) that satisfies the Poisson equation ∇2�e =
4πlB (na − nc ). Here r denotes a position within the elec-
trolyte, na = na (r) the local anion concentration, and nc =
nc(r) the local cation concentration. Note that �e = e�/kBT

is related to the electrostatic potential � = �(r), where e

denotes the elementary charge. According to the classical
Poisson-Boltzmann model, anions and cations are Boltzmann
distributed, na = n0e

�e and nc = n0e
−�e . This leads to the

classical Poisson-Boltzmann equation, l2
D∇2�e = sinh �e, or,

in the linearized Debye-Hückel regime, l2
D∇2�e = �e, where

lD = (8πlBn0)−1/2 denotes the Debye screening length. A
macroion with fixed (but not necessarily uniform) surface
charge density σe is associated with the boundary condi-
tion (∂�e/∂n)s = −4πlBσe/e, where (∂/∂n)s denotes the
derivative in the normal direction of the macroion surface,
pointing into the electrolyte. The index “s” indicates that the
derivative is taken at the macroion surface. If the macroion
is isolated, then the potential and its gradient must vanish
far away from the macroion. These two boundary conditions
fully define the potential �e(r) for any macroion geometry.
The surface potential can be used to compute the free energy
of the EDL that forms in the vicinity of the macroion. On
the level of linear Debye-Hückel theory, the free energy is
F = (1/2)

∫
do�eσe/e, where the integration runs over the

entire macroion surface.
Weakly curved macroions have local radii of curvature

much larger than the Debye screening length lD . In this case,
we can Helfrich-expand [35] the free energy per unit area A

F

A
= F0

A
+ k

2
(c1 + c2)2 − kc0(c1 + c2) + k̄c1c2, (1)

where c1 and c2 denote the two principal curvatures, F0 the
free energy of a planar surface, k the bending stiffness, k̄

the Gaussian modulus, and c0 the spontaneous curvature.
Note that stability of a surface that is allowed to curve
requires 2k > −k̄ > 0. The classical Debye-Hückel model
yields [31] F0/A = 2πlBlD (σe/e)2, kc0 = πlBl2

D (σe/e)2,

k = (3/2)πlBl3
D (σe/e)2, and k̄ = −(2/3)k. These results,

which also appear as the small-σe limit of the predictions for
the nonlinear Poisson-Boltzmann theory [32], account only
for Coulomb pair-interactions between all involved charge
carriers (mobile ions and charges on the macroion surface).
No nonelectrostatic interactions, such as excluded volume ef-
fects or hydration forces among the mobile ions and between
the mobile ions and the macroion surface, are accounted for.

In the following we generalize the results of the clas-
sical Debye-Hückel model to the presence of a composite
Coulomb-Yukawa pair potential.

III. ION-SPECIFIC DEBYE-HÜCKEL THEORY

As outlined in the Introduction, we assume that solvent-
mediated hydration interactions can be described in terms
of the ion-specific pair potentials ae−κr/r for two anions,
be−κr/r for an anion-cation pair, and ce−κr/r for two cations.
Similarly to the Coulomb interaction that can be expressed
in terms of an electrostatic potential �e(r) which fulfills
Poisson’s equation, the hydration interactions give rise to
two potentials �a (r) and �c(r) which fulfill the Helmholtz
equations

[
(∇2 − κ2) �a (r)

(∇2 − κ2) �c(r)

]
= −4π A

[
na (r) − n0

nc(r) − n0

]
(2)

with complex wave number and a source term. Note that
�a (r) and �c(r) are defined relative to the bulk, where na =
nc = n0. Hence, in the bulk �a = �c = 0. The matrix

A =
(

a b

b c

)
(3)

describes the interaction strengths. The origin of Eqs. (2) and
(3) is discussed in Appendix A and in Caetano et al. [29].
We note that two hydration potentials are needed in the most
general case where the determinant of A does not vanish. As
introduced above, the parameters a = āeκā , b = b̄eκ|b̄|, and
c = c̄eκc̄, describe the strengths of the Yukawa pair potentials,
a for an anion-anion pair, b for an anion-cation pair, and
c for a cation-cation pair. Symmetry demands a � 0 and
c � 0, whereas b may adopt positive or negative values.
Recall that the anion-anion Yukawa interaction is equal to
the thermal energy unit for r = ā and analogously for anion-
cation pairs (r = |b̄|) and for cation-cation pairs (r = c̄).

Minimization of an appropriate mean-field free energy
(see Appendix A for details) that accounts for the composite
Coulomb-Yukawa pair potential in addition to ideal mixing
contributions of the ions yields the Boltzmann distributions
[29]

na = n0 e�e−�a , nc = n0 e−�e−�c . (4)

Inserting these into the Poisson and Helmholtz equations
leads to a set of three nonlinear differential equations for the
three potentials,

∇2�e = 4πlBn0(e�e−�a − e−�e−�c ),[
(∇2−κ2) �a (r)

(∇2−κ2) �c(r)

]
=4πn0 A

(
1−e�e−�a

1−e−�e−�c

)
. (5)

022609-2



DEBYE-HÜCKEL THEORY OF WEAKLY CURVED … PHYSICAL REVIEW E 98, 022609 (2018)

These equations generalize the classical Poisson-Boltzmann
model to the additional presence of Yukawa interactions. In
the absence of these (for �a = �c = 0), Eqs. (5) recover
the classical Poisson-Boltzmann equation l2

D∇2�e = sinh �e

with lD = (8πlBn0)−1/2.
In the following, we focus exclusively on the Debye-

Hückel limit, which corresponds to the linearization of
Eqs. (5), valid if all three potentials are sufficiently small,

