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It is well known that a binary system of nonactive disks that experience driving in opposite directions exhibits
jammed, phase separated, disordered, and laning states. In active matter systems, such as a crowd of pedestrians,
driving in opposite directions is common and relevant, especially in conditions which are characterized by high
pedestrian density and emergency. In such cases, the transition from laning to disordered states may be associated
with the onset of a panic state. We simulate a laning system containing active disks that obey run-and-tumble
dynamics, and we measure the drift mobility and structure as a function of run length, disk density, and drift
force. The activity of each disk can be quantified based on the correlation timescale of the velocity vector.
We find that in some cases, increasing the activity can increase the system mobility by breaking up jammed
configurations; however, an activity level that is too high can reduce the mobility by increasing the probability of
disk-disk collisions. In the laning state, the increase of activity induces a sharp transition to a disordered strongly
fluctuating state with reduced mobility. We identify a novel drive-induced clustered laning state that remains
stable even at densities below the activity-induced clustering transition of the undriven system. We map out the
dynamic phase diagrams highlighting transitions between the different phases as a function of activity, drive, and
density.
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I. INTRODUCTION

A binary assembly of interacting particles that couple with
opposite sign to an external drive such that the two particle
species move in opposite directions has been shown to exhibit
a rich variety of dynamical behaviors [1–3], the most striking
of which is a transition to a laning state in which high mobility
is achieved through organization of the particles into noncol-
liding chains [3–8]. Such systems have been experimentally
realized using certain types of colloidal particles [9–11] or
dusty plasmas [12,13] and have been used as a model for
motion in social systems ranging from pedestrian flow [2,14]
to insect movement [15]. A variety of nonlaning states can
appear in these systems, including jammed states where the
particles block each other’s motion [16–19], pattern forming
states [19–25], and fully phase-separated states [17–19]. The
laning transition has many similarities to the phase separating
patterns observed in related driven binary systems, indicating
that formation of such patterns is a general phenomenon
occurring in many nonequilibrium systems [26–29]. In a recent
study of nonactive binary disks driven in opposite directions,
a comparison of the velocity force curves with those found in
systems that exhibit depinning behavior revealed four dynamic
phases: a jammed state, a fully phase-separated high-mobility
state, a lower mobility disordered fluctuating state, and a laning
state [19]. The transitions between these phases as a function
of increasing drift force appear as jumps or features in the
velocity force curves coinciding with changes in the structural
order of the system [19].

Active matter, consisting of particles that can propel
themselves independently of externally applied forces, is an

inherently nonequilibrium system commonly modeled using
either driven diffusive or run-and-tumble dynamics [30,31].
For sufficiently large activity, such systems are known to
undergo a transition from a uniform fluid state to a phase
separated or clustered state [32–38]. The onset of clustering
or swarming can strongly affect the overall mobility of the
particles when obstacles or pinning are present [39–44]. In
studies of active matter moving under a drift force through
obstacles, the mobility is maximized at an optimal run length
since small levels of activity can break apart the clogging or
jamming induced by the quenched disorder, but high levels
of activity generate self-induced clustering that reduces the
mobility [44,45].

In this work, we examine a binary system of oppositely
driven active run-and-tumble particles. In the absence of
activity, such a system is known to exhibit lane formation, but
we find that when activity is included, several new dynamic
phases appear. Adding activity to the nonactive jammed state
can break apart the jammed structures and restore the mobility
to finite values, while when the nonactive phase-separated state
is made active, the system becomes susceptible to jamming or
clogging through a freezing-by-heating effect [2]. High levels
of activity generally decrease the mobility by producing a
disordered partially clustered fluctuating state. The mobility of
the nonactive disordered state decreases when activity is added,
while the nonactive laning states undergo a sharp transition
as the activity is increased from low-collision, high-mobility
lanes to a low-mobility disordered state with frequent particle
collisions. At high drives and large activity, we find a new
phase that we term a laning cluster phase in which dense
clusters appear that are phase separated into the two different,
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oppositely driven species. The laning cluster phase is stable
down to particle densities well below the onset of activity-
induced clustering in an undriven system. Transitions among
these different phases can be identified through changes in
mobility, changes in the particle structure, or changes in the
frequency of particle-particle collisions, and we use these
changes to map the dynamic phases as a function of external
drift force, density, and activity. We draw analogies between
the sharp transition we observe from the high-mobility laning
state to the low-mobility disordered fluctuating state and panic
transitions in which a high-mobility state of pedestrian flow
can change into a low-mobility panic state in which continuous
collisions between pedestrians occur.

