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Power law observed in the motion of an asymmetric camphor boat under viscous conditions
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We investigated the velocity of an asymmetric camphor boat moving on aqueous solutions with glycerol. The
viscosity was controlled by using several concentrations of glycerol into the solution. The velocity decreased
with an increase in the glycerol concentration. We proposed a phenomenological model, and we showed that the
velocity decreased with an increase in the viscosity according to power law. Our experimental result agreed with
the one obtained from our model. These results suggest that a decay length of the camphor concentration at the
front side of the boat is sufficiently shorter than that of the rear side.
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I. INTRODUCTION

We can observe a wide variety of patterns, such as in a traffic
jam [1–3], a large-scale ordering of swimming bacteria [4,5],
a swarm of mosquitoes, a parliament of birds, and a school of
fish [6–8], formed by living things as self-propelled objects. It
is one of the challenges of understanding pattern formations
induced by these collective motions.

Similar behaviors also emerge in chemical systems, such as
microtubes [9], droplets [10–12], Janus particles [13,14], and
camphor systems [15–31]. Self-propelled objects transform
chemical energy into kinetic energy in nonequilibrium
systems, and they move spontaneously as if they were living.
Recently, a lot of studies have reported on camphor boats as
self-propelled particles in the chemical system [15–20]. A
camphor boat is made of a plastic sheet attached to a camphor
disk. When the camphor boat is put on an aqueous surface, the
camphor molecules dissolve from the disk under the boat and
expand on the surface. As the camphor molecules decrease the
surface tension of the aqueous phase, the camphor boat moves
on the aqueous phase spontaneously due to a difference in
surface tension around the boat. There have been many experi-
mental studies, as well as numerical ones, on the camphor boat.
Some of the numerical models are based on reaction-diffusion
dynamics on the camphor concentration [20–24], and the
others are based on fluid dynamics [25–27]. These models
could explain the experimental behaviors in a qualitative
manner. Basic physical quantities were necessary in order to
realize the quantitative correspondence. However, it had been
difficult to measure the driving force on the motion of the
camphor boat, the surface tension difference between the front
and the back of the boat, the diffusion coefficient, the supply
rate of camphor molecules from the camphor disk to the water
surface, and a relaxation rate before Suematsu et al. measured
these quantitative properties in experiments [18]. The results
have allowed us to compare the experimental results with
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theoretical ones quantitatively, and they have provided a deep
understanding of the interesting phenomena of the camphor
boat. However, they investigated only the situation for pure
water as an aqueous phase. Thus, we focused on the viscosity
dependence of the motion with regard to a camphor boat.

As methods to change the viscosities of the aqueous solution
under the camphor boat, temperature control of the solution or
the use of the solution with different physical concentration is
considered. We adopted the latter; we used aqueous solutions
of glycerol with several glycerol concentrations [21,28], and
we changed the viscosity of the base solution.

In this paper, we investigated the velocity v of the camphor
boat for several glycerol concentrations p, and we found
that v decreased with an increase in p. To understand the p

dependence of v, we proposed the mathematical model. The
model showed a power law v ∼ μ−1/2, where μ is the viscosity
of the base solution. Our experimental results satisfied the
scaling relation obtained from the mathematical model. The
agreement between the experimental result and the theoretical
result for the viscosity dependence of v provides an estimation
of the concentration field around the camphor boat, which is
difficult to measure directly in experiments.

II. EXPERIMENTAL PROCEDURE

A round-shape boat as shown in Figs. 1(a) and 1(b) was
used to measure the velocity of the camphor boat. The boat
was composed of a plastic plate (thickness: 0.1 mm) and
a camphor disk, which was prepared by pressing camphor
powder [(+)-Camphor, Wako, Japan] using a pellet die set
for the preparation of samples on Fourier-transform–infrared
(FT-IR) spectroscopy analysis. The diameter and the thickness
of the camphor disk were 3.0 and 1.0 mm, respectively. The
plastic plate was cut in a circle with a diameter of 6.0 mm, and
the camphor disk was attached to the edge of the flat circular
plastic plate using an adhesive (Bath bond Q, KONISHI,
Japan), so that half of the camphor disk was outside of the
plastic sheet. This round-shape camphor boat moved toward
the direction of the plastic sheet.
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FIG. 1. Schematic drawings of (a) top view and (b) side view of
a camphor boat for the measurements of velocities, (c) top view, and
(d) side view on the annular chamber.