∇2�e = 1

l2
D

�e + 1

2l2
D

(�c − �a ),

∇2�a − κ2�a = 1

l2
a

(−�e + �a ) + 1

l2
b

(�e + �c ), (6)

∇2�c − κ2�c = 1

l2
b

(−�e + �a ) + 1

l2
c

(�e + �c ),

where we have defined la , lb, and lc through

1

l2
a

= 4πan0,
1

l2
b

= 4πbn0,
1

l2
c

= 4πcn0. (7)

We observe this system of differential equations is invariant
under switching the identity of anions and cations (which
includes charge inversion): �a ↔ �c, �e → −�e, la ↔ lc.
Equations (6) can be cast into the more compact form,

l2
D∇2� = B�, (8)

expressed in terms of the column vector � = (�e,�a,�c )
and the matrix

B = l2
D

⎛
⎜⎜⎝

1
l2
D

− 1
2l2

D

1
2l2

D

− 1
l2
a

+ 1
l2
b

1
l2
a

+ κ2 1
l2
b

− 1
l2
b

+ 1
l2
c

1
l2
b

1
l2
c

+ κ2

⎞
⎟⎟⎠. (9)

We assume the macroion carries a fixed surface charge density
σe. In addition, we also allow for solvent-mediated interac-
tions of the mobile ions with the macroion surface, expressed
by the two parameters σa and σc that we cast into the column
vector σ = (σe/e, σa, σc ). Similarly to σe/e being the surface
density of the sources for the Coulomb interaction, σa and
σc characterize the surface density of the sources for the
ion-surface Yukawa interactions: σa for the anions and σc for
the cations. (At this point we regard σe/e, σa , and σc as a set
of fixed thermodynamic variables that reflect electrode prop-
erties and that our curvature-expanded free energy depends
on. Of course, we are free to—and below will—introduce
couplings among σe/e, σa , and σc). Note that σa and σc can
adopt positive or negative values. If a, b, c, σe, and σc are
all positive, then the macroion surface repels all mobile ions.
If a, b, c, −σe, and −σc are all positive, then the macroion
surface attracts all mobile ions. The choice a = c = −b and
σe = σc leaves the macroion surface inert. In the general case,
the boundary condition for solving Eq. (8) can be written as

lD

(
∂�

∂n

)
s

= −Mσ , (10)

where (∂/∂n)s denotes the derivative in the normal direction
of the macroion surface, pointing into the electrolyte. Also, in

Eq. (10) we have defined the matrix

M = 4πlD

⎛
⎝lB 0 0

0 a b

0 b c

⎞
⎠. (11)

For an isolated macroion we demand that all three potentials,
�e, �a , and �c, and their gradients vanish far away from the
macroion.

We model solvent-mediated interactions on the basis of
Yukawa potentials. It is reasonable to assume solvent is
present only outside the macroion but not inside. This case
corresponds to the interaction strength of the Yukawa poten-
tial being zero inside the macroion. The boundary condition in
Eq. (10) therefore only contains contributions from the fields
outside the macroion. If an aqueous solvent (or a solvent of
different type) was present inside the macroion, then the fields
�a and �c (more specifically, their derivatives at the macroion
surface taken into the normal direction pointing inside the
macroion) would contribute to the boundary condition. We do
not consider this case in the present work.

IV. FREE-ENERGY CALCULATION FOR
WEAKLY CURVED MACROION

The free energy of an isolated macroion corresponding to
the ion-specific Debye-Hückel model can be calculated (see
Appendix A) according to

F = 1

2

∫
do

[σe

e
�e + σa�a + σc�c

]
= 1

2

∫
do� · σ .

(12)

If σ is fixed at the macroion surface, then what we need in
order to execute the calculation of F is the dependence of
� on σ . Our goal is to compute that dependence and, from
that, an explicit expression for the free energy of a single,
isolated, weakly curved macroion. The term “weakly curved”
refers to radii of curvature that are much larger than any of the
characteristic lengths lD , la , lb, and lc (we take |lb| if b < 0).
In this case we can, again, Helfrich-expand the free energy
per unit area A, as specified in Eq. (1). This reduces our goal
to the calculation of the free energy for a planar surface F0,
the spontaneous curvature c0, the bending stiffness k, and the
Gaussian modulus k̄. To this end, we reexpress Eq. (8) for
cylindrical (n = 1) and spherical (n = 2) symmetry,

l2
D

[
d2�

dr2
+ n

r

d�

dr

]
= B�, (13)

where r is the corresponding radial coordinate of a cylin-
drical or spherical coordinate system. We introduce a new
dimensionless distance x (with x � 0) via r = 1/c + xlD ,
where c − c1 = c2 = 0 for cylindrical and c = c1 = c2 for
spherical geometry. Note that x measures the scaled dis-
tance from the weakly curved macroion surface to a position
within the EDL. For our potentials we write up to second
order in curvature �(x) = �0(x) + clD�1(x) + c2l2

D�2(x).
Expanding Eq. (13) up to second order in c yields three linear
equations for the three curvature components �0(x), �1(x),
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and �2(x),

�′′
0 = B�0,

�′′
1 + n�′

0 = B�1,

�′′
2 + n�′

1 − nx�′
0 = B�2. (14)

We can carry out a first integration subject to the boundary
condition that all potentials, �0(x), �1(x), and �2(x) (and
their derivatives), vanish in the limit x → ∞,

�′
0 = −B1/2�0,

�′
1 = −B1/2�1 − n

2
�0,

�′
2 = −B1/2�2 − n

2
�1 + n

2
x�0 + n

4

(
1 − n

2

)
B−1/2�0.