We note that previous work on oppositely driven active mat-
ter particles by Bain and Bartolo [46] focused on the nature of
the critical behavior at the transition between a fully phase
separated state and a disordered mixed phase, rather than the
mobility that we consider. Reference [46] also uses a flocking
or Vicsek model, which is distinct from the run-and-tumble or
driven diffusive active matter systems that are the focus of our
work.

II. SIMULATION AND SYSTEM

We consider a two-dimensional system of size L × L

with periodic boundary conditions in the x and y directions
containing N particles of radius Rd . We take L = 36 and
Rd = 0.5. The interaction between particles i and j has the
repulsive harmonic form Fij

pp = k(rij − 2Rd )�(rij − 2Rd )r̂ij ,
where rij = |ri − rj |, r̂ij = (ri − rj )/rij , and � is the Heav-
iside step function. We set the spring stiffness k = 50, large
enough that there is less than a 1% overlap between the
particles, placing us in the hard disk limit as confirmed in
previous works [11,12,37]. The area coverage of the particles
is φ = NπR2

d/L
2, and a triangular solid forms for φ = 0.9

[37]. The particles are initialized in nonoverlapping randomly
chosen locations and are coupled to an external dc drift force
Fd = σiFd x̂, where σi = +1 for half of the particles, chosen
at random, and σi = −1 for the remaining half of the particles.
The dynamics of particle i are determined by the following
overdamped equation of motion:

η
dri

dt
=

N∑

j �=i

Fij
pp + Fd + Fi

m. (1)

Each particle experiences a motor force Fi
m = Fmξ̂ which

propels the particle in a randomly chosen direction ξ̂ for a fixed
run time τ . At the end of each run time, the particle tumbles
instantaneously by selecting a new randomly chosen direction
for the next run time. The amplitude of the motor force is Fm =
1.0 and the simulation time step is δt = 0.002, so in the absence
of other forces a particle moves a distance called the run length
lr = Fmδtτ during each run time. To increase the activity of
the particles, we increase τ while holding Fm fixed, so that
the correlation time of the self-driven motion becomes larger.
After applying the dc drive, we measure the time average of the
velocity per particle for only the σi = +1 particles in the +x

dc drift direction, 〈V 〉 = (2/N )
∑N

i=1 δ(σi − 1)(vi · x̂), where
vi is the velocity of particle i. The corresponding average
velocity in the drift direction curve for the σi = −1 particles
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FIG. 1. (a) The average velocity per particle 〈V 〉 in the dc drift
direction for the σi = +1 particles vs FD in a sample with particle
density φ = 0.424. The run-and-tumble particles have run time τ =
10 (teal), 30 (orange), 150 (periwinkle), 500 (pink), 2000 (green), 2 ×
104 (gold), and 3.2 × 105 (brown). (b) The corresponding d〈V 〉/dFD

vs FD curves showing a peak that shifts to higher values of FD as
τ increases. (c) The corresponding fraction of sixfold-coordinated
particles P6 vs FD . The τ = 2 × 104 and τ = 3.2 × 105 curves show
a transition to a state with high triangular ordering, indicative of
clustering. The letters a, b, c, and d mark the values of FD at which
the images in Fig. 2 were obtained.

is identical to 〈V 〉 due to symmetry. We wait a minimum of
107 simulation time steps before taking the measurement to
ensure that the system has reached a steady state. We select
this particular form of particle-particle interaction since the
dynamics of the laning transition for this effectively hard disk
model in the nonactive limit has already been established [19].
This interaction model has been used extensively to study
active matter clustering and phase separation [37,38,41,44].
We expect that similar results would arise under other forms
of short-range interactions that are close to the hard sphere
limit. It would be interesting in future studies to consider the
effects of longer range repulsion such as Yukawa interactions
or to introduce anisotropic interactions.