An annular glass chamber was used, which was composed
of two petri dishes with different diameters as shown in
Figs. 1(c) and 1(d). Inner and outer diameters were 128.5
and 145.8 mm, and the channel width of the chamber was
thus 8.7 mm. As it is known that the velocity is sensitive
to the depth of water [19], the chamber was put on a clear
horizontal plate. The solution was poured into the chamber so
that the depth of the solution was 4.7 mm; the solution was
glycerol (Glycerol, Wako, Japan) and water mixed at several
mass ratios p, i.e., p is a percentage of a glycerol mass in
the mixed solution. We investigated the physical properties
of the solution, such as the viscosity, the surface tension, and

the camphor solubility against glycerol concentration p. The
detailed results are shown in Appendix A. The camphor boat
was put on the surface of the solution in the glass chamber,
and then it started to move spontaneously. For a visualization
of the motion, a LED board was placed under the horizontal
plate. The motion of the boat was captured with a digital video
camera (HDR-FX1, SONY, Japan) from the top of the chamber.
Obtained movies were analyzed using an image-processing
system (ImageJ, Nature Institutes of Health, USA).

III. EXPERIMENTAL RESULTS

We investigated the velocity of the camphor boat on the
solutions of various glycerol concentrations p. The position
of the camphor boat is described as a radial angle θ in the
annular chamber, as shown in Fig. 2(a). Analyses of the videos
captured by the digital video camera provide the position θ

at time t , where t = 0 corresponds to the time when the boat
finished three laps along the chamber after the boat had been
put on the surface of the solution. In Fig. 2(b), θ had a constant
gradient in time, that is to say, the camphor boat moved with a
constant velocity. Figure 2(c) shows a time series of the angular
velocity ω = �θ/�t , where �t = 1/30 s for one frame of
the video camera and �θ is an angular difference between
t and t + �t . In Fig. 2(b), the expanded plot is shown for
the time region corresponding to the gray region in Fig. 2(c).
The angular velocity ω in the region fluctuated around the
average value 1.08 rad/s. A similar tendency was observed
at 50 � t � 200 s, i.e., ω increased with time and had noisy
data before t ∼ 10 s, and ω began to decrease after t ∼ 250 s.
Therefore, we investigated ω at 60 � t � 180 s, during which
ω had almost a constant value for time. Next, we investigated
the angular velocity for p as shown in Fig. 2(d). The vertical
and horizontal axes in Fig. 2(d) show the angular velocity ω

and concentration p. The ω was obtained from the linear fitting
of time series as shown in Fig. 2(b). The values of the errors
for each ω were lower than 10−3 rad/s. As shown in Fig. 2(d),
ω decreased with an increase in p.
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FIG. 2. (a) Snapshot of the camphor boat motion. (b) Time series of the position θ of a camphor boat moving on water (p = 0), where
θ is the angle shown in (a). (c) Time series of angular velocity ω of the camphor boat, where ω = �θ/�t for each frame. The gray region
corresponds to the time range shown in (b). (d) Dependence of ω on p, where p is the glycerol concentration and ω is the angular velocity
obtained from linear fitting of time series as shown in (b).
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FIG. 3. Illustration of the side view of a camphor boat.

IV. MATHEMATICAL MODEL

The glycerol concentration p of the solution was controlled
in our experiments, which led to a change in the viscosity μ

shown in Appendix A. In this section, we consider a viscosity
dependence of the camphor boat velocity. Now, the annular
glass chamber used in our experiments is recognized as a one-
dimensional channel with an infinite length.