(15)

Note that B1/2 is defined such that B1/2B1/2 = B,
and B−1 denotes the inverse of B such that B−1B
yields the identity matrix. The boundary condition
in Eq. (10) imposes fixed surface densities for σe/e,
σa , and σc, independent of curvature. This implies
�′

0(x = 0) = −Mσ and �′
1(x = 0) = �′

2(x = 0) = 0,
with the column vector 0 = (0, 0, 0). Using these boundary
conditions and applying Eqs. (15) to the macroion surface,
x = 0, gives rise to a linear system of equations for the
curvature components of the surface potential. Solving this
linear system provides us with the explicit expressions

�0(0) = B−1/2Mσ ,

�1(0) = −n

2
B−1Mσ , (16)

�2(0) = n

4

(n

2
+ 1

)
B−3/2Mσ ,

for how the surface potential �(0) = �0(0) + clD�1(0) +
c2l2

D�2(0) depends on the surface densities σ . If we insert
�(0) into Eq. (12), both for cylindrical (n = 1) and for spher-
ical (n = 2) curvature, and compare with the correspond-
ing expressions, F/A = F0/A + kc2/2 − kc0c for cylindrical
symmetry (n = 1) and F/A = F0/A + (2k + k̄)c2 − 2kc0c

for spherical symmetry (n = 2), then we find
F0

A
= 1

2
σ TB−1/2Mσ ,

kc0 = lD

4
σ TB−1Mσ ,

(17)

k = 3

8
l2
Dσ TB−3/2Mσ ,

k̄ = −2

3
k,

where σ T is the transpose of σ . Equation (17) is the principal
result of the present work. As expected on the level of Debye-
Hückel theory, the expressions in Eq. (17) are quadratic forms
of the surface densities σe/e, σa , and σc. These quadratic
forms represent general results of a weakly curved macroion
(with fixed σe/e, σa , and σc) in the presence of a composite
Coulomb-Yukawa pair interaction. Recall the matrix M is
specified in Eq. (11), and the matrix B in Eq. (9). Regarding
the latter, recall the definitions la , lb, and lc in Eq. (7). To
obtain explicit expressions for F0, c0, k, and k̄ in terms of the

interaction parameters a, b, c, κ , and the salt concentration
n0, we need to find B−1/2, B−1, and B−3/2. This can easily
be accomplished numerically for any given set of system
parameters.

V. DISCUSSION

Bazant et al. [36] have recently suggested a phenomeno-
logical approach to account for short-range correlations
among ions, leading to a term ∼∇4�e contained in a gen-
eralized nonlinear Poisson-Boltzmann equation. Using theo-
ries of binary fluid mixtures, a similar fourth-order Poisson-
Boltzmann equation was derived by Blossey et al. [37]. Our
present approach, which requires us to introduce the two
additional fields �a and �c in order to account for inde-
pendent Yukawa anion-anion, anion-cation, and cation-cation
interactions, leads to a sixth-order differential equation for
the electrostatic potential �e. On the Debye-Hückel level that
equation is a linear one. Specifically, from Eq. (6) we find

∇6�e − C4∇4�e + C2∇2�e = C0�e (18)

with the coefficients

C0 = κ2

2l2
D

[
2κ2 + 1

l2
a

+ 2

l2
b

+ 1

l2
c

]
,

C2 = κ4 − 1

l4
b

+ κ2

(
1

l2
a

+ 2

l2
b

+ 1

l2
c

)

+ 1

2

(
2

l2
b l

2
D

+ 1

l2
c l

2
D

+ 1

l2
a l

2
D

+ 1

l2
a l

2
c

)
,

C4 = 2κ2 + 1

l2
a

+ 1

l2
c

+ 1

l2
D

. (19)

Combinations of exponential solutions with three characteris-
tic lengths will emerge from Eq. (18); they depend on κ , lD ,
la , lb, and lc.

An analytic calculation of B−1/2, B−1, and B−3/2 yields
cumbersome expressions. However, a few specific cases lead
to simple results and thus to meaningful explicit expressions
for F0, c0, k, and k̄. We discuss those in the following.

A. Symmetric Yukawa interactions

The first specific case is a = b = c, where all ions, irre-
spective of being anions or cations, interact with each other
through the same Yukawa potential. Equations (17) then give
rise to

F0

A
= 2πlBlD

(σe

e

)2
+ 2πa

(σa + σc )2√
κ2 + 2/l2

a

,

kc0 = πlBl2
D

(σe

e

)2
+ πa

(σa + σc )2

κ2 + 2/l2
a

, (20)

k = 3

2
πlBl3

D

(σe

e

)2
+ 3

2
πa

(σa + σc )2

(κ2 + 2/l2
a )3/2

,

and k̄/k = −2/3, as before. Clearly, the curvature-dependent
free energy decomposes into additive Coulomb and Yukawa
contributions. The two contributions act independently, with-
out any coupling. The first contribution to F0/A, kc0, k in
Eq. (20) is identical to the result of the classical Debye-Hückel
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model as stated in Sec. II. The second contribution reflects
the presence of particles that are uniformly distributed on a
surface with area density σa + σc and exhibit mutual Yukawa
interactions ae−κeff r/r . Here κeff =

√
κ2 + 2/l2

a is an effective
inverse screening length that differs from κ because of the
interaction of the salt ions (which are present with a combined
bulk concentration of 2n0) with the surface. For example, the
Yukawa contribution to the free energy (per unit area) of a
planar surface amounts to

F0

A
= 2πa(σa + σc )2

∫ ∞

0
drr

e−κeff r

r
= 2πa

(σa + σc )2√
κ2 + 2/l2

a

,

(21)

which recovers the Yukawa contribution in the first line of
Eq. (20). The Yukawa contributions to kc0 and k in Eq. (20)
follow from a similar calculation. For our discussion below
we also note that for sufficiently small a = b = c → δa,
Eqs. (20) read

F0

A
= 2πlBlD

(σe

e

)2
+ 2π

κ
(σa + σc )2δa,

kc0 = πlBl2
D

(σe

e

)2
+ π

κ2
(σa + σc )2δa,

k = 3

2
πlBl3

D

(σe

e

)2
+ 3

2

π

κ3
(σa + σc )2δa. (22)

Here the Yukawa contribution acts as a small perturbation for
the result from the classical Debye-Hückel model.

