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simulations and scaling theories
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We conduct molecular dynamics (MD) simulations and develop scaling laws to quantify the lubrication
behavior of weakly interpenetrated polymer brush bilayers in the presence of an external shear force. The weakly
interpenetrated regime is characterized by 1 < dg/d0 < 2, where dg is the gap between the opposing surfaces
(where the brushes are grafted) and d0 is the unperturbed brush height. MD simulations predict that in the shear
thinning regime, characterized by a larger shear force or a large Weissenberg number (W ), R2

g ∼ W 0.19 and
η ∼ W−0.38, where Rg is the chain extension in the direction of the shear and η is the viscosity. These scaling
behaviors, which are distinctly different from that witnessed in strongly compressed regime (for such a regime,
characterized by dg/d0 < 1, R2

g ∼ W 0.53, and η ∼ W−0.46), match excellently with those predicted by our scaling
theory.

DOI: 10.1103/PhysRevE.98.022503

I. INTRODUCTION

Functionalizing surfaces by grafting them with polymer
molecules in “brush”-like configurations [1–6] have been
employed in a large number of applications such as drug
delivery [7,8], oil recovery [9], emulsion stabilization [10],
wettability modulation of coatings [11], developing anti-
biofouling crystals [12], sensing of ions and biomolecules
[13–17], current rectification [18], fabrication of nanofluidic
diodes [19,20], and many more. In “brush” configuration the
polymer molecules stretch away from the grafted surface, and
several of these applications harness this stretching behavior
in response to environmental cues (e.g., salt concentration,
solvent quality, pH, etc.). An extremely important variant of the
problem is the case of interpenetrating polymer brushes, where
the polymer brushes grafted at two opposing walls interact
[21]. In other words the distance of separation between the
opposing grafting surface (dg) is less than 2d0 (where d0 is
the height of the unperturbed brushes). Such interpenetrated
polymer and polyelectrolyte (PE) brush systems have been ex-
tensively explored, often with the intention to better understand
the large lubricity that characterizes this regime and makes
such interpenetrated polymer brush systems employable in
applications such as friction reduction [22–30] and fabrication
of lubricated coatings [31] and artificial hip and knee joints
[32,33].

The majority of the studies on interpenetrated polymer and
PE brushes have focused on strongly compressed brush bi-
layers (BBLs) characterized by dg < d0 (i.e., there is an actual
physical compression) [26–30,34–60]. This has stemmed from
the fact that such highly compressed brushes being the best rep-
resentation of the conditions in the human hip and knee joints
are ideal to probe for facilitating the fabrication of the artificial
joints. Kreer in his recent review has nicely summarized several
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key findings of these papers [21]. Very recently we extended
these calculations for a different compression regime [61,62]:
we considered a weakly interpenetrated regime characterized
by 1 < dg/d0 < 2. We conducted molecular dynamics (MD)
simulations and scaling analyses to establish a completely
different scaling behavior of the equilibrium configuration of
the polymer and PE brushes in comparison to those witnessed
for highly compressed regimes.

In this paper, we carry out MD simulations and scaling
analysis to study the lubrication behavior of the weakly inter-
penetrated polymer BBLs in the presence of an applied shear.
We establish through MD simulations that in the shear thinning
regime, characterized by the application of a large shear
stress or W � 1 (where W is the Weissenberg number, which
represents the dimensionless shear rate and can be expressed as
W = γ̇ τ with γ̇ being the shear rate and τ being the polymer
relaxation time), η ∼ W−0.38 and R2

g ∼ W 0.19 (where η is
the viscosity and Rg is the chain extension in the direction
of the applied shear). These scaling conditions are distinctly
deviated for the brushes in the highly compressed regime,
where one witnesses η ∼ W−0.46 and R2

g ∼ W 0.53 [21,34,35].
We also carry out an extensive theoretical analysis and obtain
excellent match with our MD predictions. We discuss that such
a match for the variation of the viscosity occurs only when,
motivated by the findings of the MD simulations, we consider
that even at very small shear rate (γ̇ ) the shear stress (fs) varies
nonlinearly with the shear rate, i.e., fs ∼ γ̇ 0.81. On the other
hand, the match for the variation of the extension is ensured by
accounting for the contribution of both the interpenetrated and
the noninterpenetrated (brushlike) segments of the polymer
brushes.