The time evolution equation of the camphor boat in a one-
dimensional system (the spatial coordinate is represented as x)
is given as

m
d2X

dt2
= −h

dX

dt
+ F, (1)

where m, X, h, and F are the mass, the center of mass,
the friction coefficient of the camphor boat, and the driving
force exerted on the moving camphor boat, respectively. We
assume that h is proportional to viscosity μ such as h = Kμ,
where K is a constant (K > 0). The assumption has been used
in many previous papers [15–18,20–25,28], and it was also
reported that the viscous drag on the mobility of thin film in
Newtonian fluid obeyed a linear relationship with the fluid
viscosity [32]. Therefore, we considered that the assumption
h = Kμ is natural [33]. The driving force F is described as

F = w{γ [c(X + r + �)] − γ [c(X − r )]}, (2)

where w is the width of the camphor disk. Here, we consider
that the positions of the front and the back of the boat are
shown as x = X + r + � and x = X − r , where r and � are
the radius of the disk and the size of the boat as defined in
Fig. 3. The surface tension γ depends on the concentration c

of the camphor molecules at the surface of the solution, and
we assume the linear relation as

γ = γ0 − �c, (3)

where γ0 is the surface tension of the base solution without
camphor and � is a positive constant.

The time evolution on the camphor concentration c is shown
as

∂c

∂t
= D

∂2c

∂x2
− ac + f (x − X), (4)

where a is the sum of sublimation rate and dissolution rate
of the camphor molecules on the solution surface, D is
the diffusion coefficient of the camphor molecule, and f

denotes the dissolution rate of the camphor molecules from
the camphor disk to the aqueous solution surface. As for the
term f (z), we apply the following description:

f (z) =
{
f0 (−r < z < r ),

0 (otherwise).
(5)

That is to say, the dissolution of camphor molecules from
the disk occurs at −r < z < r . The above equation does not
include the Marangoni effect directly, although the flow has
an influence on the camphor concentration. Reference [31]
showed that Eq. (4) was reasonable if D was recognized as the
spatially uniform effective diffusion coefficient of the camphor
to include the transportation by the flow. In addition, this
spatially uniform effective diffusion coefficient is supported by
the experimental results that the diffusion length is proportional
to the square root of elapsed time [15].

V. THEORETICAL ANALYSIS

Our experimental results showed that the camphor boat
moved with a constant velocity in time, as shown in Fig. 2.
Thus, we should consider solutions for the motion of the
camphor boat with a constant velocity v in the x direction,
i.e., X = vt . From this condition, Eq. (1) leads to

−hv + F = 0. (6)

By setting ξ = x − vt and c = c(ξ ), Eq. (4) provides

−v
dc

dξ
= D

d2c

dξ 2
− ac + f (ξ ). (7)

Equation (7) leads to the following solutions:

c(ξ ) =

⎧⎪⎨
⎪⎩

β1 exp[λ−(ξ − r )] (ξ > r ),
f0

a
+ α2 exp(λ+ξ ) + β2 exp(λ−ξ ) (−r < ξ < r ),

α3 exp[λ+(ξ + r )] (ξ < −r ),
(8)

where

λ± = − v

2D
±

√
v2 + 4Da

2D
, (9)

β1 = f0λ+
a(λ+ − λ−)

[1 − exp(2λ−r )], (10)

α2 = f0λ− exp(−λ+r )

a(λ+ − λ−)
, (11)

β2 = −f0λ+ exp(λ−r )

a(λ+ − λ−)
, (12)

α3 = − f0λ−
a(λ+ − λ−)

[1 − exp(−2λ+r )]. (13)

Equations (8)–(13) provide

F = − �w[β1 exp(λ−�) − α3]

= − �wf0

a(λ+ − λ−)
{λ+[1 − exp(2λ−r )] exp(λ−�)

+ λ−[1 − exp(−2λ+r )]}. (14)

As v is sufficiently large in our experiments, we assume
r � 1/λ+ and � � 1/|λ−|. Then, λ+ ∼ a/v and λ− ∼ −v/D,
which lead to

F = − �wf0

a(v/D)

{
a

v

[
1 − exp

(
−2vr

D

)]
exp

(
− v

D
�
)