B. Perturbation approach

The second specific case starts from the classical Debye-
Hückel model and introduces the parameters a, b, and c as
first-order perturbations. In this case, we can express Eqs. (17)
as the sum of a pure electrostatic contribution plus a pertur-
bation due to nonvanishing (but small) parameters a → δa,
b → δb, and c → δc,

F0

A
= 2πlBlD

(σe

e

)2
+ 1

2
σ T δ[B−1/2M]σ ,

kc0 = πlBl2
D

(σe

e

)2
+ 1

4
σ T δ[B−1M]σ ,

k = 3

2
πlBl3

D

(σe

e

)2
+ 3

8
σ T δ[B−3/2M]σ . (23)

The perturbation contributions amount to (see Appendix B for
details)

δ[B−1/2M] = 2π

κ

⎛
⎜⎝

δa+δc−2δb
g1

δa−δb
g2

δb−δc
g2

δa−δb
g2

2δa 2δb

δb−δc
g2

2δb 2δc

⎞
⎟⎠,

δ[B−1M] = 2π

κ2

⎛
⎜⎝

δa+δc−2δb
g3

δa−δb
g4

δb−δc
g4

δa−δb
g4

2δa 2δb

δb−δc
g4

2δb 2δc

⎞
⎟⎠, (24)

δ[B−3/2M] = 2π

κ3

⎛
⎜⎝

δa+δc−2δb
g5

δa−δb
g6

δb−δc
g6

δa−δb
g6

2δa 2δb

δb−δc
g6

2δb 2δc

⎞
⎟⎠,

where we define g1 = 4(1 + κ̃ )2/(2 + κ̃ ), g2 = 1 + κ̃ , g3 =
2, g4 = 1, g5 = [4(1 + κ̃ )2]/{2 + κ̃[4 + 3κ̃ (2 + κ̃ )]}, g6 =
(1 + κ̃ )/[1 + κ̃ + κ̃2], and κ̃ = κlD . As expected, for δa =
δb = δc the expressions in Eqs. (23) and (24) become iden-
tical to those in Eq. (22). In the general case of asym-
metric Yukawa interactions (δa + δc 	= 2δb) electrostatic and
Yukawa interactions are coupled. For example, the specific
case σa = σc = 0 implies that

F0

A
= 2π

[
lB lD + δa + δc − 2δb

2κg1

] (σe

e

)2
,

kc0 = π

[
lB l2

D + δa + δc − 2δb

2κ2g3

] (σe

e

)2
, (25)

k = 3

2
π

[
lB l3

D + δa + δc − 2δb

2κ3g5

] (σe

e

)2

all grow (for δa + δc > 2δb) or decrease (for δa + δc < 2δb),
when the Yukawa interactions are switched on.

The perturbation contribution for the free energy of a
planar macroion surface in Eq. (25),

δF0

A
= 2 + κ̃

4(1 + κ̃ )2

π

κ

(σe

e

)2
(δa + δc − 2δb), (26)

assumes σa = σc = 0. In the following, we analyze the gen-
eral case where σe, σa , and σc may all be nonvanishing.
In principle, σe, σa , and σc are independent parameters that
reflect electrode properties. A convenient way to discuss the
behavior of F0/A, kc0, and k for general choices of σe, σa , and
σc is to couple the solvent-induced ion-surface interactions
σa = χaσe/e and σc = χcσe/e to the electrostatic surface
charge density σe, where χa and χc are two dimensionless
coupling parameters. That is, instead of using σe, σa , and σc

we use the set σe, χa , χc as independent variables. We point
out that χa and χc are auxiliary quantities that merely facilitate
the systematic discussion (in the remainder of this subsection)
of Eqs. (23) and (24). Of course, for any specific choice of σe,
χa , and χc, the actual thermodynamic variables σe, σa , and σc

follow immediately.
The two coupling parameters, χa and χc, can be optimized

by requiring ∂F0/∂χa = 0 and ∂F0/∂χc = 0. This gives rise
to χa = χ

opt
a and χc = χ

opt
c with χ

opt
c = −χ

opt
a = 1/(2g2) =

1/[2(1 + κ̃ )]. Note that χ
opt
a < 0 and χ

opt
c > 0. Hence, at

optimal coupling and for both a > b and c > b, when the
surface becomes positively charged (σe > 0), with anions
accumulating and cations depleting from the surface, the
anions experience an additional nonelectrostatic attraction to
the surface (because of χ

opt
a < 0), and the cations experience

an additional nonelectrostatic repulsion from the surface (be-
cause of χ

opt
c > 0). Upon inserting χa = χ

opt
a and χc = χ

opt
c ,

we obtain for the perturbation contribution of the free energy

δF0

A
= κ̃

4(1 + κ̃ )2

π

κ

(σe

e

)2
(δa + δc − 2δb). (27)