III. LANING AND CLUSTERING AT LOW DENSITIES

Previous work on nonactive laning particles revealed that
there are four dynamic phases: a jammed state (phase I), a
fully phase separated state (phase II), a mixed or disordered
state (phase III), and a laning state (phase IV) [19]. For particle
densities φ < 0.55, the system is always in a laning state, while
for φ � 0.55, the other three phases appear as well. For the
active particles, we adopt the same nomenclature for phases
I to IV, and define the low-density regime as φ < 0.55. In
Fig. 1(a), we plot 〈V 〉 versus FD for a sample with φ = 0.424
for run lengths ranging from τ = 10 to τ = 3.2 × 105. All of
the velocity-force curves have nonlinear behavior at low drives
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FIG. 2. Instantaneous positions of the σi = +1 (blue) and σi =
−1 (red) run-and-tumble particles subjected to a drift force FD . (a) A
phase III mixed liquid state at τ = 500 and FD = 0.5. (b) A phase IV
laning state at τ = 500 and FD = 12.5. (c) A phase III mixed state
with local clustering at τ = 3.2 × 105 and FD = 3.0. (d) A laning
cluster phase V at τ = 3.2 × 105 and FD = 12.5. The particles in the
clusters have a significant amount of triangular ordering, producing
an increase in P6 in phase V in Fig. 1(c).

that transitions to a linear response at higher drives, as indicated
by the peak in the d〈V 〉/dFD versus FD curves in Fig. 1(b).
The nonlinear behavior extends up to higher values of FD as τ

increases. For τ < 1.5 × 104, the peak in d〈V 〉/dFD coincides
with the transition from disordered phase III flow to laning
phase IV flow. Thus, as the activity is increased by raising τ ,
higher drift forces FD must be applied in order to induce lane
formation. In Fig. 2(a), we illustrate the particle positions at
τ = 500 and FD = 0.5 in the phase III disordered or mixed
liquid state, while in Fig. 2(b) we show the same system in
phase IV at FD = 12.5 where the particles form stable lanes.

In Fig. 1(c), we plot the fraction of sixfold-coordinated
particles P6 versus FD . Here, P6 = N−1 ∑N

i=1 δ(zi − 6) where
the coordination number zi of particle i is obtained from
a Voronoi construction. For τ < 1 × 104, there is no clear
jump in P6 at the transition from phase III to phase IV since,
as shown in Fig. 2(b), the flowing lanes have no crystalline
ordering. For τ > 1.5 × 104, phase IV is replaced by a new
phase V, as indicated by the increase in P6 at large FD for
the τ = 2 × 104 and τ = 3.2 × 105 curves. Phase V is what
we term a clustered laning state, as illustrated in Fig. 2(d)
at τ = 3.2 × 105 and FD = 12.5. Here the particles form
clusters similar to the activity-induced clusters that appear in an
undriven active matter system [32–38], but within each cluster,
phase segregation into the two oppositely moving particle
species occurs in order to eliminate particle-particle collisions.
Triangular ordering of the particles emerges within the denser
clusters, leading to the increase in P6 at the onset of phase V.
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FIG. 3. (a) Mobility M vs τ for a system with φ = 0.424 and
FD = 2.0. (b) The corresponding P6 vs τ . (c) The corresponding
average largest cluster size Cl vs τ . The IV-III transition that occurs
with increasing τ is associated with a drop in M , a decrease in P6,
and an increase in Cl .

For the same large τ = 3.2 × 105 at a lower drive of FD = 3.0,
a phase III disordered mixed phase occurs as illustrated in
Fig. 2(c), where a small amount of clustering is visible due to
the high activity level.

We define the mobility M = 〈V 〉/V0 as the average particle
velocity divided by the expected free flow velocity V0 = FD/η

of an individual particle in the absence of particle-particle
interactions. In Fig. 3(a), we plot M versus τ for a system
withφ = 0.424 atFD = 2.0, whereV0 = 2.0. For τ < 100, the
system forms a phase IV laning state similar to that illustrated
in Fig. 2(b), and as τ increases, a transition to phase III occurs
that is accompanied by a sharp decrease in the mobility from
M = 1.0 to M = 0.62. The corresponding P6 versus FD curve
appears in Fig. 3(b), showing that P6 decreases with increasing
τ but has no sharp feature at the IV-III transition. In Fig. 3(c),
we plotCl , the average largest cluster size, versus τ for the same
system. To measure Cl , we group the particles into clusters
by identifying all particles that are in direct contact with each
other, determine the number of particles N