− v

D

[
1 − exp

(
−2ar

v

)]}
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�−�wf0D

av

(
− v

D

)(
2ar

v

)

= 2�wf0r

v
. (15)

As F = Kμv from Eq. (6),

Kμv = 2�wf0r

v
. (16)

From Eq. (16), we obtain

v =
√

2�wf0r

Kμ
. (17)

Equation (17) shows a power law v ∝ μ−1/2 if other param-
eters such as �, w, and f0 are independent of μ. The power law
with the index −1/2 is an interesting result, since the Stokes
relation naturally suggests another relation, v ∝ μ−1 [34].

VI. NUMERICAL RESULTS

In the theoretical analysis, we have assumed the solution de-
pending on ξ = x − vt . However, the supposed mathematical
model has other symmetries, and whether the considered so-
lution depending on ξ is an attractor or not should be checked.
Therefore, we performed numerical calculations based on
equations in Sec. IV. For numerical calculation, we considered
a one-dimensional array with a spatial step of �x = 0.1. The
spatial size of the considered system was 1000 with a periodic
boundary condition, and we adopted the Euler method with
time step �t = 10−3. As for the spatial derivative, we used
an explicit method. The parameters are set to be m = 0.1,
w = 1, � = 1, r = 1, � = 1, D = 1, a = 1, and f0 = 1. In
the discretization process, the first-order interpolation was
adopted for Eqs. (2) and (5). The parameter h corresponding
to the viscosity μ was changed, and we investigated the
time development of the camphor boat position and camphor
concentration profile.

In Fig. 4, the numerical results are shown. In Fig. 4(a),
the time development of camphor boat velocity is shown.
The camphor boat velocity is saturated to a constant
value. The camphor concentration profile after the velocity
became constant (t = 1000) is shown in Fig. 4(b). The cam-
phor concentration profile was asymmetric with regard to
the camphor boat position x = X � 188.6. After reaching a
constant velocity, the concentration profile did not change the
shape but shifted in a positive x direction. Thus, we can guess
that the solution with regard to ξ = x − vt is an attractor
of this system. We have also confirmed that the solution
converged to this attractor from other initial conditions (data
not shown). The mathematical analysis on this convergence to
the solution depending on ξ remains, and it may be possible
to approach such a mathematical problem by considering Lie
group symmetry [35].

The final velocity against h is shown in Fig. 4(c). For the
regime of h smaller than 0.1, the power law v ∝ h−1/2 held,
where h was proportional to the viscosity μ in the present
framework. In the theoretical analysis, we assumed r � 1/λ+
and � � 1/|λ−|, which is equivalent to aD/v2 � 1, as will
be discussed in detail in the following section. Since the final
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FIG. 4. Numerical results. (a) Time course of camphor boat
velocity dX/dt for h = 0.01. (b) Camphor concentration profile c(x )
for h = 0.01 at t = 1000, when the camphor boat velocity reached a
constant value. The position of the camphor boat was X � 188.6. (c)
Final velocity (t = 1000) depending on h, which is proportional to
viscosity. The power law v ∝ h−1/2 holds for smaller h.

velocity is nearly equal to 5 for h ∼ 0.1, and a = D = 1, the
divergence from the power law originates from the breakdown
of the assumption in the analysis.

VII. DISCUSSION

Our model showed a power law v ∼ μ−1/2 under the
assumptions that r � 1/λ+ and � � 1/|λ−|. In this section,
we compare experimental results with the numerical results in
Eq. (17) in order to check whether our model is reasonable.
Equation (17) has several parameters, such as �, w, f0, r ,
K , and μ. Since similar camphor boats were used, w, r , and
K were constant values in our experiments. We investigated
the dependence of the other parameters, i.e., �, f0, and μ,
on the glycerol concentration p in Appendix A. Equation (3)
showed � = (γ0 − γ )/c. As (γ0 − γ ) was independent of p

in our measurements, we considered that � was constant. The
supply rate f0 corresponds to �M , which is a loss of a camphor
disk per unit time in our experiments, and we found that �M

decreased with an increase in p. The viscosity μ of the base
solution increased with p. Thus, f0 and μ in Eq. (17) are
functions of p. In addition, the angular velocity is proportional
to the camphor boat velocity in our experiments.