We point out that using the optimal coupling parameters χ
opt
a

and χ
opt
c in the free energy corresponds to fixing the surface
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FIG. 1. Scaled free energy, F0/A × (e/σe )2 (in units of
kBT nm2), of a planar surface as function of ā for lB = 0.7 nm, lD =
1 nm, 1/κ = 0.2 nm, b̄ = c̄ = 0. Solid lines refer to the full result in
Eq. (17), broken lines to the perturbation result in Eq. (23). Curves
of different color correspond to different couplings, χa = λχ opt

a and
χc = λχ opt

c , with χ opt
c = −χ opt

a = 1/(2g2) = 0.0833, and λ = −0.5
(blue), λ = 0 (orange, vanishing coupling), λ = 0.5 (green), λ = 1
(red, optimal coupling). The inset shows F0/A × (e/σe )2 as function
of b̄ for ā = c̄ = 0, with otherwise the same parameters and color
code as in the main diagram.

potentials �a (x = 0) = �c(x = 0) = 0 when changing σe.
The ratio between the free-energy perturbations for vanishing
coupling and optimal coupling is

δF0(χa = 0, χc = 0)

δF0
(
χa = χ

opt
a , χc = χ

opt
c

) = 2 + κ̃

κ̃
> 1. (28)

To illustrate this result we show in the main diagram of
Fig. 1 the scaled free energy F0/A × (e/σe )2 according to
Eq. (17) (solid lines, the full result) and Eq. (23) (broken
lines, the perturbation result), calculated for lB = 0.7 nm,
lD = 1 nm, 1/κ = 0.2 nm, b̄ = c̄ = 0, and plotted as function
of ā. Note that plotting the scaled free energy as function of
ā (instead of a = āeκā) is meaningful because for an anion-
anion distance r = ā the hydration interaction for that ion
pair amounts to the thermal energy kBT . Curves of different
color in Fig. 1 correspond to different couplings χa = λχ

opt
a

and χc = λχ
opt
c with χ

opt
c = −χ

opt
a = 1/(2g2) and λ = −0.5

(blue), λ = 0 (orange, vanishing coupling), λ = 0.5 (green),
and λ = 1 (red, optimal coupling). As predicted by Eq. (28),
the change of F0 becomes minimal for optimal coupling but
does not change its sign. The same reasoning is also true when
b̄ or c̄ are changed instead of ā. This is illustrated in the inset
of Fig. 1, which shows F0/A × (e/σe )2 as function of b̄ with
ā = c̄ = 0, for otherwise the same parameters and color code
as in the main diagram.

A similar calculation can be carried out for the per-
turbation contribution to the term kc0 in Eqs. (23) and
(24). We again define the two coupling parameters χa and
χc through σa = χaσe/e and σc = χcσe/e. At optimal cou-
pling (χa = χ

opt
a and χc = χ

opt
c ) these two parameters fulfill

λ = −0.5
λ = 0
λ = 0.5
λ = 1

0 0.2 0.4 0.6 0.8
2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

ā/nm

kc0

(
e

σe

)2

FIG. 2. Scaled bending stiffness times spontaneous curvature,
kc0 × (e/σe )2 (in units of kBT nm3), of a planar surface as function
of ā for lB = 0.7 nm, lD = 1 nm, 1/κ = 0.2 nm, b̄ = c̄ = 0. Solid
lines refer to the full result in Eq. (17), broken lines to the perturba-
tion result in Eq. (23). Curves of different color correspond to dif-
ferent couplings, χa = λχ opt

a and χc = λχ opt
c , with χ opt

c = −χ opt
a =

1/(2g4) = 1/2, and λ = −0.5 (blue), λ = 0 (orange, vanishing cou-
pling), λ = 0.5 (green), λ = 1 (red, optimal coupling).

the relations ∂ (kc0)/∂χa = 0 and ∂ (kc0)/∂χc = 0, implying
χ

opt
c = −χ

opt
a = 1/(2g4) = 1/2. At optimal coupling we find

a vanishing spontaneous curvature contribution, δ(kc0) = 0.
Hence, any nonvanishing coupling between σe/e, σa , and
σc can reduce the magnitude of the spontaneous curvature
perturbation but not change its sign. We illustrate this in Fig. 2,
which shows kc0 × (e/σe )2 according to Eq. (17) (solid lines,
the full result) and Eq. (23) (broken lines, the perturbation
result) for the same parameters as in Fig. 1. As predicted by
the perturbation result, at optimal coupling (the red curve in
Fig. 2) there is no change in spontaneous curvature when ā is
switched on.

Finally, for the perturbation contribution to the bending
stiffness in Eqs. (23) and (24), we again introduce χa and
χc as before and determine the optimal coupling χa = χ

opt
a

and χc = χ
opt
c from ∂k/∂χa = 0 and ∂k/∂χc = 0. This yields

χ
opt
c = −χ

opt
a = 1/(2g6) = (1 + κ̃ + κ̃2)/[2(1 + κ̃ )] and using

that

δk(χa = 0, χc = 0)

δk
(
χa = χ

opt
a , χc = χ

opt
c

) = − 2

κ̃3
− 6

κ̃
+ 9

1 + 2κ̃
, (29)

which is negative for all κ̃ > 0. Hence, upon changing the
coupling parameters from zero to χ

opt
a and χ

opt
c , the sign of the

perturbation contribution δk must change. This is illustrated
in Fig. 3, which shows k × (e/σe )2 according to Eq. (17)
(solid lines, the full result) and Eq. (23) (broken lines, the
perturbation result) for the same parameters as in Figs. 1
and 2. Clearly, the sign of the change in bending stiffness
as function of ā switches when the coupling parameters χa

and χc are changed from zero (the orange curves in Fig. 3) to
their optimal values χ

opt
a and χ

opt
c (the red curves in Fig. 3).

