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The conserved Swift-Hohenberg equation (or phase-field-crystal [PFC] model) provides a simple microscopic
description of the thermodynamic transition between fluid and crystalline states. Combining it with elements
of the Toner-Tu theory for self-propelled particles, Menzel and Lowen [Phys. Rev. Lett. 110, 055702 (2013)]
obtained a model for crystallization (swarm formation) in active systems. Here, we study the occurrence of resting

and traveling localized states, i.e., crystalline clusters, within the resulting active PFC model. Based on linear
stability analyses and numerical continuation of the fully nonlinear states, we present a detailed analysis of the
bifurcation structure of periodic and localized, resting and traveling states in a one-dimensional active PFC model.
This allows us, for instance, to explore how the slanted homoclinic snaking of steady localized states found for

the passive PFC model is amended by activity. A particular focus lies on the onset of motion, where we show that
it occurs either through a drift-pitchfork or a drift-transcritical bifurcation. A corresponding general analytical

criterion is derived.
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I. INTRODUCTION

Active particles like bacteria, animals, or artificial mi-
croswimmers [1-4] are able to transform different forms
of energy into self-propelled directed motion [5,6]. They
use various energy sources to drive some internal motor
mechanism and represent out-of-equilibrium systems driven
by a continuous energy flow. Artificial microswimmers, for
instance, turn chemical energy [7] or radiation like light [8,9] or
ultrasound [10] into an actively driven, self-propelled motion.

Nonequilibrium systems that are composed of a large
number of active particles can show fascinating collective
phenomena. In particular, short- and long-range interactions
between individual particles result in alignment mechanisms
that can cause directional ordering (so-called polar ordering)
and synchronization of the motion of self-propelled particles
[11,12]. The resulting collective modes of motion are often
referred to as swarming [5]. Also, vibrated granular media
in confined geometries are employed as good model systems
for certain aspects of collective behavior of active particles
[13-16].

Depending on the particular interactions between particles,
their density, and their strength of driving (activity), one
observes different regimes of clustering, ordering, and motion
that one may, in analogy to equilibrium behavior, call gas,
liquid, liquid-crystalline, and crystalline states [6,17]. Much
recent attention focused on an actively driven condensation
phenomenon, the motility-induced phase separation between
a gaseous and a liquid state that is purely due to self-
propulsion [18-20]. However, for certain particle interactions
and/or at quite high densities, active particles can also form
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crystalline ordered states, in particular, resting [21,22] or
traveling [8,23-25] patches with nearly crystalline order [26].
These “active crystals” [27,28] (called “flying crystals” in
Ref. [26] and “living crystals” in Refs. [6,8,29]) have properties
that differ from passive crystalline clusters [30,31]. The activity
due to self-propulsion can change the critical temperature and
density at which crystallization sets in. Besides, it can induce
organized translational and rotational motion [18,23,25,32].
Many particle-based models are studied that show resting,
traveling, rotating, active, crystalline, and amorphous clusters
[29,33-35] as well as cluster crystals [36,37]. For instance, a
systematic study of the interplay of a short-range attraction
and self-propulsion in Brownian dynamics simulations shows
that clusters form at low activity (due to attraction) as well as
at high activity (motility-induced) with a homogeneous active
fluid phase in between [32].

There exist many continuum models for active matter
[5,26,38,39]; an important example is the Toner-Tu model
of swarming [40,41]. It represents a generalization of the
compressible Navier-Stokes equations of hydrodynamics to
systems without Galilei invariance, i.e., with preferred ve-
locities. Recently, a simple active phase-field-crystal model
(aPFC) has been proposed that describes transitions between
the liquid state and resting and traveling crystalline states [27].
It combines elements of the Toner-Tu theory and the (passive)
phase-field-crystal model (PFC), an intensively studied micro-
scopic continuum model for the dynamics of crystallization
processes on diffusive timescales [42].

The phase-field-crystal model was introduced by Elder and
coworkers [43] and is applied for passive colloidal particles
but also used for atomic systems [44,45]. Mathematically, it
corresponds to the conserved Swift-Hohenberg equation (cSH)
[46], i.e., the counterpart with conserved dynamics (i.e., of
the form of a continuity equation) of the Swift-Hohenberg
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(SH) equation that represents nonconserved dynamics [47].
The latter is the standard equation for pattern formation
close to the onset of a monotonous short-wave instability in
systems without a conservation law, e.g., a Turing instability
in reaction-diffusion systems or the onset of convection in a
Bénard system [48]. The cSH equation was first derived as the
equation governing the evolution of binary fluid convection
between thermally insulating boundaries [49]; in the PFC
context, recent derivations from classical dynamical density
functional theory (DDFT) of colloidal crystallization can be
found in Refs. [42,50]. In the course of the derivation, the
one-particle density of DDFT is shifted and scaled to obtain
the order parameter field of PFC. For brevity, in the following
we refer to it as “density.” Note that both SH and PFC
models represent gradient dynamics on the same class of
energy functionals [47]. However, in the active PFC model, the
coupling between density and polarization (quantified by the
coupling or activity parameter) breaks the gradient dynamics
structure, therefore allowing for sustained motion. Note that
nonvariational amendments of the standard nonconserved SH
equation are also studied and can also show traveling states,
though with different onset behavior [51-53].

Up to now, the active phase-field-crystal model has mainly
been employed to study the linear stability of the liquid
state with respect to the development of resting and traveling
crystalline patterns and in the study of domain-filling resting
and traveling crystals by direct time simulations [27,28,54,55].

The main purpose of the present work is to investigate rest-
ing and traveling, periodic and localized states and the related
transitions as described by the active phase-field-crystal model.
Our aim is to present a detailed analysis of the underlying bi-
furcation structure that can serve as reference for future similar
analyses of other models describing active crystals. This shall
allow one to develop a clearer understanding of observed mul-
tistabilities of states, hysteresis effects, and critical threshold
states for the occurrence of qualitative changes. Here, a particu-
lar focus is on the transitions from resting to traveling states that
will turn out to occur at drift-pitchfork and drift-transcritical
bifurcations. Drift-pitchfork bifurcations are widely studied
in the literature and occur in many systems [56,57]. This
includes the onset of motion of self-aggregating membrane
channels [58], drifting liquid column arrays [59], chemically
driven running droplets [60], and traveling localized states in
reaction-diffusion systems [61-63]. The onset of motion for
localized structures is studied, for instance, in Refs. [64—67],
while Refs. [28,55,68] focus on domain-filling patterns.

In the PFC and aPFC models, spatially localized states
correspond to finite crystalline patches (i.e., patches of
periodic states) that coexist with a liquid background (i.e., a
homogeneous state). A great variety of resting localized states
has been analyzed in detail for the PFC model in Ref. [46],
where detailed bifurcation diagrams are given in the case of
one spatial dimension (1d) while the two-dimensional (2d)
and three-dimensional (3d) cases are investigated via direct
numerical simulations. An example of a bifurcation diagram in
2d is given in Ref. [47]. We expect such resting localized states
(i.e., resting crystalline patches) to exist also for the aPFC
model at least at small values of the activity parameter similar
to the clusters observed at small activity in Ref. [32]. Increasing

activity brings the system further out of equilibrium and we
expect that the localized states begin to travel. However, we
also expect that activity might destroy the crystalline patches.

In general, localized states are experimentally observed and
modeled in various areas of biology, chemistry, and physics
[69-73]. Examples range from localized patches of vegetation
patterns [74], local arrangements of free-surface spikes of
magnetic fluids closely below the onset of the Rosenzweig
instability [75], and localized spot patterns in nonlinear opti-
cal systems [76] to oscillating localized states (oscillons) in
vibrated layers of colloidal suspensions [77].