From the above discussion, Eq. (17) leads to

ω(p) ∝
√

�M (p)

μ(p)
. (18)

Figure 5 shows a relationship between �M/μ and ω obtained
from our experiments. The result almost agrees with the solid
line in Eq. (18) [36].

022606-4



POWER LAW OBSERVED IN THE MOTION OF AN … PHYSICAL REVIEW E 98, 022606 (2018)

0.2

0.3

0.4
0.5
0.6

0.8
1

ω
(p

)
(r

ad
/s

)

0.02 0.04 0.1 0.2 0.4 0.7 1
Δ M ( p)/ μ (p)

1

1/2

FIG. 5. Relationship between �M/μ and ω, where �M , μ, and
ω are the weight loss of a camphor disk per one second, the viscosity
of the base solution, and the angular velocity of the camphor boat,
respectively. The solid line shows the numerical result; ω ∼ √

�M/μ

in Eq. (18).

The power law was obtained under the assumptions that
r � 1/λ+ and � � 1/|λ−|, which is equivalent toaD/v2 � 1.
Since

√
D/a corresponds to a characteristic decay length

of the camphor concentration profile, and v/a is a distance
of the camphor boat motion during the characteristic time
during which the concentration field keeps the memory,
the assumption means that the characteristic length for the
camphor concentration profile is sufficiently smaller than the
characteristic length for the camphor boat motion. In such a
case, the camphor concentration profile should be asymmetric
with respect to the camphor particle position.

Here, we confirm the acceptability of the assumptions for
our experiments. We needed values of parameters such as a,
D, and v included in the assumption. We used a rectangular
camphor boat and chalk powders in measurements of D. The
boat was put on the solution surface covered by the chalk
powders, and the camphor diffused into the solution. The
diffusion was visualized by the chalk powders. We analyzed the
videos of the powders’ motion and estimated D. The method
of the measurement is similar to that in a previous study [18].
The effective diffusion coefficient D against p is shown in
Appendix B, which shows that D decreases with an increase in
p. For a, a = 1.8 × 10−2 s−1 was used, which was based on the
experimental observation reported in the previous work [18].
Using these data, the relationship between p and aD/v2 was
obtained as shown in Fig. 6. The result shows that the values
of aD/v2 were sufficiently smaller than 1 for all p, which
suggests that our assumption is reasonable. The result provides
the following consideration: the camphor concentration around
the boat is quite asymmetric, and the decay length of the
concentration field at the back of the boat is sufficiently greater
than that at the front.

There have been many analytical studies on collective
motion of symmetric camphor disks in both experiments and
theoretical analyses [16,22,23,30]. There have also been some
studies on asymmetric camphor boats, in which numerical
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p (%)

FIG. 6. Relationship between p and aD/v2, where a, D, and
v correspond to the sum of sublimation rate and dissolution rate
of camphor molecules on an aqueous surface, effective diffusion
coefficient, and velocity of a camphor boat, respectively. aD/v2 was
much smaller than 1, which suggests our approximation is valid.

calculation for both concentration field and camphor boat
positions was performed, and an analytical approach under the
assumption of slow velocity was performed [15,24]. In contrast
to these studies, we operated under the assumption of fast
velocity, and this assumption was justified by the experimental
observation. It would enable an analytical approach on the
collective motions of the camphor boats with fast velocity.
Therefore, our model would provide a deep understanding of
the collective motions on not only camphor boats but also living
things.