We also observe this when changing b̄ instead of ā; see the
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FIG. 3. Scaled bending stiffness, k × (e/σe )2 (in units of
kBT nm4), of a planar surface as function of ā for lB = 0.7 nm,
lD = 1 nm, 1/κ = 0.2 nm, b̄ = c̄ = 0. Solid lines refer to the full
result in Eq. (17), broken lines to the perturbation result in Eq. (23).
Curves of different color correspond to different couplings, χa =
λχ opt

a and χ opt
c = −χ opt

a = 1/(2g6) = 2.58, and λ = −0.5 (blue),
λ = 0 (orange, vanishing coupling), λ = 0.5 (green), λ = 1 (red,
optimal coupling). The inset shows k × (e/σe )2 as function of b̄ for
ā = c̄ = 0, with otherwise the same parameters and color code as in
the main diagram.

inset of Fig. 3. Moreover, the inset demonstrates that k can
adopt negative values for sufficiently large Yukawa interaction
strengths.

We point out that the perturbation results in Eqs. (23) and
(24) (the broken lines in Figs. 1–3) provide a good fit of
the full result for F0/A, kc0, and k according to Eq. (17) in
the region 0 < ā/nm � 0.5, which we expect to be the most
relevant range for small ions in aqueous solution [27,28]. Note
that the broken lines in Figs. 1–3 are not straight because the
abscissa displays ā (and not the perturbation parameter a).
The good fit of the perturbation prediction for any variations
of ā, |b̄|, and c̄ (and combinations thereof) in the range from 0
to about 0.5 nm is a general observation; see for example the
inset of Fig. 1.

C. Retaining only Yukawa interactions between ions and surface

The third specific case assumes we switch off the Yukawa
interactions between pairs of mobile ions but retain the
Yukawa interactions between the ions and surface. It is in-
teresting to analyze this case because it allows us to assess
the relevance of nonelectrostatic ion-surface versus ion-ion
interactions. The absence of Yukawa pair interactions between
mobile ions translates into replacing B in Eq. (9) by

B =

⎛
⎜⎜⎝

1 −1/2 1/2

0 κ̃2 0

0 0 κ̃2

⎞
⎟⎟⎠ (30)

without changing M. That is, M remains specified by
Eq. (11), and F0/A, kc0, k, and k̄ continue to being calculated

through Eq. (17). With this we find the explicit expressions

F0

A
= 2π

κ
σ T

⎛
⎝κ̃ lB

a−b
2g2

b−c
2g2

0 a b

0 b c

⎞
⎠σ ,

kc0 = π

κ2
σ T

⎛
⎝κ̃2lB

a−b
2g4

b−c
2g4

0 a b

0 b c

⎞
⎠σ , (31)

k = 3

2

π

κ3
σ T

⎛
⎝κ̃3lB

a−b
2g6

b−c
2g6

0 a b

0 b c

⎞
⎠σ ,

where we recall κ̃ = κlD and the definitions g2 = 1 + κ̃ , g4 =
1, and g6 = (1 + κ̃ )/[1 + κ̃ + κ̃2], as initially introduced fol-
lowing Eq. (24).

If in Eq. (31) we set a = b = c (symmetric hydration
interactions), then we obtain

F0

A
= 2πlBlD

(σe

e

)2
+ 2πa

(σa + σc )2

κ
,

kc0 = πlBl2
D

(σe

e

)2
+ πa

(σa + σc )2

κ2
,

k = 3

2
πlBl3

D

(σe

e

)2
+ 3

2
πa

(σa + σc )2

κ3
. (32)

The Yukawa contributions to these results [the second of
the two contributions to the right-hand side of Eq. (32)] can
be rationalized by the same argument as that leading to the
integration in Eq. (21): Particles that are uniformly distributed
on a surface with a combined area density σa + σc exhibit
mutual Yukawa interactions ae−κeff r/r . Yet, in the present case
κeff = κ because no Yukawa interactions between the salt ions
are present. Because switching off the Yukawa interactions
between the mobile salt ions increases the effective charac-
teristic screening length from 1/

√
κ2 + 2/l2

a to 1/κ , the free
energy (that is, all the quantities F0, kc0, and k) increases, too.
Hence, for any choice σa + σc 	= 0, the predictions of Eq. (20)
for F0/A, kc0, and k are smaller than the corresponding values
in Eq. (32). This explains the somewhat unexpected result
that adding Yukawa ion-ion repulsion in addition to Yukawa
ion-surface interactions always decreases F0/A, kc0, and k if
a = b = c.

In the case of asymmetric hydration interactions in Eq. (31)
(thus allowing for general choices of a, b, c with a � 0
and c � 0) we introduce, as before, coupling parameters
χa and χc through σa = χaσe/e and σc = χcσe/e. We ob-
tain optimal coupling parameters χ

opt
c = −χ

opt
a = 1/(4g2) for

F0/A, χ
opt
c = −χ

opt
a = 1/(4g4) for kc0, and χ

opt
c = −χ

opt
a =

1/(4g6) for k. Inserting these into their corresponding expres-
sions, F0/A, kc0, and k, results in