j
c in a given cluster j ,

and obtain Cl = 〈max{Nj
c }Ni=1〉 where the average is taken over

a series of simulation time steps. Larger values of Cl indicate
that particle-particle collisions are more frequent. In steady-
state phase IV flow, the particles only experience brief pairwise
collisions, so Cl < 3; additionally, the mobility is close to
M = 1 since the particles are undergoing nearly free flow. At
the IV-III transition, the particle collision frequency increases,
lowering the mobility, while the cluster size increases, with Cl

reaching values of 30 or more. The IV-III transition that occurs
when τ increases can be regarded as analogous to a transition
in a social system from orderly laning flows of noncolliding
pedestrians to a panic state in which pedestrians collide and
impede each other’s flow. Here, the run time would correspond
to an agitation level which, above a certain threshold, destroys
the orderly flow and produces a low mobility collisional flow.
There is a small decrease in Cl near τ = 102 that is correlated
with the minimum in P6. In this regime, τ is just large enough
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FIG. 4. (a) Mobility M vs τ for a system with φ = 0.424 at FD =
12.5. (b) The corresponding P6 vs τ . (c) The corresponding average
largest cluster size Cl vs τ . At the IV-V transition, both P6 and Cl

increase, but there is little change in M .

for a cluster state to form. When τ increases slightly, the
clusters become sufficiently long-lived to generate collisions
that reduce the flow velocity, but these collisions cause the
cluster size to decrease. At larger τ , the clusters are more robust
and Cl increases again.

In Figs. 4(a)–4(c), we plot M , P6, and Cl versus τ for the
φ = 0.424 system from Fig. 3 at a higher drive of FD = 12.5,
where very different behavior appears. At low τ , the system is
initially in the phase IV laning state due to the large drive, and as
τ increases, a transition occurs into the clustered laning phase V
illustrated in Fig. 2(d), rather than the disordered phase III flow
that appears at lower FD . In phase IV, Cl is low since particle
collisions are rare, and P6 ≈ 0.5 due to the one-dimensional
liquid structure of the flow. At the transition to phase V, both Cl

and P6 increase to Cl ≈ 500 and P6 ≈ 0.8, while there is very
little change in the mobility M . Unlike the mixed flow found
in phase III, phase V is is mostly phase separated as shown
in Fig. 2(d), so the mobility is high even though Cl is large,
since the particle-particle interactions are dominated by static
contacts within the moving clusters rather than by collisional
contacts between clusters moving in opposite directions.

In Fig. 5, we construct a dynamic phase diagram as
a function of FD versus τ for a system with φ = 0.424,
highlighting the regimes of phase III, IV, and V flow. The
transitions between the phases are identified based on changes
in M , P6, and Cl . For FD < 8.0, the system is in phase IV at
small τ and phase III at large τ , as illustrated in Fig. 3. For
0 < τ < 1.5 × 104, the IV-III transition line shifts to larger
FD with increasing τ . For τ > 1.5 × 105 and FD > 8.0, the
system is still in phase IV at small τ but is in phase V at large
τ , as shown in Fig. 4. We note that at this particle density of
φ = 0.424, when FD = 0 there is no activity-induced clustered
state, since as shown in previous studies of this model in a
similar regime, such a state arises only for φ > 0.45 [19]. The
results in Fig. 5 indicate that driving can induce the formation
of a clustered state at large activity even at particle densities
for which activity alone cannot produce a clustered state. This
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FIG. 5. Dynamic phase diagram as a function of FD vs τ at φ =
0.424. Phase III, disordered mixing flow state; phase IV, laning state;
and phase V, clustered laning state.

suggests that active nonclustering fluid states could transition
to a clustered state under application of a shear or other external
driving. We note that shearing could have a different effect
from the driving applied in this work, since it is possible that
the shear could break apart the clusters more effectively.

