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Shape and fluctuations of positively curved ribbons
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We study the shape and shape fluctuations of incompatible, positively curved ribbons, with a flat reference
metric and a spherelike reference curvature. Such incompatible geometry is likely to occur in many self-assembled
materials and other experimental systems. Ribbons of this geometry exhibit a sharp transition between a rigid
ring and an anomalously soft spring as a function of their width. As a result, the temperature dependence of these
ribbons’ shape is unique, exhibiting a nonmonotonic dependence of the persistence and Kuhn lengths on the
temperature and width. We map the possible configuration phase space and show the existence of three phases:
At high temperatures it is the ideal chain phase, where the ribbon is well described by classical models (e.g.,
wormlike chain model). The second phase, for cold and narrow ribbons, is the plane ergodic phase; a ribbon in
this phase might be thought of as made out of segments that gyrate within an oblate spheroid with extreme aspect
ratio. The third phase, for cold, wide ribbons, is a direct result of the residual stress caused by the incompatibility,
called the random structured phase. A ribbon in this phase behaves on large scales as an ideal chain. However,
the segments of this chain are not straight; rather they may have different shapes, mainly helices (both left and
right handed) of various pitches.
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I. INTRODUCTION

The shape and the shape transitions of elastic nanoribbons
and polymers in a thermal environment are of interest in
many disciplines, from the study of DNA and protein fold-
ing [1], via the evolution of biomolecular structures such
as amyloids [2] and cholesterol aggregates [3], to the way
synthetic polymers and self-assemblies may serve in drug
deliveries, food additives, or templates for the production of
nanostructures [4–6]. In a thermal environment, such slender
structures fluctuate (gyrate) and their shape may vary widely
depending on the temperature, size, chemical potential, and
other control parameters. Nanoribbons and polymers are usu-
ally studied using simplified models such as the wormlike
chain model, freely jointed chain, and their variants [7–10].
All assume no residual elastic stresses; i.e., the ribbon or
rod on its equilibrium configuration is stress free. However,
many (in fact most) nanoribbons and polymers are made of
complex elements, which likely do not fit perfectly to each
other when forming extended aggregates such as sheets and
ribbons. They are incompatible, and as such the resulting
structure would be residually stressed. Recent theoretical and
experimental works [11–14] show that incompatible slender
structures undergo various nontrivial shape transformations
and that their mechanics could differ a lot from seemingly
similar, compatible, structures. These characteristics are likely
to affect the resulting shape fluctuations of nanometric self-
assemblies [6,15,16].

In this work we apply the theory of incompatible elastic
sheets to study the statistical mechanics of thermal ribbons
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that have spontaneous isotropic positive curvature. We use our
recently developed effective 1D elastic model [17] to derive
expressions for the persistence length �p, the Kuhn length �k ,
and the gyration radius Rg and obtain the phase diagram, which
characterizes different types of ribbon conformation statistics
unique to such ribbons.

Ribbons with spontaneous positive curvature may be pro-
duced in the laboratory (see for example [13,18,19]), or arise
naturally in self-assembled systems with broken symmetry.
Such systems may be uneven semisolid bilayers [20] or an
asymmetric bola-amphiphile monolayer with two distinct sides
to it (say, different sized head groups with strong same-type
affinity), e.g., systems such as in [4,21,22]. Microscopically,
such a geometry arises in asymmetric semisolid monolayers
and bilayers as a result of two competing geometries: the
(in-plane) bond-induced geometry, i.e., the spatial arrangement
that best satisfies the intermolecular bonds, and the molecular
shape geometry. The former depends solely on the number and
direction of bonds between different molecules, the latter only
on the shape of a single molecule. In this paper, we consider
only systems whose bond geometry is a flat, Euclidean geome-
try (as is, in fact, very common; e.g., all defect-free crystalline
structures). This is to say that the preferred distances between
neighboring elements are satisfied (everywhere) by setting
them in a planar geometry. In contrast, the molecules’ shape
may prescribe a very different geometry, molecular asymmetry
(corresponding to the bilayer-monolayer asymmetry), which
may arise due to different sized head groups or difference in
surface tension, results with a curved geometry (Fig. 1), as the
intermolecular distance on one side is larger than that on the
other. Unless anisotropy is introduced, the system has the same
preferred curvature, k0 in all directions.