In the context of solidification described by PFC models,
localized states are observed in and near the thermodynamic
coexistence region of liquid and crystal states. Crystalline
patches of various sizes and symmetries can coexist with a
liquid environment depending on control parameters as mean
density and undercooling [46,47,78]. For instance, increasing
the mean density, the crystals are enlarged as further density
peaks (or “bumps” or “spots”) are added at their borders.
Ultimately, the whole finite domain is filled and the branches of
localized states terminate on the branch of space filling periodic
states. Within their existence region, the localized states form
“snaking” branches in the bifurcation diagram [79,80]. An
important difference between conserved systems like the PFC
model and nonconserved systems like the SH model is that
the respective snaking curves of localized states are slanted
[81-84] and straight [79,85-87], respectively. For an extensive
discussion of this point, see the conclusion of Ref. [46]. Note
that besides mass conservation also boundary conditions can
have an influence on the type of snaking [88].

Here, we use the aPFC model to explore how slanted
snaking of localized states as a characteristic feature of pattern-
forming systems with a conserved quantity is amended by
activity. This includes the questions of when and how resting
localized states start to travel and whether and how they
are destroyed by activity. Our work is organized as follows:
Section Il introduces the model and its analytical and numerical
treatments, while Sec. III analyzes the linear stability of the
uniform state (liquid state) and discusses the different types of
dispersion relations. Then, Secs. IV and V employ numerical
continuation techniques to determine bifurcation diagrams
for resting and traveling periodic states (crystal) and local-
ized states (crystallites coexisting with liquid), respectively,
employing the mean density and activity parameter as main
control parameters. Section VI analyzes the condition for the
onset of motion of crystallites. Finally, Sec. VII concludes and
gives an outlook.

II. THE MODEL

A. Governing equations

The local state variables of the aPFC model as introduced
in Ref. [27] are the scalar order parameter field ¢ (r, t), r €
© C R" (called in the following “density”), where 2 denotes
the considered domain, and the vectorial order parameter field
P(r, t) (called in the following “polar ordering”) that describes
the local strength and direction of the active drive. The field
¥(r,t) is conserved, i.e., fQ Y d"r is constant and specifies
the modulation about the mean density v that itself encodes
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the deviation from the critical point [42]. The field P(r, ¢) is
nonconserved.

The uncoupled dynamics of ¥ (r, t) and P(r, ¢) corresponds
to a purely conserved and a mixed nonconserved and conserved
gradient dynamics on an underlying free energy functional
Fl, P], respectively. The functional contains no terms mixing
the two fields and the coupling is purely nonvariational; i.e.,
it cannot be written as a gradient dynamics. The coupling is
introduced in both equations in the simplest nontrivial form
allowed for by the tensorial character of the fields that keeps
the conserved character of the ¥ dynamics; i.e., the evolution
of ¢ follows a continuity equation 9,y = —V - j, where jis a
flux. The nondimensional evolution equations are [27]

S8F
0, = V2— — 1V - P, 1
U 5y Vo (1)
SF 8F
P =V>— — D,— — vV, 2
t SP r5P Vo W ()

where vy is the coupling strength, also called activity parameter
or velocity of self-propulsion. Physically speaking, P is subject
to translational and rotational diffusion, with D, being the
rotational diffusion constant. The functional F[y, P] is the
sum of the standard phase-field-crystal functional Fye[v/]
[42,43,89] and an orientational part Fp[P]

F = Foie + Fp 3)
with
1 1 _
Forel¥] = fd”r{iw[e + (14 V) 1y + W+ w>4}
@)
and
Fe[P] = /d"r(%Pz + 2PY). (5)

The functional (4) encodes the phase transition between
liquid and crystal state [42]. It consists of a negative inter-
facial energy density (~|V/|?) that favors the creation of
interfaces, a bulk energy density, and a stabilizing stiffness
term [~(A)?]—this can be seen by partial integration. The
parameter € encodes temperature. Namely, negative values
correspond to an undercooling of the liquid phase and result in
solid (periodic) states for suitable mean densities v/, whereas
positive values result in a liquid (homogeneous) phase. The
functional (5) with C; < 0 and C, > 0 allows for spontaneous
polarization (pitchfork bifurcation at C; = 0). However, in
most of our work we will avoid spontaneous polarization
using positive C; > 0 and C, = 0, as also done in most of the
analyses of Refs. [27,28,54]. With C; > Odiffusionreduces the
polarization.

Determining the variations of Eqgs. (4) and (5) and introduc-
ing them in the governing equations (2), we obtain the kinetic
equations

W =VHle+ 1+ VW + @ +¥)}—vV-P, (6)

P = C VP — D.C;P — 1)V (7

In the following, we study resting and traveling solutions of
these equations in the spatially one-dimensional case with a

special emphasis on the onset of motion. Then P also becomes
a scalar P and indicates the strength and sense of direction of
motion.

B. Steady and stationary states

To investigate steady and stationary states (where the latter
are steady states in some comoving frame that moves with
velocity ¢), we consider Egs. (6) and (7) with 0;¥ = co, ¥
and 9, P = cd, P. Hence, positive velocities ¢ correspond to a
propagation to the left. Then Eq. (6) can be integrated once
and we obtain the coupled fifth- and second-order ordinary
differential equations

0=d{le + (1 4+ 8.+ @ + ¥} —voP —cyy — J,
(8)

0=C10xxP — D:C1P — 00y — cO, P, 9

where the integration constant J represents a flux. We em-
phasize that the velocity c is equal to zero for resting states.
For traveling states, it is a nonlinear eigenvalue that has to be
determined along with the solution profile.

Beside the trivial steady state (v = 0, P = 0), there exist
spatially modulated states (v = ¥ (x), P = P(x)) that solve
Egs. (8) and (9). We will determine their bifurcation diagrams
by employing continuation techniques (see next section). In
the treated special case of C, = 0 [cf. Eq. (7)], for periodic
states one may integrate the linear Eq. (9) over one period
¢ and find [,dx P(x) =0. As [,dx ¥ (x) = 0 by definition,
Eq. (8) then implies J = 0. Note that as ¥ (x) is the deviation
from the mean v, for J = 0 the flux of material is given by
cr. Note that the system is invariant under the transformation
(¥, P,x,¢) = (f, —P, —x, —c). In the case of ¥ = 0, also
the symmetry (v, P, x, c) — (—y, — P, x, c¢) holds.

C. Numerical approach

We employ numerical path-continuation techniques
[47,90-92] bundled in the package AUTOO7P [93,94] to de-
termine steady (c = 0) and stationary (c # 0) periodic and
localized solutions of Egs. (8) and (9) on a domain of size
L. The techniques allow one to follow branches of solutions
in parameter space, detect bifurcations, switch branches, and
in turn follow the bifurcating branches. The pseudo-arclength
continuation implemented in AUTOO7P is also able to follow
branches when they fold back at saddle-node bifurcations,
allowing one to determine the entire bifurcation diagram. In
the literature, the method is extensively applied to the SH
equation [53,85,95] and PFC-type models [46,78,96]. To our
knowledge, continuation has not yet been applied to the aPFC
model.

To do so, our system of Egs. (8) and (9) is transformed
into a seven-dimensional dynamical system (with x being
the independent variable with seven periodic boundary condi-
tions). A phase condition that breaks translational invariance
and a constraint that controls the volume are included as
integral conditions (cf. Refs. [47,97] for examples of using such
conditions for several related equations). This implies that in
each continuation run beside the main control parameter one
has two further parameters that have to be adapted (in other
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words, they represent nonlinear eigenvalues of the problem).
Here, we use either the mean density ¥ or the activity v as
main control parameter while velocity ¢ and flux J are adapted.

The resulting bifurcation diagrams are given in terms of the
L? norm of the solution array that we use as main solution
measure. It is defined by

(10)

where the a; stand for the elements of the solution array
(Y. P) = (. 8,0, 929, 020, 04, P, 3 P).

In addition, we perform direct numerical simulations (DNS)
employing a pseudospectral method. Starting from a homoge-
neous state with a small random perturbation, Egs. (6) and (7)
are integrated forward in time via a semi-implicit Euler method,
while spatial derivatives are calculated in Fourier space and
nonlinearities in real space.