VIII. CONCLUSION

We investigated the velocity v of the asymmetric camphor
boat against several glycerol concentrations p of the glycerol
aqueous solution. To know the dependence of the camphor
boat velocity v on the glycerol concentration p, we discussed a
numerical model based on a diffusion-reaction equation. When
it is assumed that the characteristic length of the camphor
concentration at the front of the boat is shorter than that at
the rear, v should obey a power law v ∼ μ−1/2, where μ

is the viscosity of the base solution. The power law agreed
with experimental results, and it was also confirmed that our
assumption in the model was reasonable through a comparison
with our experimental results. Using our proposed model,
we can discuss the profile of camphor concentration, which
is difficult to measure directly in experiments. Thus, our
experiment has profound significance in the estimation of the
concentration through the measurements of the velocity.

As a future topic, it would be worth investigating whether
a similar power law v ∼ μ−1/2 persists with smaller levels of
v in experiments with such variables as an increased boat size.
In addition, we considered that the hydrodynamic effect was
included in the effective diffusion coefficient in this paper.
However, it would also be important to consider the fluid
flow around the boat when we study the behavior of two or
more camphor boats as the collective motion. As future work,
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FIG. 7. Physical properties of aqueous solutions of glycerol as the base solution. (a) Viscosity μ against glycerol concentration p, which
is a percentage of glycerol mass in a glycerol-water solution. (b) Surface tension difference γ0 − γ against p, where γ0 and γ are the surface
tension of a glycerol-water solution without camphor molecules and that of the solution in which camphor molecules are dissolved, respectively.
(c) Weight loss �M against p.

it would also be interesting to consider the hydrodynamic
interaction in a multiple-camphor-particle system.
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APPENDIX A: PHYSICAL PROPERTIES OF A
GLYCEROL-WATER SOLUTION AS A BASE SOLUTION

Figure 7(a) shows a viscosity dependence for various
glycerol concentrations p of the aqueous solution; i.e., p

means a percentage of a glycerol mass in the aqueous solution.
The viscosity μ was measured using a viscometer (SV-10A,
A&D, Japan). As shown in Fig. 7(a), the viscosity μ increased
with p.

Figure 7(b) shows a surface tension difference γ0 − γ of
the solution for p, where γ0 and γ correspond to the surface
tension for a glycerol-water solution without camphor and
that for the solution with 6.8 × 10−3 g camphor dissolved per
1500 mL, respectively. The camphor concentration was set to
become close to that in measurements of angular velocity ω.
The surface tension was measured using a surface tensiometer
(DMs-401, Kyowa Interface Science Co., Ltd., Japan). The
surface tension γ with camphor was lower than that of γ0

without the camphor, and γ and γ0 decreased with an increase
in glycerol concentrationp. The difference ofγ − γ0, however,
almost remained constant for different values of p as shown in
Fig. 7(b). The average value of γ − γ0 was 0.29 mN/m.

Next, we investigated the dependence of camphor solubility
on the glycerol concentration p of the base solution. We
measured the mass of the camphor disk before and after the
camphor disk moved for �t = 50 min, and the mass change
was set to be �M . From �M , we obtained the weight loss rate
�M = �m/�t . As shown in Fig. 7(c), �M decreased with
an increase in p.

APPENDIX B: EFFECTIVE DIFFUSION COEFFICIENT
OF CAMPHOR ON A SOLUTION WITH SEVERAL

GLYCEROL CONCENTRATIONS

The effective diffusion coefficient D of camphor is included
in our assumption, and the value of D was necessary for
checking whether the assumption was reasonable. Thus, we
measured D for various glycerol concentrations p.

The rectangular boat in Figs. 8(a)–8(b) was used for the
measurements of the effective diffusion coefficient of the cam-
phor molecules on the solution, and its shape was different from
the round-shaped boat in the measurements of the velocity.
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FIG. 8. Schematic drawings of (a) three-dimensional view, (b)
upside-down three-dimensional view, (c) top view, and (d) side view
of a camphor boat used for the measurements of effective diffusion
coefficients.
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(a)

(b)

(c)

(d)

(e)

(f)

20 mm

FIG. 9. Snapshots on the expansion of the camphor molecular
layer at (a) t = 0 s, (b) 0.03 s, (c) 0.07 s, (d) 0.13 s, (e) 0.20 s, and
(f) 0.30 s, respectively. Chalk powders were dispersed on the solution
surface for visualization of the camphor layer. The white and gray
regions indicate the camphor layer and the region rich in floating
chalk powders, respectively.