We begin this paper by studying the (mechanical) equilib-
rium shape of positively curved ribbons (Sec. II A), deriving
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FIG. 1. Illustration of systems with positive spontaneous curvature (as indicated by the wedge form; dashed lines). Zigzag lines correspond
to carbon chains; different head groups are marked by triangles and circles. (a) Asymmetric bola-amphiphile monolayer. (b) Asymmetric bilayer.
(c) Other shape asymmetries of the constituent molecules (in this case another carbon tail). (d) Also chemical differences (in this case different
surface tension). (e) 3D visualization of the way such systems self-assemble into positively curved surfaces.

their unique conformational behavior which includes shape
transition at a critical width, abnormal floppiness of wide
ribbons, and dominance of the boundary layer in setting
the ribbon’s rigidity. We then (Sec. II B) show that these unique
results manifest themselves as unusual statistical behavior. We
divide the problem into bending-dominated and stretching-
dominated regimes (Secs. II B 3 and II B 4), and study common
measures of conformation in elastic ribbons at these regimes.
These include the persistence length �p, describing the decay
of tangent-tangent correlations, the Kuhn length �k , and the
gyration radius Rg . We show that these measures on their
own fail to wholly capture the phase diagram, and derive
measures to assist in this task. We conclude the paper in
Sec. III, where we calculate the phase diagram of such ribbons
and discuss the meaning and implications of the results. We
suggest that in general, incompatible ribbons will have a phase
diagram richer than compatible ones, since in addition to
high and low temperature regimes, for such ribbons there are
the wide and narrow width regimes. The transitions between
them and the resultant abnormal mechanics determine a wider
configurational phase space.

II. ELASTIC MODELING OF POSITIVELY
CURVED RIBBONS

Within a continuum mechanics description, a ribbon is
a thin, narrow, and long sheet with thickness, width, and
length which satisfy t � W � L, respectively. We choose
coordinates on the ribbon (x, y) ∈ [0, L] × [−W

2 , W
2 ], such

that the line y = 0 parametrizes the ribbon’s midline and the
midline’s x coordinate is given in arclength. Following [8] and
[17] we assume that the ribbon’s shape �r (x, y) is well described
by the curvatures at the midline. These are the normal curvature
[l(x)], the twist [m(x)] describing the midline’s shape, and
transverse curvature [n(x)] describing the ribbon’s profile (see
Fig. 2).

Formally, we assign a Darboux frame at the ribbon’s midline
({v̂1, v̂2, v̂3}) such that v̂3(x) is tangent to the ribbon’s midline,
v̂2(x) is normal to the ribbon (pointing outside the ribbon), and
the binormal v̂1(x) points along the width (narrow dimension)
of the ribbon. This Darboux frame satisfies the generalized
Frenet-Serret equations (see, e.g., [23])

v̂′
3 = l v̂2, v̂′

2 = −l v̂3 − m v̂1, v̂′
1 = m v̂2, (1a)

where X′ ≡ ∂xX is the derivative of X along the ribbon.
In principle, there is also a contribution from the geodesic

curvature kg of the midline; however, we assume it is zero.
The general solution of these equations, given the frame at
some position x ′ < x along the ribbon, is

v̂i (x) = Oij (x, x ′) v̂j (x ′), (1b)

where Oij is an element of the rotation matrix

O(x, x ′) = Tx

[
e− ∫ x

x′ �dx ′′]
= lim

N→∞
e−�(xN )�xe−�(xN−1 )�x . . . e−�(x1 )�x, (1c)

where Tx is the position ordering operator, �x = x−x ′
N

, and x �
xN > xN−1 > · · · > x1 � x ′. Since the x coordinate is given
in arclength, � is the generator of rotations, and is given by

�(x) =
⎛
⎝ 0 −m(x) 0

m(x) 0 l(x)
0 −l(x) 0

⎞
⎠. (1d)

FIG. 2. Visualization of the curvatures. Black line is the midline
(y = 0). Left: A ribbon with l (bent midline) and n (the transverse
curvature along the cyan, x = constant line) with opposite sign
(m = 0). Arrows correspond to the local frame at two different
positions along the ribbon midline (blue for tangent vector, v̂3; green
for binormal, v̂1; red for the normal vector, v̂2). l corresponds to
curvature along the tangent, and n along the binormal. Right: A ribbon
with pure twist m around the midline (l = n = 0).
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The midline’s configuration is then given by