IV. DRIVE-INDUCED ACTIVE PHASE SEPARATION

We next study the evolution of phases IV and V in greater
detail over a range of particle densities and external drives.
In Fig. 6, we plot P6 versus FD at τ = 3.2 × 105 for particle
densities ranging from φ = 0.06 to φ = 0.848. At the lowest
values of FD , when φ < 0.475, P6 < 0.45 and the system
is always in a disordered state as illustrated in Fig. 7(a) at
φ = 0.182 and FD = 0.01. When φ > 0.4, there is a transition
to a cluster state in the absence of drive, and this cluster state,
which we term phase CL, persists at low drives, as shown in
Fig. 7(b) for φ = 0.6 and Fd = 0.01. Here, a dense, solidlike
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FIG. 6. P6 vs FD at τ = 3.2 × 105 for φ = 0.06, 0.182, 0.303,
0.48, 0.6, and 0.848, from bottom to top. The letters a to f indicate
the points at which the images in Fig. 7 were obtained.
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FIG. 7. Instantaneous positions of the σi = +1 (blue) and σi =
−1 (red) run-and-tumble particles from the system in Fig. 6 at τ =
3.2 × 105. (a) Phase III at φ = 0.182 and FD = 0.01. (b) At φ = 0.6
and FD = 0.01, a cluster state forms with no separation of the different
species. We call this phase CL. (c) Phase III at φ = 0.182 and FD =
3.0. (d) Phase III with weak clustering at φ = 0.6 and FD = 3.0. (e)
Phase V, the laning cluster state, at φ = 0.182 and FD = 12.5. (f)
Phase V at φ = 0.6 at FD = 12.5.

region with a significant amount of triangular ordering is
surrounded by a low-density liquid. The cluster state has a
density phase separation into high- and low-density regions;
however, there is no segregation of the two particle species,
which distinguishes phase CL from the laning cluster phase
V. At intermediate values of FD , the disordered flow phase III
appears as shown in Fig. 7(c) for φ = 0.182 and FD = 3.0.
The larger FD value tears apart the cluster state for φ > 0.4,
producing in its place a disordered phase III flow with some
residual clustering, as illustrated in Fig. 7(d) at φ = 0.6 and
FD = 3.0. In Figs. 7(e) and 7(f), we show the FD = 12.5
states at φ = 0.182 and φ = 0.6, respectively. In both cases,
a laning cluster phase V appears, producing the higher values
of P6 found in Fig. 6. Phase V persists all the way down to
φ = 0.06 for this high drive; however, at the smaller values of φ

the phase-separated regions become more one-dimensional in
nature, so P6 remains low because of the smaller coordination
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FIG. 8. Dynamic phase diagram as a function of φ vs FD for the
system in Figs. 6 and 7 at τ = 3.2 × 105. At small FD , there is a
transition from phase III to a cluster state CL with increasing φ, while
large drives can produce phase V.

number of the particles in these chainlike structures. Based on
the features in Fig. 7 along with additional simulation data, we
construct a dynamic phase diagram as a function of φ versus
FD for τ = 3.2 × 105 as shown in Fig. 8. This result suggests
that the introduction of driving can break up the clusters that
form due to activity-induced density segregation; however, for
sufficiently large driving, a new type of clustering instability
can arise. Application of a shear instead of a dc drive could
produce effects different than what we find here.

In Fig. 9, we plot a dynamic phase diagram as a function of
FD vs φ for a small run time of τ = 500. In this case, neither
phase CL nor phase V appear. In Fig. 10(a), we illustrate the
instantaneous particle configuration in the laning phase IV for
the system in Fig. 9 at FD = 12.5, φ = 0.848, and τ = 500,
At the same values of FD and φ but at τ = 3.2 × 105 as in
Fig. 8, Fig. 10(b) shows that the system forms a laning clustered
state containing low-density regions. At FD = 12.5 and φ =
0.303, Fig. 10(c) indicates that the τ = 500 system from Fig. 9
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FIG. 9. Dynamic phase diagram as a function of φ vs FD at τ =
500 showing phases III and IV.
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FIG. 10. A comparison of the instantaneous particle configu-
rations of the σi = +1 (blue) and σi = −1 (red) run-and-tumble
particles for the systems in Figs. 8 and 9 at FD = 12.5. [(a), (b)]
φ = 0.848: (a) The laning phase IV for the system in Fig. 9 with
τ = 500. (b) The laning clustered phase V for the system in Fig. 8 with
τ = 3.2 × 105. [(c), (d)] φ = 0.303: (c) A laning phase IV without
triangular ordering for the system in Fig. 9 with τ = 500. (d) The
laning clustered phase V for the system in Fig. 8 with τ = 3.2 × 105.

enters a phase IV flow with no triangular ordering, while in
Fig. 10(d), the τ = 3.2 × 105 system from Fig. 8 forms the
laning clustered phase V.