II. MOLECULAR DYNAMICS SIMULATIONS:
METHODOLOGY

We perform MD simulations using the LAMMPS software
package [63]. We consider a system of two opposing plates,
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FIG. 1. (a) Snapshots showing the polymer BBLs in presence of a large shear (γ̇ = 0.1τ−1
LJ ). (b) The polymer BBL in absence of the shear.

(c) The polymer BBL in presence of the large shear (γ̇ = 0.1τ−1
LJ ). In (b) and (c) we intentionally select only three polymer brush molecules

from the top and the bottom plate of the configuration shown in (a) in order to clearly visualize the massive deformation of the brushes in
presence of the shear. In panels (a)–(c) we consider dg/d0 = 1.2.

with M = 49 polymer chains grafted on each plate. Each
polymer chain consists of N = 30 monomers. The polymers
are grafted in a uniform square lattice with a grafting density
ρg = 0.1460 σ−2

LJ = 5ρg
∗, where σLJ is the Lennard-Jones

length unit and ρg
∗ is the critical grafting density at which the

polymer crosses over from the mushroom to the brush regime.
We use the Kremer-Grest (KG) bead spring model to

simulate the polymer chains [64–66]. In the KG model the
monomers of a polymer chain are connected by a FENE
bond and the nonbonded monomers interact via the shifted
and truncated Lennard-Jones potential (LJ) potential. The
detailed equations for these potentials are provided in our
previous paper [61] and are not repeated here for the sake
of brevity. The brushes are grafted at z = 0 and z = dg (see
Fig. 1). Additionally, to prevent the monomers from crossing
the wall boundaries, we place an infinite smooth wall at z =
−1.12σLJ and z = dg + 1.12σLJ . Here infinite smooth wall is
a particle-less wall that exerts a repulsive force on the monomer
beads enforcing them to always remain between z = 0 (bottom
grafting surface) and z = dg (top grafting surface); hence the
infinite smooth wall has been placed below the bottom grafting
surface (i.e., at z = −1.12σLJ ) and above the top grafting
surface (i.e., at z = dg + 1.12σLJ ). The parameters for the
interactions are same as our previous work [61]. The polymers
are simulated in an implicit solvent (i.e., the case where the
solvent molecules are not modeled explicitly, or in other words,
the interactions between the solvent molecules and polymer
chains are not explicitly accounted for); however, as in our
system the polymer brushes are grafted with a large grafting
density, we anticipate that our simulation results would be
similar to that with an explicit solvent [34] (i.e., the case where
the interactions between the solvent molecules and the polymer
chains are explicitly accounted for).

Simulations are carried out in the presence of the periodic
boundary conditions employed in x, y directions as well as

in the presence of an NVT ensemble. The temperature was
set to T = 1.2 (dimensionless temperature), and isothermal
conditions were maintained during the simulation using a
dissipative particle dynamics (DPD) thermostat. The DPD
thermostat adds a dissipative force and a random force to each
particle. These forces are described in Ref. [34]. We choose a
friction coefficient of 5τLJ

−1, and the cutoff is set to 2.24σLJ .
The DPD thermostat cannot efficiently maintain the isothermal
condition in good-solvent conditions [67]; in order to improve
the performance of the DPD thermostat, we set the cutoff of
the DPD thermostat to twice the cutoff of the LJ interaction.
This strategy has been suggested and implemented previously
by Pastorino and Müller [68].

In our simulations, initially the two opposing plates are
placed far apart so that the polymer chains grafted on these
opposing plates cannot interact with each other. This configu-
ration is equilibrated for 1.2 × 107 time steps with a time step
size of 0.006τLJ . The polymer-brush-grafted top plate was then
moved closer to the bottom plate to a distance that ensures
a plate separation of dg . Under this situation the polymer
brushes from the opposing plates interacted with each other.
This configuration was equilibrated for 3 × 106 time steps with
a time step size of 0.006τLJ . To simulate the condition of the
externally imposed shear, we move the beads grafted to the top
plate by a constant velocity of +vx , and the beads grafted to the
bottom plate move with a constant velocity of −vx (therefore
the shear rate is γ̇ = 2vx/dg). Under these conditions, the
system is equilibrated for 107 time steps with a time step of
0.005τLJ . After this equilibration, the system is simulated for
an additional 2 × 107 time steps, and data were collected for
every 5000 time steps.