�r (x, 0) =
∫ x

0
v̂3(x ′)dx ′, (1e)

and the configuration of the ribbon in 3D Euclidean space is

�r (x, y) 	 �r (x, 0) + y v̂1(x) + 1
2y2n(x)v̂2, (1f)

where −W
2 � y � W

2 along the ribbon’s width.
The shape of an elastic ribbon is described by its metric (a)

describing distances between neighboring material elements
and curvature tensor (b) describing relative angles between
neighboring elements. The actual shape is then determined
by minimizing the elastic energy [24] which is schematically
given by

H = Y

∫
t |a − ā|2 + t3|b − b̄|2dS, (2)

wheredS is an area element of the ribbon, and the norm of a ma-
trix M is given by |M|2 = νTr2[ā−1M] + (1 − ν)Tr[ā−1M]2.
This energy is composed of two terms: the first is the stretching
energy, which is linear in the thickness and penalizes metric
(a) deviations from the reference metric (ā) (describing pre-
ferred in-plane distances between material elements), while
the second is the bending energy, cubic in t , which penalizes
deviations from the reference (or spontaneous) curvature [24].
In the reduced 1D model, the energy functional takes the form
[17]

H = Y

8
(
1 − ν2

) ∫ {
1

80
tW 5(K̄ − n l + m2)2

+ 1

3
t3W

[
2(1 − ν)

(
W 2

12
(n′)2

− (l̄ − l)(n̄ − n) + (m̄ − m)2
)

+ (l̄ + n̄ − n − l)2 + W 2

12
(m′)2

]}
dx, (3)

where Y is Young’s modulus, ν is Poisson’s ratio, and
(l̄(x), m̄(x), n̄(x)) are the reference curvature components;
K̄ (x) is the reference Gaussian curvature which depends only
on ā and is related to preferred distances between neighboring
material elements. When K̄ = l̄n̄ − m̄2 (i.e., the reference
metric and curvature fulfill Gauss’s Theorema Egregium), the
ribbon is said to be compatible since in this case setting the
trivial solution l = l̄, m = m̄, n = n̄ is the only local and global
solution for every widthW and thickness t . Generally, however,
the ribbon is incompatible, K̄ 
= l̄n̄ − m̄2, and there is no
solution that can satisfy simultaneously both the stretching
and bending terms, giving rise to residual stresses. It is
important to note that the above energy functional accounts for
various reference geometries, as well as mechanical limits. For
example, in the case of an unstretchable, flat, compatible rib-
bon, it reduces to the well-known Sadowsky functional [7,9].
Additionally, it is important to note that Eq. (3) encompasses
the result that stretching the midline of a freestanding ribbon is
energetically costly, and for practical uses may be considered
unstretchable (as was shown in [17]).

We now turn to the specific case of positive spontaneous
curvature and zero reference Gaussian curvature. Specifically
K̄ = m̄ = 0 and constant l̄ = n̄ = k0. Such a geometry is
evidently incompatible as l̄n̄ − m̄2 = k2

0 
= K̄ , and it describes
a material which “wants” to have the shape of a sphere on one
hand (prescribed by l̄ and n̄ in the bending term), while keeping
its in-plane distances as in a flat sheet on the other (as prescribed
by the stretching term). As mentioned before, this geometry is
likely to arise naturally in self-assembled, uneven bilayers and
bola-amphiphile monolayers in the Lβ (gel-like) phase. The
preferred planar geometry is encompassed by K̄ = 0, while
the isotropic difference between the two side is expressed by
l̄ = n̄ = k0, m̄ = 0.

We begin with solving the mechanical equilibrium equa-
tions in Sec. II A, and then move to the statistical behavior of
these ribbons in Sec. II B.

A. Mechanical equilibrium

We begin by simplifying the Hamiltonian (3) via changing
of variables:

l ≡ h + z cos(θ ), (4a)

n ≡ h − z cos(θ ), (4b)

m ≡ z sin(θ ). (4c)

Thus we defined

h ≡ 1

2
(l + n), (4d)

z ≡
√

1

4
(l − n)2 + m2, (4e)

θ ≡ arctan

(
2

m

l − n

)
. (4f)

h(x) is the mean curvature at the midline, z(x) = √
h2 − K

(where K = nl − m2 is the Gaussian curvature at the midline)
measures the asphericity of the ribbon’s geometry (in the case
of a spherical geometry z = 0), and θ/2 measures (for z 
= 0)
the relative angle between the x coordinate (ribbon’s long axis)
and the principal curvatures axes.