II1. LIQUID STATE AND ITS LINEAR STABILITY

The trivial solution of a PFC model is the homogeneous state
that represents the liquid phase where on diffusive timescales
the probability of finding a particle is uniform in space. In
analogy, we also call the homogeneous state (¥, Py) = (0, 0)
of the present aPFC model “liquid phase.” Although it exists at
all parameter values, for e < Qitis only stable at high || and at
lower || becomes unstable with regard to coupled density and
polarization fluctuations. However, in the context of colloidal
particles, the region ¥ > 0 is unphysical [46] and we focus
on ¥ < 0 where the liquid state is stable at low values of
(high [|) while the crystalline state is at high ¥ (low |¥/|).
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To determine the linear stability of the homogeneous state,
Egs. (6) and (7) are linearized in small perturbations (5, 5P)
about (0, 0), yielding

3,8y = V2[e + 302+ (1 4+ V3218 — vV - 8P,  (11)

3,6P = V2(C16P) — D,C18P — vV (12)

We restrict our analysis to one spatial dimension, expand
the spatial dependency of the perturbation into decoupled
harmonic modes, and, in consequence, use the exponential
ansatz 8y (x,t),6P(x,t) x ext(ikx + At) in Eqgs. (11) and
(12) to obtain the eigenvalues

1 1
i = STL10) + L0 £ 5 [L1 00 — La()P — 40k,

(13)

where
Ly(k) = —k*[e 4+ 392 4 (1 — k*)?], (14)
L,(k) = —k>C, — D,C}. (15)

We investigate the stability of (g, Py) = (0, 0) in the (¥, vp)
plane and determine the boundary, where the largest real
part of an eigenvalue A crosses zero at a finite critical wave
number k., i.e., a maximum of the dispersion relation Re(A (k))
touches zero. This can either occur with a zero or with a finite
imaginary part corresponding to unstable modes that result in
the development of a resting or traveling crystalline state (i.e.,
spatially periodic solution), respectively. Setting A = 0 and
substituting k> = z gives a cubic equation for z. Considering
Cardano’s method and the desired number of roots, we are
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FIG. 1. (a) Morphological phase diagram of the active PFC model in the 1d case in the plane spanned by activity vy and mean concentration
¥ as obtained by linear and nonlinear analysis. The remaining parameters are ¢ = —1.5, C; = 0.1, C; = 0.0, and D, = 0.5. Labels “I” to
“VI” in panel (a) indicate parameters for which the real part of the dispersion relation A(k) is shown in panel (b) with solid [dashed] lines
corresponding to real [complex] eigenvalues. In panel (a), gray shading indicates the linearly unstable region where Re(1(k)) > O for a band
of wave numbers k. There, periodic (crystalline) patterns are formed. The analytically obtained curved solid and horizontal dashed black lines
indicate the onset of the monotonic and oscillatory finite-wavelength instability, respectively. For the coinciding red lines, the critical wave
number is approximated as k. & 1. The gray-shaded region of the linearly unstable homogeneous (liquid) phase is separated by the vertical
dashed blue line into regions where stable resting (light gray) and stable traveling (dark gray) crystals are found in the fully nonlinear regime.
The thin dotted black and dot-dashed red lines indicate changes in the primary bifurcation behavior and indicate where the (then unstable)
resting crystals cease to exist (see main text).
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FIG. 2. Velocity ¢y, of the dominant linear mode (black dashed
line) and drift velocity ¢ (orange dot-dashed) of fully nonlinear
moving crystals in dependence of activity v, for (a) ¥ = —0.67 and
(b) ¥ = —0.5. Remaining parameters as in Fig. 1. The eigenvalues are
obtained from the linear stability analysis of the homogeneous state.
The velocity ¢ of the fully nonlinear traveling crystals is determined
by numerical continuation. The speed of linear modes cy;, corresponds
to Im(X)/k, i.e., cjin = Im(A) for k = 1. (a) In the linear regime close
to the onset of crystallization, cj;, and ¢ coincide. (b) Deep in the
unstable regime, cj;, does not provide a suitable approximation for
the onset of motion of the crystal. However, c¢j;, and ¢ approach each
other at high vy.

able to find analytical expressions for the stability boundaries
in both cases.

The results are presented in Fig. 1(a). The white area at low
¥ corresponds to a linearly stable liquid phase, whereas the
gray shading marks regions where the liquid phase is unstable
with regard to spatially periodic perturbations. The dashed hor-
izontal line (red and black) at y &~ —0.67 separates the linearly
stable liquid phase and a traveling crystal. It is independent of
activity vy, as can be seen, when taking a closer look at Eq. (13).
There, vy only appears in the (then negative) discriminant and
therefore only influences Im(%), i.e., the drift velocity ¢ of
the perturbation modes. The upward curved black line that
separates white and light gray regions at low activity indicates
the stability border of the liquid phase related to a purely real
eigenvalue, i.e., a monotonic instability. Alternatively to Car-
dano’s method, the critical wave number can be approximated
by k. ~ 1 as used in Ref. [54]. This approximation gives the
red lines in Fig. 1(a). The resulting stability border cannot be
distinguished by eye from the exact results.

Corresponding dispersion relations are displayed in
Fig. 1(b), showing Re(1) of the leading two eigenvalues with
solid [dashed] lines for real [complex] eigenvalues. The roman
numbering corresponds to labels in the stability diagram,
Fig. 1(a). Case I shows a dominant (i.e., at the maximum)
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FIG. 3. Resting and traveling crystals as a function of activity
vo in the one-dimensional aPFC model. (a) The solution profiles
of the periodic crystalline states are characterized by the L? norms

of ¥, ||¥] = \/LifOL Y2dx, and P (inset). Branches of resting
structures are shown in dashed gray, while traveling crystals are in
dot-dashed orange. At a critical value of vy =~ 0.15, the resting crystal
is destabilized and starts to move. The spatial periodicity remains
unchanged. Panel (b) depicts parts (3 times period £) of the profiles
of the structures at points indicated by roman numbers in panel (a).
Crystals I and II are close to the onset of motion. Profile III shows
an active crystal at a high activity of vy = 10.0 beyond the range
of panel (a). The drift velocity ¢ of the moving crystals increases
monotonically with vy as shown in Fig. 2(b). Note that the phase
difference between ¢ and P changes when varying vy, highlighted
by vertical lines. ¢ = —0.5, L = 100, and remaining parameters are
as in Fig. 1.

instability mode that is real (i.e., monotonic) and likely results
in a resting crystal. However, with increasing activity vy the
“bubble” of real eigenvalues around the maximum shrinks.
At the codimension-2 point (case II), this bubble shrinks to
zero and the marginally stable eigenvalue at the maximum
becomes complex. Case III then shows a dominant mode that
is complex (i.e., oscillatory) and likely results in crystallization
into a traveling crystal. Cases IV to VI give further qualitatively
different dispersion relations. In particular, points V and VI
illustrate the important change in the character of the dominant
mode at k ~ 1 from monotonic to oscillatory. Case IV is
located on the thin dotted black line in Fig. 1(a) that marks
where the minimum of Re(A) touches zero. The dot-dashed red
line is the corresponding approximation obtained by assuming
kmin = 1. Crossing this line does not influence the linear stabil-
ity but changes the number of expected primary bifurcations.
Accordingly, in Fig. 3 below [that represents a horizontal cut
through Fig. 1(a) at y = —0.5], at vy ~ 0.34 the branch of the
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(then unstable) resting crystals ends in a subcritical bifurcation.
As discussed above, the two phase boundaries in Fig. 1(a)
between the liquid phase and, respectively, stable resting and
stable traveling crystals collide in point II. From there, the
boundary between fully nonlinear resting and traveling crystals
continues nearly vertically upward (blue dashed line). In the
nonlinear regime, this separating line cannot be determined by
the present linear considerations and is obtained by numerical
continuation. The resulting dashed blue line marks the onset of
crystal motion and confirms Ref. [54], where a similar straight
line in adifferent parameter plane was deduced from direct time
simulations. Note that to the right of the vertical line, there is
the region where resting crystals still exist as unstable steady
states. Comparing the velocity cj;, of the dominant linear mode
and the fully nonlinearly determined drift velocity ¢ allows us
to rate how well the linear analysis performs. Figure 2(a) shows
that close to but above the liquid-solid boundary at ¢y = —0.67
(Fig. 1), the linear (dashed black line) and the fully nonlinear
results (dot-dashed orange line) coincide in the onset of motion
and the drift velocity in the entire vy range. However, in the
nonlinear regime at ¥ = —0.5, Fig. 2(b) shows that there
is a considerable offset in the onset of motion. Yet, at high
activities vy the linear and nonlinear velocities still converge.
The nonlinear drift velocity ¢ corresponds to the branch of
traveling crystals shown in Fig. 3 in the next section.