The shear stress fs is calculated as fs = − < Pxz >, where
< Pxz > is the off-diagonal component of the virial pressure
tensor calculated directly by LAMMPS [69]. The viscosity η is
calculated as η = fs/γ̇ . Figures 2 and 3 show the variation of
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FIG. 2. MD simulation results for the variation of the ratio
R2

g (W � 1)/R2
0 = R2

g (W � 1)/Rg (W � 1) (denoting the square of
the shear-induced extension of the chain in the direction of the applied
shear in dimensionless form) with W (Weissenberg number). The
results are provided for different values of dg/d0 ratio (see the legend),
where dg is the gap between the two opposing plates (where the
polymers are grafted) and d0 is the unperturbed brush height. MD
simulation results are shown for 1 < dg/d0 < 2 signifying a weakly
interpenetrating regime. From the MD simulation results, we get
R2

g (W � 1)/Rg (W � 1) ∼ W 0.19±0.01 (i.e., including the error). In
addition to the MD simulation results, we plot a line denoting W 0.19

variation.

the extension and the viscosity as function of the Weissenberg
number (W ). While discussing Fig. 2, we provide a detailed
methodology of how we obtain the W from the shear rate γ̇ .
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FIG. 3. MD simulation results for the variation of the ratio η/η0

(i.e., the shear viscosity ratio) with W (Weissenberg number). The
results are provided for different values of dg/d0 ratio (see the legend),
where dg is the gap between the two opposing plates (where the
polymers are grafted) and d0 is the unperturbed brush height. MD
simulation results are shown for 1 < dg/d0 < 2 signifying a weakly
interpenetrating regime. From the MD simulation results, we get
η/η0 ∼ W−0.38±0.01 (i.e., including the error). In addition to the MD
simulation results, we plot a line denoting W−0.38 variation.

Similarly while discussing Fig. 3, we discuss the manner in
which we obtain η(W = 0).

III. MOLECULAR DYNAMICS SIMULATIONS: RESULTS

In this section, we present the results from our MD sim-
ulations for the weakly interpenetrating polymer BBLs in the
presence of the applied shear ensured by subjecting the grafting
surfaces (on which polymer brushes are grafted) to lateral
steady-state motion.

Figure 1 provides the MD simulation snapshots for the
weakly interpenetrated polymer BBLs in presence and in
the absence of the shear force. We use the OVITO software
package [70] to render the snapshots. We clearly witness that
the presence of the shear deforms the brushes.

The response to the shear is quantified in terms of the
extension Rg and the change in the viscosity η. Here Rg is same
as Rg,x i.e., the chain extension in the direction of the shear
(i.e., in the x direction). Henceforth, Rg will be used to denote
Rg,x . Figure 2 provides the log-log variation of the ratio of the
square of the extension R2

g/R
2
0 = R2

g (W � 1)/R2
g (W � 1)

with W . We witness R2
g ∼ W 0.19. This suggests a significant

lowering of the extension in the shear-thinning (or high W )
regime in comparison to the case of the highly compressed
brushes (where R2

g ∼ W 0.53). Later during the derivation of
the scaling theories, we would discuss that such a reduction
in the extension for the weakly interpenetrated brushes can be
attributed to the fact that the overall brush extension is dictated
by the contribution of both the noninterpenetrated and the
interpenetrated segments. In this context, it is useful to discuss
the procedure by which we obtain W from an applied shear
rate γ̇ . W and γ̇ are related as W = γ̇ /γ̇ ∗, where γ̇ ∗ = 1/τ

and τ is the polymer relaxation time. Since the bilayer has a
broad spectrum of the relaxation time [34], it is not easy to
identify the appropriate τ that would provide us W from γ̇ .
For this purpose, we follow the same procedure as elucidated
by Galuschko et al. [34]. We first plot the MD results for the
variation of R2

g/R
2
0 = R2

g (γ̇ )/R2
g (γ̇ = 0) with γ̇ and then shift

the data such that a master curve results where there is a perfect
data collapse (see Fig. 2). From this master curve, we can
identify W = 1 as that value below which the there is no chain
deformation [i.e., Rg (γ̇ ) = Rg (γ̇ = 0)].