F0

A
= 2πlBlD

(σe

e

)2
[

1 − a − 2b + c

16lBg2
2 κ̃

]
,

kc0 = πlBl2
D

(σe

e

)2
[

1 − a − 2b + c

16lBg2
4 κ̃

2

]
, (33)

k = 3

2
πlBl3

D

(σe

e

)2
[

1 − a − 2b + c

16lBg2
6 κ̃

3

]
at optimal coupling [that is, fixed surface potentials �a (x =
0) = �c(x = 0) = 0]. Hence, in the presence of only Yukawa
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FIG. 4. Scaled bending stiffness, k × (e/σe )2 (in units of
kBT nm4), of a planar surface as function of ā for lB = 0.7 nm, lD =
1 nm, 1/κ = 0.2 nm, b̄ = c̄ = 0. Solid lines refer to the full result in
Eq. (17), broken lines to the result in Eq. (31). Curves of different
color correspond to different couplings, χa = λχ opt

a and χc = λχ opt
c ,

with χ opt
c = −χ opt

a = 1/(4g6) = 1.29, and λ = −0.5 (blue), λ = 0
(orange, vanishing coupling), λ = 0.5 (green), λ = 1 (red, optimal
coupling).

ion-surface interactions, F0/A turns negative for a − 2b +
c > 16lBg2

2 κ̃ , kc0 turns negative for a − 2b + c > 16lBg2
4 κ̃

2,
and k turns negative for a − 2b + c > 16lBg2

6 κ̃
3. Figure 4

illustrates this for the case of the bending stiffness. The figure
shows k × (e/σe )2 according to Eq. (17) (solid lines, the full
result) and Eq. (31) (broken lines, signifying the absence of
Yukawa ion-ion interactions) for the same parameters as in
Figs. 1–3. The result for k in Eq. (33) is displayed by the red
broken line. It predicts k = 0 for a = 16lBg2

6 κ̃
3 = 54.4 nm

or, equivalently, ā = 0.83 nm. Hence, for lB = 0.7 nm, lD =
1 nm, 1/κ = 0.2 nm, and b̄ = c̄ = 0, the smallest value of ā

for which k may decrease to a vanishing value is ā = 0.83 nm.
To discuss the physical reason of how the bending stiffness

k can adopt negative values, we assume b = c = 0. The
expression for k in Eq. (31) then reads

k = 3

2
πl3

D

[
lB

(σe

e

)2
+ a

κ̃3
σ 2

a + a

2κ̃3g6

σe

e
σa

]
, (34)

which immediately reveals the condition a > 16lBg2
6 κ̃

3 for
k < 0 as stated above. The bending stiffness will be positive
when σe or σa are increased individually. Negative bending
stiffness reflects the coupling between σe and σa . That is,
when σe is increased from zero to a positive value, anions
accumulate in the vicinity of the macroion. These anions
experience an additional attraction to the macroion surface
due to their Yukawa interaction with the surface. When this
additional attraction is strong enough, it renders k negative.
We finally note that while Sec. V C does not consider Yukawa
ion-ion interactions, the bending stiffness can become nega-
tive even when Yukawa ion-ion interactions are accounted for;
see for example the inset of Fig. 3.

VI. CONCLUDING REMARKS

Equation (17), together with its derivation and discussion,
is the principal outcome of the present work. It specifies
the free energy of an isolated, weakly curved macroion in
a symmetric 1:1 electrolyte, in the presence of a solvent
such as water, on the level of linear Debye-Hückel theory,
thereby accounting for a composite Coulomb-Yukawa inter-
action potential among the ions and between the ions and
the macroion surface. The curvature-dependent contributions
to the free energy are expressed through familiar curvature
elastic constants: the bending stiffness, the Gaussian modu-
lus, and the spontaneous curvature. The Yukawa interactions,
which embody ion specific effects through a number of in-
dependent parameters (a, b, and c, for anion-anion, anion-
cation, and cation-cation interactions, respectively, as well
as σa and σc for surface-mediated interactions with anions
and cations), increase the complexity of the Debye-Hückel
model significantly, despite its linearity. At the same time,
the predicted behavior for bending stiffness and spontaneous
curvature becomes much richer and can promote, or even
induce, curvature instabilities. A perturbation approach that
yields simple analytic expressions for the curvature-dependent
free energy provides excellent agreement with the full model
within the experimentally most relevant ranges of the inter-
action parameters a, b, and c. Simple analytic expressions
are also obtained in the limit of switching off the Yukawa
interactions among the ions while retaining the Yukawa ion-
surface interaction.

Burak and Andelman [13,14] have recently presented a
modeling approach that bears some similarity with our present
work. They add a short-range, nonelectrostatic, hydration-
mediated component to the Coulomb pair potential and treat
it on the basis of a virial expansion up to lowest order so
that their free energy amounts to setting the direct correlation
function equal to the pair interaction potential and all higher-
order direct correlation functions to zero. Hence, while Burak
and Andelman [14] account for correlations due to a short-
range potential on the lowest possible order, our approach
completely ignores correlations. The main advantage of our
approach, however, is its mathematical simplicity, which orig-
inates from the introduction of the auxiliary fields �a and
�c and which is what allows us to derive simple analytic
expressions for the free energy of a weakly curved macroion.

Our target in the present work has been the linear Debye-
Hückel limit, but that should ultimately be extended to the
nonlinear theory based on Eqs. (5). Another future im-
provement of our model should allow for dielectric inho-
mogeneities. Our present work assumes a uniform dielec-
tric background, characterized by a constant Bjerrum length
of lB = 0.7 nm. However, hydration-mediated nonelectro-
static ion-ion interactions originate in the ordering of water
molecules around each ion, which affects the local dielectric
constant. Methods to account for dielectric inhomogeneities
[19], including the dipolar Poisson-Boltzmann theory that
accounts for solvent molecules explicitly as Langevin dipoles
[38,39] are available, but the connection between the explicit
account of the solvent and effective hydration-mediated ion-
ion interactions is not obvious.
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APPENDIX A: FREE ENERGY MINIMIZATION

We have defined the two potentials �a and �c in Eq. (2).
An equivalent definition of these potentials at position r is[

�a (r)
�c(r)