IV. CRYSTALLINE STATES

In the standard PFC model [Eq. (8) with vy = 0], at suffi-
cient distance from the critical point (e sufficiently negative or
|| sufficiently low), the transition from the liquid state (ho-
mogeneous solution) to a crystalline state (periodic solution)
corresponds to a first-order liquid-solid phase transition with
a parameter region—limited by the binodal lines—where the
two states coexist [46]. As i is a conserved quantity, this does
not automatically imply that one has a subcritical bifurcation
from the homogeneous to the periodic solution branch. For a
detailed discussion of this intricate point, see the conclusion
of Ref. [46].

Here, as the aPFC model is nonvariational, the transition
between the states does not correspond anymore to a thermo-
dynamic phase transition; i.e., arguments based on free energy
do not hold anymore. Furthermore, now also the activity vo may
be used to induce the transition. In particular, for the parameters
of Fig. 1 at ¢ approximately between —0.71 and —0.67,
increasing vy beyond the solid line melts the resting crystal.
More striking is the behavior at higher densities [in Fig. 1(a)]
for Y above —0.67). As illustrated in the bifurcation diagram
Fig. 3, increasing vy does not destroy the resting crystal but
results in the onset of motion at a critical activity v, ~ 0.15
[corresponding to the vertical dashed line in Fig. 1(a)], i.e., in
a transition from a stable resting to a stable traveling crystal.

Specifically, for the resting crystals, Fig. 3(a) shows that
with increasing activity the norm of ¢ monotonically de-
creases, while, in contrast, the amplitude of the polarization
field (see inset) first increases from zero (at vy = 0) until
at some vy = v, its norm equals the one of . There the
branch of traveling crystals bifurcates and the resting crystals
become unstable and ultimately cease to exist (after further
undergoing a Hopf bifurcation) at about vy = 0.34, where

the branch ends in a subcritical pitchfork bifurcation on the
branch of homogeneous states. As mentioned in Sec. III, this
bifurcation corresponds to point IV in Fig. 1. There, a double
real eigenvalue of the linear stability problem of the liquid
state crosses zero, indicating a bifurcation of the uniform state.
The mentioned unstable steady and oscillatory states will be
discussed elsewhere.

At v, a drift-pitchfork bifurcation [98] occurs; i.e., a real
eigenvalue crosses zero (see stability analysis in Sec. V C) and
two branches of moving periodic states (i.e., traveling crystals)
emerge from the branch of resting crystals. An analytical
condition for the drift bifurcations is derived in Sec. VI. The
two bifurcating branches with the same norm are related by the
symmetry (¢, P, x,c) = (Y, —P, —x, —c) and the velocity
close to the bifurcation is ¢ o (vg — v.)"/2. The individual
solutions on the emerging branches do not have the symmetry
(¥, P,x) = (Y, —P, —x) anymore that the resting crystal
states have (i.e., zero crossings of P do not anymore coincide
with the position of the peak maxima of ). Instead, for the
traveling crystals, the individually practically unchanged v (x)
and P(x) profiles are shifted with regard to each other. The
profiles keep their spatial periodicity and always move with
a constant drift velocity. This velocity and the size of the
phase shift between i and P profiles increase monotonically
with vy > v, also far away from the bifurcation. Indeed, for
vo > 1, one finds ¢ ~ vy and ¥ (x) ~ P(x). Typical density
and polarization profiles are given in Fig. 3(b).

V. LOCALIZED STATES

As for the passive PFC model, where the described phase
transition between liquid and crystal state is of first order
for sufficiently negative €, one finds that in the transition
region patches of liquid state and crystal state may coexist.
In the PFC model, this corresponds to the existence of a broad
variety of spatially localized states (or crystallites) that in 1d
were numerically analyzed in Refs. [46,78] (for selected 2d
results, see Ref. [47]). Next, we systematically explore how the
bifurcation structure of these crystallites is amended by activity
employing Eqs. (8) and (9). We investigate if and to what extent
the phenomenon of slanted homoclinic snaking [80] is changed
by finite values of activity. Do traveling localized states arise
due to self-propulsion? Can motion also be induced by changes
in the mean concentration?

Following former works, we classify the localized states
according to their spatial symmetry [46,73] and their drift
velocity [27]. There are two kinds of resting localized states
(RLS) that have a parity (left-right) symmetry in the ¥ compo-
nent and an inversion-symmetric polarization: (Y (x), P(x)) =
(Y (—x), —P(—x)). The symmetric localized patches can
either have a 1 peak or ¢ trough at the center, resulting in an
odd or even number of peaks, respectively. We call them “odd
states” (RLSoq4q) and “even states” (RLS,e,). Beside spatially
symmetric states, resting asymmetric localized states exist
that have no parity symmetry. We refer to them as RLSgym.
In the PFC model, the RLS states form an intricate, tilted
snakes-and-ladders structure [46]. Traveling localized states
have a nonzero drift velocity and are called TLS. For TLS, the
above symmetries in iy and P are not preserved.
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FIG. 4. Slanted homoclinic snaking of resting symmetric steady
states (drift velocity ¢ = 0). Shown is the L? norm of the steady states
in dependence of the mean concentration 1. The active drive is fixed
at vo = 0.16475. The steady localized states bifurcate subcritically
from the periodic solution with n = 16 peaks (dashed gray line). The
light (dark) blue line represents resting localized structures with a
peak (trough) in the middle, RLS,4q4 (RLSeyen). Both lines ultimately
terminate on the n = 16 periodic state. Beside the spatially extended
crystal with n = 16 peaks, there are solutions withn = 15andn = 17
peaks (dashed green lines). Remaining parameters as in Fig. 3.

A. Bifurcation diagrams

Figure 4 gives the bifurcation diagram for periodic and
localized states of the aPFC model for fixed finite activity
vy ~ 0.16 > v, employing the mean density ¥ as control
parameter. It illustrates the main characteristics of the resting
crystallites (steady localized states) and their snaking path
toward a spatially extended crystal that fills the whole con-
sidered domain. The appearance of the bifurcation diagram is
similar to the one obtained for the conserved Swift-Hohenberg
equation (passive PFC) [46]; note, in particular, the slanted
snaking that also occurs for other systems with conserved
quantities [46,81-83]. The liquid state with solution measure
[l¥, P|l» = 0 is destabilized when ¥ is increased above a

critical mean concentration ¥ &~ —0.66, coinciding with point
IT in Fig. 1(a). For the employed domain size of L = 100,
three branches of periodic states bifurcate from the uniform
state. The dashed gray and dashed green lines correspond to
periodic structures with n = 15, 16, and 17 ¢ peaks. Slightly
beyond the primary bifurcation, the periodic state withn = 16
is destabilized and two branches (light and dark blue) emerge
in a subcritical secondary bifurcation. Figure 5 gives a zoom
of this region. The two branches correspond to the resting odd
and even localized states, respectively. Both branches undergo
a series of saddle-node bifurcations where their stabilities
change (cf. Fig. 6 and Subsec. VC). The odd and even
branches of symmetric RLS are connected by many branches
of asymmetric RLS that are given in Figs. 5 and 6 as dashed
black lines, but are not included in Fig. 4.