Figure 3 provides the log-log variation of the viscosity ratio
η/η0 = η(W � 1)/η(W = 1) as a function of W . Here η0

refers to the zero shear viscosity. We witness η ∼ W−0.38, i.e.,
the dependence on shear is slightly weaker as compared to that
for the highly compressed regime (where η ∼ W−0.43). Such
a behavior reflects a relatively weaker lubrication (or equiva-
lently, a weaker lowering of the viscosity) at a high shear rate
in comparison to the case of the highly compressed brushes. It
is worthwhile to discuss here our strategy to obtain η(W = 1).
We first wanted to obtain η(W = 0) and not η(W = 1). The
exact value of η(W = 0) obtained from the MD data suffers
from strong fluctuations. Therefore, following Refs. [34,35],
we assume the value of η(W = 0) to be approximately equal
to η(W = 1). Of course it should be noted here that the exact
value of η(W = 0) will not affect the scaling variation of η(W )
with W ; it will simply shift the data along the y axis without
changing the slope.
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FIG. 4. MD simulation results for the fs − vs − γ̇ variation,
where fs is the shear stress (in units of εLJ /σ 3

LJ ) and γ̇ is the shear rate
(in units of τ−1

LJ ). The results are provided for different values of dg/d0

ratio (see the legend), where dg is the gap between the two opposing
plates (where the polymers are grafted) and d0 is the unperturbed
brush height. MD simulation results are shown for 1 < dg/d0 < 2
signifying a weakly interpenetrating regime. From the MD simulation
results, we get fs ∼ γ̇ 0.81±0.015 (i.e., including the error). In addition
to the MD simulation results, we plot a line denoting γ̇ 0.81 variation.

Finally in Fig. 4 we show the variation of the shear stress
(fs) with the shear rate γ̇ , elucidating fs ∼ γ̇ 0.81. This scaling
behavior persists over a wide range of shear rates, and Fig. 4
therefore confirms that even for γ̇ , the shear stress does not
vary linearly with γ̇ . The scaling calculations provided below
will utilize this highly nonintuitive situation where fs ∼ γ̇ 0.81.

IV. SCALING THEORIES

A. Previously obtained scaling expressions for
weakly interpenetrated polymer BBLs

We first reexpress certain scaling behavior witnessed for
weakly interpenetrated polymer brush bilayers. Most of the
expressions provided in this subsection have already been
derived in our previous paper [61], but we repeat them here
for the sake of completeness.

As we are studying a weakly interpenetrated polymer BBL,
a part of the polymer molecule is in the interpenetrated domain
while the other part is outside the interpenetrated domain. The
part that is in the interpenetrated domain can be considered
to be described as blob-encased segments [61,62]. Following
Kreer and Balko [42], we can express the interaction energy
per unit area for the interpenetrated semidilute polymer BBLs
as

A ∼ nikBT , (1)

where kBT is the thermal energy and ni is the number density
of blobs (having the units of 1/m2) within the interpenetration
(IP) zone expressed as

ni = cδδ/gc. (2)

Here δ is the IP length, cδ is the monomer concentration in the
IP zone, and gc is the number of monomers present in each
blob. Considering N1 number of monomers are outside the IP
zone and N − N1 monomers are inside the IP zone, we can
express [61]

cδ ∼ (N − N1)σg

δ
∼ N (2 − x)σg

δ
, (3)

gc ∼
(

ξc

a

)1/ν

, (4)

ξc ∼ a(cδa
3)ν/(1−3ν), (5)

where a is the Kuhn length (a polymer molecule can be
assumed to be made of several freely jointed segments, which
are known as the Kuhn segments, and the length of each
segment is the Kuhn length), σg is the grafting density, x =
1 + N1/N , gc is the number of monomers in each blob, ξc is
the blob radius, and ν is the Flory exponent (this exponent
expresses the radius of gyration of a coiled polymer chain
as a function of the number of monomers and the solvent
quality). Of course, following our previous paper [61] we get
a new scaling expression for the IP length δ for the weakly
interpenetrated semidilute polymer BBLs as

δ ∼ a[N1−ν (2 − x)2ν (a2σg )(7−15ν)/3]1/(5ν−1). (6)

We arrive at Eq. (6) This expression for δ is distinctly different
from that of the strongly compressed regime [21].