This system could also serve as a soft matter realization
of certain types of social dynamics such as pedestrian flows
and could be used to study the transition from orderly laning
flow to disordered or panic motion. In this context, if phase
III is identified as disorderly pedestrian flow and phase IV
as orderly flow, then our main conclusion would be that the
activity timescale strongly influences the force required to
approach the transition, as in Fig. 5, while further increasing an
already large pedestrian density may not be such a significant
factor, as in Fig. 9.

We note that the clustering transition which we observe
has both similarities and differences from the motility-induced
phase separation found in active matter systems without
external driving. In each case, clustering occurs only when
the activity is high enough; however, the clustering transition
disappears at lower densities in the nondriven system [33,37],
whereas in the driven system, the clustering can persist to very
low densities.

V. DENSE PHASE

We next consider the role of activity in the dense phase
with φ = 0.848. Here, when FD < 1.0, we find two additional
phases: a jammed state (phase I) and a phase-separated state
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FIG. 11. A system at φ = 0.848 with τ = 10 (dark blue), 150
(light blue), 500 (light green), 2000 (dark green), and 2 × 104 (gold).
(a) 〈V 〉 vs FD . (b) d〈V 〉/dFD vs FD . (c) P6 vs FD . For τ < 500, we
observe phase I (jammed), II (phase separated), III (disordered mixed
flow), and IV (laning flow). Transitions between these phases appear
as features in d〈V 〉/dFD: an initial spike near FD = 0.15 is the I-II
transition, a negative region near FD = 1.0 is the II-III transition, and
the large spike that appears for FD > 5.0 is the III-IV transition. For
τ > 1.5 × 104, the III-IV transition is replaced by a III-V transition.

(phase II). In Fig. 11(a), we plot representative 〈V 〉 versus
FD curves for run times ranging from τ = 10 to τ = 2 × 104.
Figure 11(b) shows the corresponding d〈V 〉/dFD versus FD

curves and in Fig. 11(c) we plot P6 versus FD . For τ < 500, we
find the jammed phase I in which 〈V 〉 = 0 and d〈V 〉/dFD = 0.
The particle configurations in the two variations of the jammed
state are illustrated in Figs. 12(a) and 12(b) for τ = 10 at
FD = 0.01 and FD = 0.15, respectively. When FD < 0.05,
the system remains in its initially deposited configuration and
only small rearrangements occur before the particles settle
into a motionless jammed state, while for FD > 0.05, the
system undergoes transient large-scale rearrangements before
organizing into a jammed state of the type illustrated in
Fig. 12(b). Here there is both a density phase separation into
high- and zero-density regions as well as a species phase
separation, with the σi = −1 particles preferentially sitting to
the left of the σi = +1 particles and blocking their motion.
In phase II, the phase-separated state illustrated in Fig. 12(c)
for FD = 0.5, each particle species forms a mostly triangular
solid, giving a large value of P6. The I-II transition is associated
with a spike in the d〈V 〉/dFD curves near FD = 0.15. Within
phase II, the phase separation allows the particles to move
without collisions, so individual particles move at nearly the
free flow velocity V0 and the mobility M ≈ 1. As FD increases,
a II-III transition occurs. We illustrate the disordered mixed
flow phase III in Fig. 12(d) for τ = 10 and FD = 1.5. The
particles are in a fluctuating state and undergo numerous
collisions, reducing the mobility. Just above the transition into
phase III, some clustering of the particles persists, as shown in
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FIG. 12. Instantaneous positions of the σi = +1 (blue) and σi =
−1 (red) run-and-tumble particles in the system from Fig. 11 with
φ = 0.848 and τ = 10. (a) The jammed phase I at FD = 0.01. (b) The
jammed phase I at FD = 0.15. (c) The phase-separated state (phase
II) at FD = 0.5. (d) The disordered mixed flow phase III at FD = 1.5.

Fig. 12(d). As FD increases, the size of these clusters drops,
causing P6 to decline. The II-III transition is associated with a
drop in 〈V 〉 and P6 along with negative values of d〈V 〉/dFD ,
indicative of negative differential conductivity. For FD > 5.0
and τ < 1.5 × 104, the system transitions from phase III to the
laning cluster phase IV as shown previously, and this transition
corresponds with upward jumps in 〈V 〉 and P6 and a large
positive spike in d〈V 〉/dFD . For τ > 500, phases I and II
disappear, as indicated by the loss of the spikes in d〈V 〉/dFD

and the reduced value of P6 at small values of FD . The III-IV
transition shifts to higher values of FD as τ increases, as shown
by the shift in the d〈V 〉/dFD peak in Fig. 11(b). In phase IV, P6

gradually decreases with increasing τ up to τ = 1 × 104, after
which P6 begins to increase again when phase IV is replaced
by phase V as shown previously. The transition to phase V is
marked by a weak local maximum in d〈V 〉/dFD .