Each pair of saddle-node bifurcations adds a couple of peaks
to the localized crystalline patch that, in consequence, enlarges
until ultimately the whole domain is filled with the crystalline
state and the branches of localized states terminate on the
n = 16 branch of periodic states. Because of the conserved
character of the density v, the density of the coexisting uniform
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FIG. 5. Resting and traveling localized states as a function of the
mean concentration . The localized states are created in a subcritical
bifurcation and branch off from the n = 16 periodic solution branch
(dashed gray, more periodic branches in dashed green). Light and
dark blue lines: RLS,4q and RLS,,.,. The ladder branch (dashed black
line) corresponding to asymmetric states connects the two symmetric
RLS. Beside snaking branches and the ladder rungs, we find traveling
localized states (TLS, dot-dashed orange) that arise due to activity.
Remaining parameters as in Fig. 4.

state is not constant but changes with the increasing size of the
crystalline patch. This results in the slanted snaking structure,
i.e., the loci of subsequent saddle-node bifurcations do not
form straight vertical lines in Fig. 4 but drift toward larger .
Increasing the domain size adds more undulations to the slanted
snaking structure and the relative tilt between subsequent
saddle-node bifurcations becomes smaller, however, without
changing the overall tiltedness.

A qualitatively new feature of the solution structure of the
aPFC model are the branches of traveling localized states
(TLS), shown as dot-dashed orange lines in Figs. 5 and 6.
The TLS drift with a constant velocity c. Their i profiles look
quite similar to the one of RLS; the left-right symmetry is
broken, though. Crossing the onset of motion, the P profile

18 F =
17| §
A o6l §
Y
51 > ]
1.4 w w
0.7 -0.6 0.5
(0

FIG. 6. Tilted snakes-and-ladders structure for finite active drive.
The light (dark) blue line represents odd (even) symmetric localized
structures. The dashed black lines correspond to asymmetric localized
states. Because of the active drive above v, there exist traveling
states (TLS, dot-dashed orange line) that emerge in various drift
bifurcations. The shown branches of TLS have between 5 and 7 peaks
in ¥. Remaining parameters as in Fig. 4.

022608-7



LUKAS OPHAUS, SVETLANA V. GUREVICH, AND UWE THIELE

PHYSICAL REVIEW E 98, 022608 (2018)

= 1o J\ 1 [oao 1 [Loasyf

5/ (1) "}VA Vi N V | v n

& A== == =l
1Lk | |

= 1o ' . ] Lo 1 [ous ,\p il

o e s s L s |

< -

| |
0O 05 10 05 10 05 1
x/L xz/L x/L

FIG. 7. Typical density and polarization profiles of localized
states for ¥ = —0.75 and various values of activity v, (rounded value
given in each panel). Blue colors indicate symmetric RLS. Two states
with an odd number of peaks are followed by an even RLS (top, from
left to right). An asymmetric resting state is plotted in black. The
profiles in red are traveling localized states. Their profile is slightly
asymmetric, too. Note that the integral over ¥ vanishes, as it only
describes the modulation around v/. Remaining parameters are as in
Fig. 3.

loses its inversion symmetry and approaches the phase and
shape of 1. Typical profiles of RLS and TLS are presented
in Fig. 7. The branches of TLS bifurcate in drift-transcritical
bifurcations from the branches of asymmetric RLS and in
drift-pitchfork bifurcations from the branches of symmetric
RLS. An analytical condition for the detection of the drift
bifurcations is derived in Sec. VI. This criterion holds for both
types of drift bifurcations.

The branches of TLS connect the snaking branches of sym-
metric RLS like rungs. They may connect two sub-branches
of the same symmetry like the two lower orange branches in
Fig. 6 as well as branches of RLS 49 and RLS,e,, like the orange
branch with the highest norm in Fig. 6. TLS of small extension
(one or two peaks, i.e., the ones in Fig. 5) exist in a broad range
of mean density ¥. Because of their similar profiles, the norms
of RLS and TLS are almost equal and the branches seem to
nearly coincide in the lower part of Fig. 5.

Similar to the case of periodic states, also for RLS an
increase of the activity v at fixed v may result in a transition to
TLS. Figure 8 gives a typical example of a bifurcation diagram
using ¢y = —0.75. Thereby, the threshold value for the onset
of motion slightly differs for the various RLS (inset of Fig. 8).
All discussed TLS have density and polarization profiles that
are steady in corresponding comoving frames.

Recall that the onset of motion coincides with a symmetry
breaking related to a phase shift between the density and
the polar ordering profiles. The density peaks are shifted
away from the zeros of P, resulting in a nonzero value when
integrating ¥ times P over the width of a peak. Above the
critical activity, the left-right symmetry of the density profile
is also broken. The same holds for the inversion symmetry of
the polarization. As described above and shown in Fig. 7, at
large vy the P profile approaches the position and shape of .
In fact, the norm of Y and P are equal for traveling structures.

Beside path continuation we also employ direct time simula-
tions of Egs. (6) and (7) to investigate the TLS. In particular, we
track the traveling single density peak over time and determine
its velocity. This confirms the continuation results as shown in
the inset of Fig. 8. The two orange dot-dashed lines in the inset
correspond to the long nose of a traveling single peak in the
main panel. The upper branch of this nose is stable, losing its
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FIG. 8. Bifurcation diagram of resting and traveling localized states giving the L? norm as a function of the active drive vy. The mean
concentration is fixed at ¢ = —0.75. Resting solutions are indicated by blue (left-right symmetric states) and dashed black (asymmetric states)
lines, and moving states are dot-dashed red and orange. The traveling single peak exists up to high values of vy & 1.6. The remaining parameters
aree = —1.5,C; = 0.1, and D, = 0.5. Inset: Velocity |c| of the traveling single peak as a function of vy. At a critical value of vy = v, (vertical
line) the transition from a resting to a traveling linearly stable state occurs. Black dots (red dashed lines) give the results of direct numerical
simulations (numerical continuation). The moving state corresponds to the long finger in the large panel. Its upper half is stable (right orange
branch in inset). v, in the main plot and the vertical black line in the inset mark the onset of motion as calculated semianalytically for the single

peak (cf. Sec. VI).
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FIG. 9. (a) Two-parameter continuation of the loci of the drift bifurcations (blue solid lines) and of the saddle-node bifurcations (orange
dot-dashed lines) of the one- and two-peak TLS. [(b), (c)] Corresponding one-parameter bifurcation diagrams at fixed values of ¥ marked by
gray horizontal lines in panel (a). Blue branches correspond to RLS, and dot-dashed orange branches correspond to TLS. The drift bifurcations
are marked by circles, and the saddle-node bifurcations are indicated by orange symbols. For increasing mean concentrations, the interval of vy
in which moving LS exist (onset of motion up to fold) grows and ultimately the activity value at the fold diverges; i.e., TLS exist for arbitrarily

high activities.

stability at the fold at vy ~ 1.6. The lower branch is unstable
and corresponds to the left orange branch in the inset. Its onset
of motion is at a slightly smaller value of vy as compared to
the stable one. For the particular value of mean concentration
¥ shown in Fig. 8, localized states consisting of more than
one peak appear to only exist in a fairly narrow range of vg
around v.. The dot-dashed red line in Fig. 8 that corresponds to
broader TLS with a few peaks wiggles about an almost vertical
line before terminating on the blue branch of four connected
resting peaks. The region of existence of the TLS is studied via
fold continuation in the next section. Note that the velocities
of all these different traveling structures are very similar.

B. Fold continuation

A two-parameter continuation allows one to track the loci
of various bifurcation points in a two-parameter plane [93].
Here, we follow the loci of (i) the saddle-node bifurcations
that mark the points where stable and unstable one-peak and
two-peak TLS annihilate and (ii) the drift bifurcations where
TLS emerge from RLS in the parameter plane spanned by
activity vy and mean density . This allows us to determine the
area of existence of these localized states in the (v, V) plane.

The result is displayed in Fig. 9(a) where drift and saddle-
node bifurcations are marked by blue solid lines and orange
dot-dashed lines, respectively. The plot has to be carefully
interpreted as the various bifurcations can be located on
different branches in the bifurcation diagrams. To facilitate
this, we have marked the two values of ¥ = —0.71 and ¢ =
—0.78 by horizontal gray lines and provide the corresponding
one parameter bifurcation diagrams as Figs. 9(b) and 9(c) (also
cf. Fig. 8), where the bifurcation points are highlighted by
symbols that also mark the fold continuation lines in Fig. 9(a).