Using Eqs. (3) and (6) in Eq. (5), we can eventually write

ξc ∼ aN
2ν

1−5ν (2 − x)
ν

1−5ν (σga
2)

10ν
3(1−5ν) . (7)

Furthermore, using Eqs.(3), (4), (6), and (7) in Eq. (2), we can
write

ni ∼ a−2N
1+5ν
5ν−1 (2 − x)

5ν
5ν−1 (σga

2)
7+15ν

3(5ν−1) . (8)

Consequently, we may express the per unit area interaction
energy as

A ∼ kBT a−2N
1+5ν
5ν−1 (2 − x)

5ν
5ν−1 (σga

2)
7+15ν

3(5ν−1) , (9)

which in turn helps to express the per unit area compressive
force fc as

fc ∼ − ∂A

∂dg

= −∂A

∂x

dx

d(dg )

∼ kBT

d0
a−2N

1+5ν
5ν−1 (2 − x)

1
5ν−1 (σga

2)
7+15ν

3(5ν−1) . (10)

B. Relaxation time

The relaxation time of the polymer brush can be expressed
as [considering τmelt,highly compressed = �a2N2/(kBT ) [21] and
replacing a by ξc, N by (N − N1)/gc and � (friction constant
of a blob) by ηsξc (ηs is the solvent viscosity)]

τ ∼ ηsξ
3
c

kBT

(
N − N1

gc

)2

. (11)

Using Eq. (4) to replace gc and Eq. (7) to replace ξc, we can
obtain

τ ∼ ηsa
3

kBT
N

4ν+2
5ν−1 (2 − x)

7ν
5ν−1 (σga

2)
10(3ν−2)
3(1−5ν) . (12)
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C. Scaling of η/η0

As established by our MD studies (Fig. 4), we can consider
that the shear stress fs does not vary linearly with the shear rate
γ̇ even for weak values of γ̇ . Rather fs ∼ γ̇ b, where b = 0.81
(Fig. 4). Consequently,

fs ∼ niξcηs (γ̇ dg )b

∼ ηsγ̇
bdb

g

a
N

1+3ν
5ν−1 (2 − x)

4ν
5ν−1 (σga

2)
7+5ν

3(5ν−1) . (13)

For critical shear stress (i.e., the shear stress corresponding
to the critical shear rate, or the shear rate for which W = 1),
fs (W = 1), we can replace γ̇ by 1/τ [where Eq. (12) provides
τ ] yielding

fs (W = 1) ∼ ηsτ
−bdb

g

a
N

1+3ν
5ν−1 (2 − x)

4ν
5ν−1 (σga

2)
7+5ν

3(5ν−1)

∼ η1−b
s a−1−3bdb

g (kBT )bN
1+3ν−(4ν+2)b

5ν−1 (2 − x)
4ν−7νb

5ν−1

× (σga
2)

7+5ν−10b(3ν−2)
3(5ν−1) . (14)

On the other hand, for large shear rate, we can write

fs (W � 1) ∼ N (2 − x)β, (15)

which suggests that the interpenetrated segments of polymer
molecule also attain a brushlike configuration. Note that here
we have fs (W � 1) ∼ N (2 − x)β and not fs (W � 1) ∼ N

(which occurs for fully interpenetrated brushes; see Kreer
[21]) since here the shear stress is witnessed only in the
interpenetrated regime. The exponent β accounts for the
possible decrease in the IP due to shear.

Of course, following Kreer [21] we can write

fs (W � 1) = fs (W = 1)Wk, (16)

where using Eq. (12), we can write

Wk ∼ (γ̇ τ )k ∼ ηk
s a

3k

(kBT )k
N

k(4ν+2)
5ν−1 (2 − x)

7νk
5ν−1 (σga

2)
10k(3ν−2)

3(1−5ν) .

(17)

Using Eqs. (14), (15), and (17) in Eq. (16) and balancing the
exponents of N and 2 − x, we can finally write

k − b = ν − 1

2ν + 1
, (Balancing the exponent of N ) (18)

β = 7ν(k − b) + 4ν

5ν − 1
. [Balancing the exponent of (2 − x)]

(19)

From Eq. (18) we obtain (using ν ≈ 0.588 and b = 0.81; see
Fig. 4)

k = 0.62 (20)

On the other hand, from Eq. (19), we can write

β = 0.81, (21)

which confirms the lowering of the IP. Following Spirin et al.
[35] and using Eq. (20), we can finally write

η

η0
∼ 1

W

fs (W � 1)

fs (W = 1)
∼ Wk−1 ∼ W−0.38; (22)

i.e., we get a perfect match with the MD results.

D. Scaling of R2(W � 1)/R2
0

We now consider the scaling of R2(W � 1)/R2
0 [here

R(W � 1) represents the stretching in the direction of the
shear]. We can express R0 as the sum of the interpenetrated and
noninterpenetrated (which forms a brush) segments yielding

R0 = R(W � 1) ∼ �1aNν (2 − x)ν + �2bN. (23)

Variation of �1 and �2 dictates the extent of IP: no IP would
imply �1 = 0 and �2 = 1, whereas maximum penetration
would imply �2 = 0 and �1 = 1 and x = 0.