]
=

∫
d3r′ e−κ|r−r′ |

|r − r′| A
[
na (r′) − n0

nc(r′) − n0

]
, (A1)

where we recall na (r) and nc(r) are the local anion and cation
concentrations, n0 is their bulk value, and the symmetric
square matrix A is defined in Eq. (3). Equivalency between
Eqs. (2) and (A1) is established using the Greens function
G(r) = −e−κ|r|/(4π |r|) of the equation (∇2 − κ2)G(r) =
δ(r), where δ(r) is the Dirac delta function. We emphasize
again that �a and �c reflect concentration changes relative
to the bulk. As shown in previous work [29], the mean-
field free energy that includes the solvent-mediated hydration
contribution based on our Yukawa potentials reads

F =
∫

d3r
{

(∇�e )2

8πlB
+ fmix(na ) + fmix(nc )

+ 1

8π

[(∇�a

∇�c

)T

A−1

(∇�a

∇�c

)
+ κ2

(
�a

�c

)T

A−1

(
�a

�c

)]}
,

(A2)

where A−1 is the inverse of A and fmix(n) = n ln(n/n0) −
n + n0 is the mixing free energy (per volume element) of an
ideal gas that has a local concentration n and is in equilibrium
with a bulk system of fixed concentration n0. Variation of the
free energy leads to the expression

δF =
∫

do

[
�e

δσe

e
+ �aδσa + �cδσc

]

+
∫

d3r
[
δna

(
−�e + �a + ln

na

n0

)]

+
∫

d3r
[
δnc

(
�e + �c + ln

nc

n0

)]
. (A3)

The integration in the first line of Eq. (A3) extends over the
macroion surface, and the other two integrations run over
the volume occupied by the electrolyte. Vanishing of δF in
thermal equilibrium implies both the Boltzmann distributions
in Eq. (4) and the charging free energy

F =
∫

do

[∫ σe

0
�e

dσ̄e

e
+

∫ σa

0
�adσ̄a +

∫ σc

0
�cdσ̄c

]
,

(A4)

where the potentials �e, �a , and �c are functions of the
charging parameters σ̄e, σ̄a , and σ̄c that change from zero to
their final values σe, σa , and σc, respectively. The order of
carrying out these “charging processes” is irrelevant. In the
linear limit of the Debye-Hückel model the potentials �e, �a ,
and �c depend linearly on the densities σ̄e, σ̄a , and σ̄c so

that the “charging process” can be carried out. The result is
Eq. (12).

APPENDIX B: EIGENVALUE PERTURBATION THEORY

To compute the first-order corrections of the results in
Eqs. (23), we denote by B0 the matrix B with a = b = c = 0,
which possesses eigenvalues

λ1 = 1, λ2 = κ̃2, λ3 = κ̃2 (B1)

with corresponding right column eigenvectors

x1 = (1, 0, 0), x2 = (
1
2 (̃κ2 − 1)−1, 0, 1

)
,

x3 = (− 1
2 (̃κ2 − 1)−1, 1, 0

)
, (B2)

satisfying

B0xi = λixi . (B3)

These eigenvectors are not orthonormal with respect to the
standard inner product on R3. In what follows, it will be con-
venient to have a quadratic form that renders the eigenvectors
orthonormal, i.e., a symmetric, nondegenerate matrix Q so
that xT

i Qxj = δij . If we introduce a matrix P of eigenvectors,
this condition is equivalent to P T QP = I , and Q can be
computed as Q = (P T )

−1
P −1 = (PP T )

−1
.

We now consider the perturbation of the defining equation
for the eigenvalues and eigenvectors of B0. Specifically, we
define a matrix δB by the linearization B(δa, δb, δc) ≈ B0 +
δB and consider

(B0 + δB)(xi + δxi ) = (λi + δλi )(xi + δxi ). (B4)

Making use of the unperturbed equation [Eq. (B3)] and keep-
ing terms to first order, we find

B0(δxi ) + (δB)xi = λi (δxi ) + (δλi )xi . (B5)

We can expand each perturbation δxi in the eigenbasis speci-
fied in Eq. (B2),

δxi =
3∑

j=1

cij xj . (B6)

Substituting this into Eq. (B5) and using Eq. (B3) leads to two
cases. When i = k, we obtain the eigenvalue perturbations

δλi = xT
i Q(δB)xi . (B7)

Otherwise, i 	= k and we make the replacement k → j and
calculate the expansion coefficients

cij = xT
j Q(δB)xi

λi − λj

, i 	= j. (B8)

The coefficients cii , c23, and c32 cannot be calculated unless an
additional constraint is imposed on the eigenvectors, but we
will see that our results are independent of these quantities.

Calculation of all physical quantities of interest consists
essentially in computing (B0 + δB)r . Noninteger powers of
matrices are defined through diagonalization: Br

0 = P�rP −1,

where � = diag(λ1, λ2, λ3) and �r = diag(λr
1, λ

r
2, λ

r
3). There

is an issue of uniqueness when r is nonintegral; as our
eigenvalues are real and positive, this is resolved by taking
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the positive branch of each quantity λr
i . We consider the

perturbation

(B0 + δB)r = (P + δP )(� + δ�)r (P + δP )−1, (B9)

where δP consists of the eigenvector perturbations δxi . When
the perturbations are sufficiently small, the second and third
factors on the right-hand side of Eq. (B9) can be calculated as

binomial expansions, leading to

(B0 + δB)r = Br
0 + rP (δ�)P −1 + [

(δP )P −1,Br
0

]
, (B10)

to first order and where [·, ·] is the matrix commutator. It
is easily verified (using a simultaneous diagonalization argu-
ment) that this result is independent of the quantities cii , c23,
and c32.
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