We can characterize the dynamics of the dense phase in
terms of three driving force regimes. At small drives, FD <

1.25, phases I and II appear. For intermediate values, 1.25 <

FD < 5.5, the system is predominately in phase III. At high
drives of FD > 5.5, phases IV and V occur.

In Fig. 13(a), we plot 〈V 〉 versus τ for a system with
φ = 0.848 and FD = 0.15, and we show the corresponding P6

versus FD curve in Fig. 13(b). For τ < 20, the system always
forms a jammed phase I state with 〈V 〉 = 0.0 and a high value
of P6. Previous work with τ = 0 showed that phase II followed
phase I upon increasing FD [19], while in Fig. 13 with fixed
FD , phase II occurs for 20 < τ < 60 as indicated by the high
value of 〈V 〉 in this regime. We find that when 60 < τ < 300,
the system can organize into either the jammed phase I or the
phase-separated state (phase II) as shown by the jumps in 〈V 〉
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FIG. 13. (a) 〈V 〉 vs τ at FD = 0.15 and φ = 0.848. (b) The
corresponding P6 vs τ . The system always reaches phase I for τ < 20
and phase II for 20 < τ < 65, while for 65 < τ < 300 the system can
settle into either phase I or phase II. At larger τ , phase III flow is stable,
and for τ > 1.5 × 104, phase CL flow occurs.

between 〈V 〉 = 0 and 〈V 〉 ≈ V0, the free flow velocity. The
plot in Fig. 13 was obtained from individual realizations for
each value of τ ; however, if we average the value of 〈V 〉 over
many different realizations for each τ , we obtain 〈Ṽ 〉 = 0.05 in
this fluctuating regime since the system is in phase I for half of
the realizations and in phase II for the other half. The reentrant
behavior of phase I arises due to an effect similar to freezing
by heating [2], since the increase in the run time makes the
particle act as if it had an effectively larger radius, making the
system susceptible to jamming. In Fig. 14, we show the particle
positions and trajectories in the reentrant phase I for τ = 200.
Here the jammed phase takes the form of a triangular lattice,
while in the low-density region, the particles are moving in
a liquid-like fashion. The appearance of the mixed phase I +
phase II regime is probably strongly size dependent, similar
to the observation that the freezing by heating phenomenon
is enhanced by confinement [2]. For τ > 300 in Fig. 13, the
activity is large enough to break apart the crystalline structure
of phase I and the system enters the disordered mixing phase
III, which coincides with a dip in P6 and a drop in 〈V 〉. For
τ > 1.5 × 104, an increase in P6 coincides with the onset of the
activity-included clustering phase CL in which 〈V 〉 remains
low. We find similar behavior as a function of τ over the
range 0 < FD < 0.2, with the extent of the jammed phase I
increasing as FD decreases.

In Figs. 15(a) and 15(b), we show 〈V 〉 and P6 versus τ

for samples with φ = 0.848 at FD = 1.5, where the system
is always in phase III. Here 〈V 〉 gradually decreases from
〈V 〉 = 0.575 at τ = 1.0 to 〈V 〉 = 0.47 with increasing τ , while
P6 decreases from P6 = 0.74 to P6 = 0.69. We find similar
behavior for higher FD up to FD = 5.5.