Second, we can write

R(W � 1) ∼ N, (24)

implying that the interpenetrated part also forms a brushlike
configuration. Of course, here too we use the relationship
presented by Kreer [21],

R(W � 1) ∼ R(W � 1)Wα, (25)

where using Eq. (12), we can write

Wα ∼ (γ̇ τ )α ∼ ηα
s a3α

(kBT )α
N

α(4ν+2)
5ν−1 (2 − x)

7να
5ν−1 (σga

2)
10α(3ν−2)

3(1−5ν) .

(26)

Therefore, using Eqs. (23), (24), and (26) in Eq. (25), we can
write by balancing the powers of N and considering ν ≈ 0.588

(α)�2=0 = (1 − ν)(5ν − 1)

4ν + 2
≈ 0.18 (full IP),

(α)�1=0 = 0 (no IP). (27)

We can therefore consider an average α in the weakly inter-
penetrated domain as

α ≈ (α)�2=0 + (α)�1=0

2
≈ 0.09. (28)

Therefore, following Spirin et al. [35] and Kreer [21] and
Eq. (28) we can write

R2(W � 1)

R2
0

∼ R2(W � 1)

R2(W � 1)
∼ W 2α ∼ W 0.18; (29)

i.e., here too we get a wonderful match with the MD simulation
results.

V. CONCLUSIONS

In this paper, we study the shearing of weakly interpene-
trated polymer brushes and identify scaling regimes that are
significantly deviated from the well-studied case of highly
compressed polymer brushes. Our findings point to a weakened
lubricity effect and a significantly reduced stretching behaviors
compared to that witnessed in the highly compressed regimes.
We explain these findings through a detailed scaling theory that
matches nicely with the MD predictions. In fact, a key compo-
nent of this scaling theory, motivated by the MD predictions,
is a consideration that even at weak W , the shear stress varies
nonlinearly with the shear rate. The scaling calculations also
assume that the overall stretching is dictated by the behavior of
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FIG. 5. Variation in the monomer density profile across the
channel for different values of dg/d0 (shown in the legend).

both the interpenetrated and the noninterpenetrated segments
of the polymer brush. Overall this study sheds light on the
lubricity and shearing action of the polymer BBLs in a domain
that has remained hitherto unexplored.

As has been already discussed above, our scaling theory
is based on the condition (motivated by the findings of the
MD simulations that) shear stress fs ∼ γ̇ 0.81. This is very
counterintuitive since we work with a small shear rate and at
such conditions one would expect that fs should vary linearly
with γ̇ . Possibly, such a nonlinear variation (quantified by this
exponent 0.81) arises due to the fact that at the small shear rates
that we are applying it becomes difficult to equilibrate a sheared
system. Another issue with our derivation is that we assume that
the segment of the polymer brush that is in the interpenetrated
regime is encased in blobs of uniform size (characterizing a
uniform monomer density in the interpenetrated regime). Such
a situation is not strictly correct especially for large (close to

2) values of dg/d0 (i.e., where the degree of IP decreases), as is
evident from Fig. 5. Due to these above two reasons, there can
be a possibility that this wonderful match between the scaling
approach and the MD data is coincidental.

Finally, we would like to point out that no experiments have
conducted the shear experiments for such a weakly interpen-
etrated polymer brush bilayer system. However, experiments
based on surface forces apparatus (SFA) have carried out shear
force measurements between the polystyrene chains grafted
to opposing surfaces for larger degrees of IP [55]. Similarly,
SFA-based experiments have quantified compressive forces for
both large and weak IP [31]. Approaches highlighted in these
two studies can be easily coupled to carry out the SFA-based
experiments to pinpoint the shear stress, chain extension,
and shear viscosity in weakly interpenetrated polymer brush
bilayer system.
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APPENDIX: VARIATION OF THE MONOMER
DENSITY PROFILE

Figure 5 shows the variation of the monomer density profile
in absence of the shear. As the degree of IP decreases, i.e.,dg/d0

increases and approaches 2, we find that the monomer den-
sity in the channel center decreases, establishing the nonuni-
formity in the monomer concentration (or the nonuniformity
in the size of the hypothetical blobs used to describe the IP
zone).
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