The rectangular boat was made by bending both sides of a
rectangular plastic plate that was 8.0 mm in width and 10.0 mm
in height at 2.0 mm from the edge. The camphor disk was
attached at the center of the plastic plate, where the shortest
distance from the edge was 3.5 mm. The shape was similar to
the one reported in a previous study [18].

Figures 9(a)–9(f) are snapshots captured from the top at time
t , where (a) t = 0 s, (b) 0.03 s, (c) 0.07 s, (d) 0.13 s, (e) 0.20 s,
and (f) 0.30 s, respectively. In Fig. 9, t = 0 corresponds to the
time at which the chalk powders started moving on the water.
The diffusion of camphor molecules under the rectangular boat
leads to the motion of chalk powders on the water surface. As
shown in Fig. 9(a), all regions of the surface were covered by
chalk powders with a gray color at t = 0. The chalk powders
started moving at t = 0.03 s, and the water surface without
powders was observed as a white region around the boat

500
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100

0

r2 
(m

m
2 )

1.00.80.60.40.20.0
t (s)

100

80

60

40

20

0
0.80.60.40.20.0

t (s)

r2 
(m

m
2 )

(a)

(b)

FIG. 10. (a) Relationship between time t and r2, where r is
the longest distance between the edge and the center of the area
from which chalk powders were swept out. t = 0 corresponds to
the time at which chalk powders on the solution started moving.
Closed circles, open squares, and closed triangles show the data
for glycerol concentrations p = 0% (μ = 0.92 mPa s), p = 40%
(μ = 4.03 mPa s), and p = 70% (μ = 25.80 mPa s), respectively. (b)
An expanded one for 0 < t < 0.8 s in (a), and solid lines are the results
of the linear fittings for time before the boat started moving.
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in Fig. 9(b). The area of the white region grew with time
[Figs. 9(b)–9(d)]. The boat stayed at the same position before
t ∼ 0.2 s [Figs. 9(a)–9(e)], although the powders moved. The
camphor boat, then, started to move after t ∼ 0.2 s [Fig. 9(f)].
In this process, the chalk powders were carried by not only the
camphor diffusion but also fluid flow induced by the motion
of the boat.

Next, we investigated r2 at time t , where r was the longest
distance between the edge and the center of the region with
the camphor layer, shown as the white region in Fig. 9. The
closed circles, open squares, and closed triangles in Fig. 10(a)
show the data for p = 0% (μ = 0.92 mPa s) for water, and
p = 40% (μ = 4.03 mPa s) and p = 70% (μ = 25.80 mPa s)
for the glycerol-water solution, respectively. Let us focus on
the data for p = 0. The trend of the data changed around at
t ∼ 0.2 s, which almost corresponded to the time when the
camphor boat began to move, as shown in Fig. 9. As we
needed the effective diffusion coefficient of the camphor, we
measured r2 in the time range in which the camphor boat did
not move. Figure 10(b) is an expanded figure for small t , i.e.,
time without the boat motion. When the camphor boat stayed
at a certain position, r2 increased linearly with time. Linear
fittings are shown as solid lines, where fitting was executed
for the region 0 < t < 0.13 s for closed circles. The gradients
of these solid lines provide the effective diffusion coefficients
D of the camphor molecules on the glycerol-water solution.
The effective diffusion coefficient on the water was obtained
at 180 (± 20) mm2/s. A previous paper [31] reported that the
effective diffusion coefficient D in a numerical study almost

400

300

200

100

0
806040200

p  (%)

D
 (m

m
2 /

s)

FIG. 11. Effective diffusion coefficient D against glycerol con-
centrations p of the base solutions. Error bars denote standard
deviations.

agreed with the value for D measured with this method. Thus,
we consider that this method is reasonable for the measurement
of D. The gradient of the solid line decreases with an increase
in the glycerol concentration. Figure 11 shows the relationship
between p and D, and the tendency that D decreases with an
increase in p was confirmed.
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