Figure 9 proves that traveling localized states are a generic
solution of the active PFC model as they occur in an extended
region of the parameter plane. In fact, the values of vy at
the saddle-node bifurcations that limit their existence diverge

at ¥ = —0.74 and ¢ = —0.69 for one- and two-peak TLS,
respectively. We numerically follow their position up to vy 2>
103. Note that for ¢y = —0.71 the fold of the one-peak TLS
has already moved far outside of the displayed v, interval.
At this ¥, the two-peak TLS exists up to vy &~ 0.38 while
at 1y = —0.78 its range of existence is smaller. All drift
bifurcations are quite close to vp = 0.15 with only small
variations between different localized states and with V. This
makes an interpretation of the corresponding diagram region
challenging.

Roughly speaking, one-peak (two-peak) TLS exist in the
lower part of Fig. 9(a) in the area between the nearly vertical
blue solid lines and the dot-dashed line marked by the filled
circle (square), while in the upper part of Fig. 9(a) they exist
in the area between the dot-dashed line marked by the filled
triangle and the one marked by the filled circle (square).
Remember that in Fig. 9(b) the filled circle has left the
displayed interval of vy. The uppermost unmarked dot-dashed
line in Fig. 9(a) is related to three-peak TLS and will be further
discussed elsewhere.

C. Linear stability

Up to here, we have discussed bifurcation diagrams and
existence of solutions. Although general knowledge about
bifurcations allows one to develop quite a good idea about
the stability of the various solutions, it is important to
explicitly determine the linear stability. The obtained detailed
information then permits us to predict which states can persist
in experiments or direct numerical simulations (the linearly
stable states) and which states may only appear as (possible
long-lived) transients. These are given by the unstable states
that represent saddles in function space, as they might first
attract time evolutions to then repel them into well-defined
directions corresponding to the eigenvectors of the most
unstable eigenvalue.
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FIG. 10. Black lines: Real part of eigenvalues obtained from
numerical LSA with a finite difference method. The black dashed
[dotted] lines indicate complex [real] eigenvalues. Orange line: Real
eigenvalue from continuation. As expected, two neutrally stable
modes with Re(1) = 0 are found (translation mode and volume mode).
One mode is destabilized at v. ~ 0.161, the detected onset of motion.
At v, the mode coincides with the spatial derivative of the localized
state and corresponds to a translation.

For the analysis, Eqs. (6) and (7) are linearized in small
perturbations §y and § P about a one-dimensional steady state
(Yo(x), Py(x))T to obtain

38Y = dexle 4+ 30 + ¥0)* + (1 + 8,,)°18¢ — 19,8 P,

(16)
8P = 3,x(C18P) — D,C18P — voddy.  (17)

In the case of uniformly moving states (Y, P)T =
(Wo(x + ct), Po(x +ct))T, a comoving frame term is added
to the right-hand side. Assuming exponential growth of the
perturbation, i.e., ¥ = Y| exp(At) and § P = Pj exp(At), we
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have to solve the linear eigenvalue problem,

conm(3) ()

where the linear operator L(y, Py) is defined by the right-
hand side of Eqgs. (16) and (17) [it is explicitly given below in
Eq. (24)].

We are not able to pursue an analytical solution of the
linear problem because already the steady states ¥(x) and
Py(x) are obtained by numerical continuation. Instead, we
discretize the steady states equidistantly in space, i.e., employ
a finite difference method to transform (18) into a standard
linear algebraic eigenvalue problem that we solve employing
standard numerical routines.

The black lines in Fig. 10 give an example of a calculated
eigenvalue spectrum in dependence of the activity. Shown are
the real parts of the leading ten eigenvalues for the branch of
one-peak RLS that in Fig. 11 is stable at vg = 0.1. The dotted
lines indicate purely real eigenvalues whereas the three dashed
lines indicate complex eigenvalues. The largest eigenvalue is
real and crosses zero at a critical activity of v. = 0.161 where
the drift-pitchfork bifurcation occurs, as discussed in detail in
Sec. VI. The obtained v, well agrees with the value we obtain
through the numerical continuation of the one-peak TLS that
detects the drift-pitchfork bifurcation (as a fold) at the same
value. Note that in the discretized eigenvalue problem the zero
crossing has to be obtained by extrapolation as the relevant
eigenvalue “interacts” with one of the two zero eigenvalues, in
this way “blurring” the crossing. This is related to the problem
of level repulsion or avoided crossing (von Neumann—Wigner
theorem [99]). To prevent the blurred zero crossing, we
also solve Eq. (18) by numerical continuation [100]. The
eigenvalue we obtain in this way is given by the orange line
in Fig. 10. It confirms the finite difference calculations and
perfectly matches v,.

(18)
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FIG. 11. Linear stability of localized states. Light and dark blue lines: RLS,4g and RLS,,.,. Dashed black: Asymmetric RLS. Dot-dashed
orange: TRS. Stable steady states are indicated by — signs and plotted as heavy lines. For unstable states, the number of + signs gives the number
of unstable eigenmodes with Re(1) > 0. (a) Continuation of vy, ¥ = —0.75. Symmetric RLS lose their stability in drift bifurcations at vy & 0.16
and TLS become stable. Asymmetric RLS are always unstable. (b) Continuation of ¥, vy = 0.16475. LS are created in a subcritical bifurcation,
branching off from the periodic branch (dashed gray, more periodic branches in dashed green). Note that vertical cuts at the respective values
of vy of panel (b) in panel (a) and of v vice versa correspond to each other.
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Two zero eigenvalues exist for all vy and represent neutrally
stable modes that are related to the symmetries of the model.
One of them represents a translation mode that occurs because
Egs. (6) and (7) are invariant with respect to translation and
therefore exhibit the neutral eigenmode of translation, often
called Goldstone mode of translational symmetry. In addition,
an infinitesimal change in the mean concentration ¥ does also
resultin another solution of the equations, i.e., the second mode
with zero eigenvalue is a neutral volume mode or Goldstone
mode of symmetry with respect to mass change.

Calculating the eigenfunction that is destabilized shows that
at v, the mode matches the spatial derivative of the investigated
localized peak. The derivative corresponds to an infinitesimal
shift of the position of the peak and therefore to the Goldstone
mode of translational symmetry. This fact indicates that the
onset of motion is indeed due to a drift bifurcation.

A typical result of a systematic stability analysis is shown
in Fig. 11, where Fig. 11(a) represents an enlargment of a
part of the bifurcation diagram in Fig. 8 and Fig. 11(b) is the
lowest part of the snakes-and-ladders structure. The branches
of linearly stable and unstable states are indicated by “—”
and “4” signs, respectively. The number of “+” signs gives
the number of unstable eigenmodes. Linearly stable states are
represented by heavy lines, indicating that in Fig. 11(a) in the
considered parameter range one has stable one- and two-peak
RLS and TLS with regions of multistability of (i) one- and
two-peak RLS at low activity, (ii) one- and two-peak TLS at
slightly larger activity, and in between (iii) a very small region
where one-peak TLS and two-peak RLS are both linearly
stable. In the considered case, all the eigenvalues that cross the
imaginary axis are real, although stable complex eigenvalues
do occur (see dashed lines in Fig. 10). Note that Fig. 11(a)
shows more bifurcations than are followed in Fig. 9(a).

Studying Figs. 11(b) and 6 in detail, one finds that—despite
the similar shape of the snake and ladder—the stability of
the RLS differs from the one found for the PFC model
[46]: There the symmetric RLS change their stability as the
branches snake along, while the asymmetric RLS are always
unstable. Here, however, the stable symmetric RLS are already
destabilized before the saddle-node bifurcation is reached as
the TLS emerge at the drift-pitchfork bifurcation; i.e., their
range of linear stability is diminished. Since vy = 0.16475 >
v, in Fig. 11(b), most of the resting branches are unstable.
At a drift-transcritical bifurcation, the asymmetric RLS also
acquire an additional unstable mode as compared to the case
of PFC. For activities lower than v, the picture is very similar
to the one of the passive PFC model.