In Fig. 16, we plot 〈V 〉 and P6 versus τ at FD = 6.5 and
φ = 0.848 where the system is in the laning phase IV up to
τ = 100. Within phase IV, 〈V 〉 ≈ 6.5 and P6 ≈ 0.9. At the
transition to phase III, there is an abrupt drop in both 〈V 〉
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x

y

FIG. 14. Trajectories over a fixed time period (lines) and instan-
taneous particle positions of the σi = +1 (blue circles) and σi = −1
(red circles) run-and-tumble particles for the system in Fig. 13 at
τ = 200 and φ = 0.848, which reaches a reentrant jammed phase
I. For clarity, in this image we have reduced the radii of the circles
representing the particles in order to make the trajectories visible.
Here there is a coexistence of a jammed state with a liquid.

and P6 when the onset of collisions between the two species
decreases the flow. In Figs. 17(c) and 17(d), we show 〈V 〉 and
P6 versus τ in the same system at FD = 12.5 where a IV-V
transition occurs near τ = 1.5 × 104. At the transition, a dip
in P6 appears but there is little change in 〈V 〉. By conducting a
series of simulations and examining the features in P6 and 〈V 〉
along with images of the particle configurations, we construct
a dynamic phase diagram as a function of FD versus τ for the
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FIG. 15. (a) 〈V 〉 vs τ at FD = 1.5 and φ = 0.848 where the
system is always in phase III. (b) The corresponding P6 vs τ .
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FIG. 16. (a) 〈V 〉 vs τ at FD = 6.5 and φ = 0.848. (b) The
corresponding P6 vs τ . Here the system undergoes a IV-III transition.

φ = 0.848 system, as shown in Fig. 18. In the region marked
phase I, the system always reaches a jammed state, while in
the region marked phase II, the system is either in steady-state
phase II flow or falls into a re-entrant phase I jammed state.
Phases I and II appear only when τ < 500. Phase IV occurs
at large FD when τ < 15 000, phase CL occurs only when
τ > 15 000, and phase III separates phase II from phase IV,
phase II from phase CL, and phase CL from phase V.

The phases we observe are robust for different system sizes.
The transient times to reach the different phases increase with
increasing system size, but there is little change in the locations
of the phase transitions. The fluctuations in our system are
produced by the activity; however, if an additional noise term
such as a white noise is added, the phases remain stable until the
noise becomes large enough to disorder the flow. Such an effect
is akin to adding thermally induced fluctuations, where the
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FIG. 17. (a) 〈V 〉 vs τ at FD = 12.5 and φ = 0.848. (b) The
corresponding P6 vs τ . The IV-V transition appears as a dip in P6, but
there is is little change in 〈V 〉 across the transition.
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FIG. 18. Dynamic phase diagram as a function of FD vs τ at
φ = 0.848. In the region marked I, the system always reaches the
jammed phase I, while in the region marked II, the system sometimes
reaches steady-state phase II flow and sometimes enters a re-entrant
jammed phase I. Phase III is disordered mixing flow, phase IV is a
laning state, phase V consists of laning cluster motion, and CL is the
cluster phase.

system disorders at high temperatures, but the phases remain
stable over a range of lower temperatures. In this case, the
noise would cause the locations of the transitions to shift. For
example, in Fig. 18, phase III would gradually grow as the
noise fluctuations increase.

VI. SUMMARY

We have examined a two-dimensional binary system of
particles driven in opposite directions where we introduce par-
ticle self-propulsion in the form of run-and-tumble dynamics.
Previous work on this system in the nonactive limit revealed
four dynamic phases: jammed, phase separated, disordered
mixing flow, and laning flow. At low particle densities, the

nonactive system exhibits both laning and disordered flow
phases. As the activity is increased, the laning phase transitions
into a disordered flow phase as indicated by both a drop
in the average mobility and an increase in the frequency of
particle-particle collisions. The transition also appears as a
clear change in the velocity-force curve constructed using the
average velocity of one particle species as a function of the
external drift force. In terms of social systems, such a transition
can be compared to a change from an orderly high-mobility
flow of agents such as pedestrians to a low-mobility panic
state in which the agents collide. At high drives, we find a
novel laning cluster state in which the particles undergo both
density phase segregation and species phase segregation. The
laning cluster state remains stable well below the density at
which an activity-induced cluster state forms in an undriven
system. This suggests that an externally applied drive can serve
as an alternative method of inducing cluster formation in an
active system. At high particle densities, we find a total of
six dynamic phases, including the jammed, phase separated,
laning, and disordered flows, the laning cluster state, and an
activity-induced cluster state which appears for small external
drift forces. The activity can induce formation of a partially
reentrant jammed state at low drift forces through a freezing
by heating mechanism. Our results show that binary driven
active particles exhibit a rich variety of behaviors. There are
already several nonactive experimental systems that can be
modeled as binary driven systems, and it may be possible to
realize variations of active matter binary driven systems that
would exhibit the behavior we describe.
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