Figure 12 enlarges a detail of Fig. 11(a): the drift-
transcritical bifurcation, where moving states branch off the
asymmetric resting state composed of two density peaks of
different height. As already the resting state is asymmetric,
the two sub-branches emerging at the drift bifurcation are
not related to each other by symmetry, but intrinsically differ.
Hence, in this case the creation of the TLS corresponds to a
drift-transcritical bifurcation, different from the drift-pitchfork
bifurcations in which the symmetric RLS lose their stability.
The transcritical bifurcation does not coincide with the fold
of the (red) TLS branch and its stability changes twice close
to the drift bifurcation. Accordingly, in Fig. 11(a) the two
sub-branches of TLS seem to have the same stability before and
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FIG. 12. Drift-transcritical ~ bifurcation. = Enlargement  of

Fig. 11(a). The asymmetric RLS (dashed black, +) acquires an
additional unstable mode (++) in a drift-transcritical bifurcation.
The moving double bump (dot-dashed red line) changes its stability
in the transcritical bifurcation and at the nearby fold. All shown
branches are linearly unstable.

after crossing the resting asymmetric state. There is another
drift-transcritical bifurcation on the asymmetric branch in
Fig. 11(b).

VI. ONSET OF MOTION—THE DRIFT INSTABILITY

Next, we discuss the numerically found drift bifurcations
more in detail and derive a specific simple analytic condition
that allows one to detect drift bifurcations for a class of models
that includes the aPFC model. The analytical criterion for the
onset of motion is valid for the encountered drift-pitchfork and
drift-transcritical bifurcations.

A. Velocity expansion

We consider the one-dimensional version of the models (6)
and (7) in a comoving frame with coordinate x’ = x + ct,
time 7, and velocity c. We use (¥o(x), Po(x))! to denote
a steady solution, i.e., with ¢ = 0. Assuming there are only
small corrections (;, P;)T to the steady state when changing
parameters close to the drift bifurcation, we introduce a
velocity expansion

Y = Yo(x) + c[P1(x) + e (x) + AP (x) + .. .1,
P = Py(x)+ c[Py(x)+ cPo(x)+ 2 Ps(x)+...].  (19)

Plugging in the expansions (up to order ¢?) in the dynamic
equations [Egs. (6) and (7)] leads to

¢ 3, (Yo + ey + )
= Oxxl(€ + (14 0:))Wo + 1 + ¥) + (F + Yo
+ e + 2Pn)’,
— v9dy(Py + ¢ P + 2 P),
(20)
cd,(Py+chP + czﬁz)
= (s — D)[C1(Py + cP + * P)
+ Co(Py + Py + ¢ Py)*]
— v (Yo + 1 + V).
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By equating coefficients of ¢", we find for ¢°
0= dur{le + (1 + 82’10 + (F + o)’} — vod Po
0= (3xx = Do)(C1Po + C2Fg) — vodu o @D

i.e., we recover the equations for the resting base state. To
linear order in ¢, we obtain

3o = durlle + (14 3:) 2101 + 3(F + ¥0) ¥} — vody Pr,
|

L(o(x), Po(x)) = (

_UOax

In the following, we focus again on the case of a linear
equation for P without spontaneous polarization, C, = 0. We
notice that the top left component of (24)

Lii(x) = duefle + (1 + 30?1 + 3[¥ + vo(x)]*)
= 3, Lsu(Yo(x)) (25)

is the product of a Laplacian (due to mass conservation) and
the linearized operator from a Swift-Hohenberg equation with
cubic nonlinearity. This fact will turn out to be very helpful
when forming the adjoint operator £.

B. Translational symmetry and Goldstone modes

Adding its first spatial derivative to the base state corre-
sponds to a small shift in the position of the state. Since the
aPFC model is translationally invariant,

vo\ _ (G _ (Ve
8X<Po> B <92> - (Pg> (26

can be identified as a neutral eigenfunction with eigenvalue
zero, often referred to as the Goldstone mode G of the
translational symmetry. Thus,

Lm(w)zﬁgzu 27)
Py

A typical destabilization occurs when the real part of an
eigenvalue crosses zero as parameters of the system are being
changed. We now consider the case that the imaginary part
also equals zero, so that the corresponding eigenfunctions of
L can be expressed by a linear combination of the Goldstone
modes. The second Goldstone mode mentioned in Sec. V C is
the volume mode that does not interfere in the drift bifurcation.
Atthe bifurcation point, areal eigenvalue crosses the imaginary
axis; i.e., an additional neutral mode exists. In consequence,
the system of eigenfunctions of the null space of the linear
operator is incomplete and must be supplemented by a gener-
alized neutral eigenfunction [63]. This function is called the
propagator mode P, defined by

LP =g. (28)

It is exactly the occurrence of P that marks the destabilization,
i.e., the onset of motion. Using the Fredholm alternative [101],
one finds that Eq. (28) can be solved if and only if (iff)

(GG =0, (29)

derlle + (14 80?1+ 3V + Yo (X))

0y Py = (Oxyx — Dr)(Clﬁl +3 CZP()ZPI) - UOaxﬁl» (22)

i.e., alinear system for v/, and P;. We write Eqs. (22) in matrix

form
Vo) _ Ui
Oy (Po) = Lo, P0)<I31> (23)

with the same linear operator £ already employed in (18):

—anx
2) (24)
(0xx — D)[C1 + 3 CoPy(x)7]

(

where G' is the neutral eigenfunction of the adjoint operator
LT with the same spatial symmetry as G. The scalar product
(-]-) is defined as a full spatial integration over the considered
domain. The values of a set of control parameters for which
Eq. (29) is fulfilled corresponds to the bifurcation point.

C. The adjoint linearized operator

Let G be the adjoint neutral eigenfunction, i.e.,
Ligh=o. (30)

Equation (23) corresponds to

i
=L ), 31
g ( 5, (€29)
showing that (¥, P;)” is a generalized neutral eigenfunction
P.Tofind G = (1//}, Pg)T, we determine the adjoint operator

LSH axx vOax
L= 32
< UOax Cl(axx - Dr)) ( )

using (AB)' = BT A, the self-adjointness of 9., and Lgy, the
relation 8; = —0,, and (vg, C1, D;) € R.

D. Determining the adjoint eigenfunctions

Componentwise, the adjoint problem reads

0 = Lsy der i + 00y P, (33)

0 = vdx ¥y, + Ci(3ux — D) P, (34)

Comparing Eq. (33) to the steady-state equation for ¥ (8) with
J = 0 and ¢ = 0 and employing a simple chain rule

0= 0.7 (wo) = voP (35)
= 0y — —
51/[ 0 0
= LSHaxl/fO — UOP (36)
suggests
Bex Wy = dx o, (37)
8, P} = —Py. (38)
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Integrating yields
Vi) = / [Yo(x') + Cldx’ +D, (39)
0

Pix) = — /x Py(x')dx' +F, (40)
0

with constants C, D, and F. Equation (34) is consistent with
this neutral adjoint eigenfunction. Substituting gives

Voo — C1(0yx — Dr)/ Po(x")dx’ = const., (41)

which is true as can be seen by integrating the steady-state
equation for P, Eq. (9).

E. Solvability condition
Collecting all the results, the solvability condition (29) reads

(G'1G) = (Wlwe) + (PlIPg)

</ [Yo(x") + Cldx' +D

Ox 1ﬂo>

< [Po(x/) + Eldx’| 9, P0> (42)

< </ [Yo(x") + Cldx’ +D) W0>

+ <ax / [Po(x') + EJd’ P0> 43)
0

= —(Yolvo) + (Po| Po) = 0. (44)

& 0= |[Woll> = IPoll% (45)

where we have employed a partial integration and used

(Clyrg) =C fOL Yodx = 0, since ¥ is the modulation around
the fixed mean density. The same holds for the integral over
Py as explained in Sec. IIC. For all TLS, we have found
the onset of motion perfectly matches the zero crossing of
[[¥oll* — (1 Pol >

A particular example is given in Fig. 13. Figure 13(a) shows
a part of the bifurcation diagram Fig. 8. The solid blue branch
corresponds to the RLS with a single density peak that loses
its stability in a drift-pitchfork bifurcation at v.. The emerging
traveling bump (upper dot-dashed orange line) is linearly stable
[cf. Fig. 11(a), the lower orange branch is unstable]. In the
lower panel, Fig. 13(b), we plot the difference of the squared
norms as employed in Eq. (45). In addition, we also display the
velocity of the emerging TLS (dot-dashed orange). The two
zero crossings of ||| — || Po||> occur at exactly the same
values of vy as the onsets of motion. The second root is due to
the lower unstable branch of TLS that bifurcates at a slightly
lower activity. Notice that the criterion for the onset of motion,
Eq. (45), also holds for the drift-transcritical bifurcation.

VII. DISCUSSION AND CONCLUSIONS

We have in some detail studied the bifurcation structure
of the active phase-field-crystal model in the one-dimensional
case. After discussing the linear stability of the liquid (homoge-
neous) state with respect to monotonous and oscillatory modes,

—~
&
~—

0.8 L ]
a 06— -
= 04t ) :
0.2 ! !
(b) -
=01 .
Tt |
|
= 0
= | \N |
0.1 Ve 0.2 0.25 0.3
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FIG. 13. Onset of motion. (a) L2 norm of steady states in depen-
dence of v, for fixed ¥y = —0.75. The blue branch corresponds to a
RLS with one bump. The RLS is destabilized at v, and starts to travel
with drift velocity c. The traveling odd LS is indicated by the dashed
orange branch. (b) Solvability condition Eq. (45) ||vol|*> — || Poll?
(blue) of the RLS and velocity |c| (dashed orange line) of TLS vs
activity v, showing perfect agreement of the two approaches.

we have briefly discussed the existence and stability of sta-
ble domain-filling resting and traveling crystalline (periodic)
structures. Note that we have not systematically studied unsta-
ble domain-filling periodic structures. Our main focus has been
on crystallites (crystals of finite extension) that correspond to
stable and unstable localized states of different symmetries.
We have analyzed how the classical slanted snakes-and-ladders
structure (slanted homoclinic snaking) known from the phase-
field-crystal model [46] is amended by activity. In particular,
we have shown that by increasing activity, one finds a critical
value for the onset of motion of the various localized states and
of the domain-filling crystal. Using the mean concentration
¥ as control parameter, we have found that traveling states
emerge either through drift-pitchfork bifurcations of the resting
parity (left-right) symmetric localized states or through drift-
transcritical bifurcations of resting asymmetric localized states
that form the rungs of the snakes-and-ladders bifurcation
structure. At the studied parameter values, these traveling
localized states always occur within the i range limited by
the snaking branches of resting localized states.

Note that this onset behavior differs from the case of the
nonvariational Swift-Hohenberg equations studied in Ref. [52].
There, at any value of the driving parameter in front of the
nonvariational term, all asymmetric states drift and the original
pitchfork bifurcations of the variational system either split
into two saddle-node bifurcations or become a drift-pitchfork
bifurcation. Here, however, the coupling of the two fields
allows for resting asymmetric states even for finite activity
parameter and moving states emerge through drift bifurcations
that are not present (in any form) in the variational limit.

The second investigated main control parameter has been
the activity. Here, the general tendency is that an increase in
activity suppresses the resting localized and periodic states
that ultimately annihilate in saddle-node bifurcations at critical
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activities that are of a similar magnitude for all studied states.
In other words, activity ultimately melts all resting crystalline
structures as the driving force overcomes the attractive forces
that stabilize the equilibrium crystals and crystallites that exist
in the reference system without activity. This corresponds to
the melting of equilibrium clusters by activity observed in the
Brownian dynamics simulations of Ref. [32] for self-propelled
particles with short-range attraction. However, at values of the
activity below this melting point, most branches of resting
states show drift bifurcations where branches of traveling states
emerge that may exist in a small range of activity or even extend
toward infinite activity, as we have shown by numerical two-
parameter continuation of the relevant bifurcations. In other
words, depending on parameters, although activity may melt
traveling crystallites, there are extended parameter regions
where this is not the case. In fact, we have found that although
high activity melts most traveling localized states, i.e., traveling
crystalline patches, this is not the case for traveling periodic
states, i.e., traveling domain-filling crystals. They can be driven
with arbitrarily high activity and then show high velocities.
We believe that this is most likely the case because the
periodicity of the domain-filling crystals is fixed, while the
traveling localized states naturally adapt their peak spacing.
This additional degree of freedom could make them less stable.
Note that the found crystallites are unrelated to the motility-
induced clusters discussed, e.g., in Refs. [18-20]. The latter
effect has not yet been found in an active PFC model as they are
mainly considered to study how equilibrium crystallization is
amended by activity. It should be further investigated whether it
may also describe motility-induced clustering, especially when
allowing for spontaneous polarization (C, # 0).

Furthermore, we have investigated the region of existence
of traveling localized states and have shown that they are
generic solutions for extended regions of the plane spanned by
mean concentration and activity. Whereas extended traveling
localized states of three and more peaks quickly vanish into
the homogeneous background, narrow localized states (one
and two density peaks) can be driven at quite high activities
where they reach high velocities. This does not seem to be the
case in the nonvariational systems studied in Refs. [52,53].
Therefore, a comparative study of the present system, the
systems studied in Refs. [52,53], and the ones reviewed and
discussed in Ref. [51] would be beneficial.

A further focus has been the onset of motion that occurs at
a critical activity which only slightly depends on the particular
localized state. We have considered drift instabilities for the
system of two coupled equations where one represents a
mass-conserving dynamics of a density-like quantity and the
second one is a linear equation for the polarization. Also, the
nonvariational coupling of the two equations is linear. Under
these conditions, we have derived a general criterion for the
onset of motion. Namely, the zero crossing of the difference of

the squared norms of the two steady fields (||vo||> — || Pol|?)
marks the onset of motion for all localized and extended
crystalline states. The criterion holds for both types of drift
instabilities that occur in the aPFC model: drift-pitchfork and
drift-transcritical bifurcations and may be used to determine
the critical strength of activity that is needed for collective trav-
eling states. Note that the criterion also applies to other models
of active media that fulfill the described conditions. This will
be discussed elsewhere. What needs further clarification is the
question of whether such a simple criterion can be derived for
more complicated active models that more faithfully model
specific properties of the experimental systems.

Finally, we highlight a number of questions that merit
further investigation. Here, our main aim has been to establish
a first overview of the rather involved overall bifurcation
structure that is related to the onset of motion in continuum
models of active crystals. Although we have focused on one-
dimensional systems, we believe that most of the obtained
results will hold for two- or even three-dimensional systems.
There, however, the picture is complicated by the possible
occurrence of various pattern types; compare, for instance,
the differences found in the classical nonconserved Swift-
Hohenberg model [85-87]. Having established the existence
of the various traveling and resting localized states, it will be
interesting to study their interactions (in analogy to Sec. IV
of Ref. [52]) and to obtain more detailed information about
their regions of existence, multistability and instabilities. As
experimental studies often focus on the collective behavior of
many interacting clusters [18,23,25], it should be investigated
whether it is possible to derive statistical models from single
cluster bifurcation studies as the present one. Such a methodol-
ogy has recently been presented for ensembles of sliding drops
[102]. We hope that the provided study will serve as a reference
for other such analyses of more detailed models for active
crystals; e.g., here we have focused on a rather simple coupling
of concentration and polarization and have also excluded
spontaneous polarization. The obtained results regarding the
onset of motion should also be compared to related results
regarding the bifurcation structure of other models of active
matter. This will allow one to develop a clearer general
understanding of observed multistabilities of states, hysteresis
effects, and thresholds where qualitative changes occur.
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