Using these variables (and neglecting derivatives) the
Hamiltonian of a positively curved ribbon assumes the form

H = Y

8(1 − ν2)

∫ {
1

80
tW 5(h2 − z2)2

+ 2

3
t3W [(h − k0)2(1 + ν) + z2(1 − ν)]

}
dx. (5)

Note that the Hamiltonian describing the bulk energy of
a ribbon is independent of θ . This implies that continuous
deformations of the ribbon via change of theta (stretching the
ribbon spring) cost no bulk energy and the ribbon is expected to
be infinitely floppy [13,25]. Such is the case for every “locally
spherical” reference geometry [i.e., m̄ = 0, l̄ = n̄ = k0(x)].
The degeneracy is partially lifted by the derivative terms and
by the possible boundary layer [see [26] and Eq. (10)]. At this
point both are neglected; we will discuss how they affect the
result later on, whenever their effects are important.
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By defining the length scale (critical width) and energy
scale,

W ∗ = 23/2

(
5(1 − ν)

3

)1/4√
t

(1 + ν)k0
, (6a)

E = 51/4 Y t7/2k
1/2
0

35/4
√

2(1 − ν)3/4(1 + ν)7/2
, (6b)

whose significance will be shown immediately, we may trans-
form to dimensionless variables,

h̃ = h/k0, (6c)

z̃ = z/k0, (6d)

w̃ = W/W ∗, (6e)

x̃ = k0x, (6f)

where h̃ is the dimensionless mean curvature of the midline,
z̃ is the dimensionless asphericity, w̃ is dimensionless width,
and x̃ is dimensionless arclength along the midline. We may
then rewrite the Hamiltonian

H = E

∫
{2(1 − ν)w̃5(h̃2 − z̃2)2

+ (1 + ν)2w̃[(h̃ − 1)2(1 + ν) + z̃2(1 − ν)]}dx̃. (7)

The equilibrium equations are obtained by variation of H with
respect to the mean curvature h̃ and asphericity z̃ indepen-
dently:

4(1 − ν)w̃4h̃(h̃2 − z̃2) + (1 + ν)3(h̃ − 1) = 0, (8a)

2(1 − ν)z̃[4w̃4(h̃2 − z̃2) − (1 + ν)2] = 0. (8b)

The solution is given by

h̃0 =
{

1
2 (1 + ν) �̃2(w̃)−(1−ν2 )31/3

32/3(1−ν)�̃(w̃)w̃2 , w̃ � 1,

1
2 (1 + ν), w̃ > 1,

(9a)

z̃0 =
{

0, w̃ � 1,

1
2 (1 + ν)

√
w̃4−1
w̃2 , w̃ > 1,

(9b)

where

�̃(w̃) = [9(1 − ν)2w̃2 +
√

81(1 − ν)4w̃4 + 3(1 − ν2)3]1/3.

As can be seen w̃ = 1 is the critical dimensionless width
where a sharp yet continuous transition between two regimes
occurs: a bending-dominated, narrow regime (0 < w̃ < 1), and
stretching-dominated, wide regime (1 < w̃; Fig. 3). Also note
that these equations are identical to those written in [17] for
ribbons with negative (saddle) reference curvature, under the
map h̃ ↔ m̃, z̃ ↔ l̃, ν ↔ −ν.

When narrow (w̃ < 1, z̃ = 0), the ribbon is shaped as a
ring taken around the equatorial of a sphere, whose radius
grows monotonically with the width [around w̃ = 0, R(δw̃) −
R(0) ∝ δw̃4], up to the critical width. Above it (wide regime),
the system is locally an ellipsoid (hence nonzero asphericity),
where the mean curvature remains constant, but the principal
curvatures change such that one of them reaches zero at the
limit w̃ � 1 (geometry of a cylinder; see Fig. 3).

The angle θ has no physical meaning in the bending-
dominated (narrow) regime, as the system is locally a sphere

FIG. 3. Plots of the solution given by Eq. (9) for the ν = 0 case. h̃
in blue and z̃ in red. Larger and smaller values of ν result in higher and
lower asymptotic values, respectively, without changing the nature
of the transition (see Appendix H). A narrow ribbon (w̃ < 1) has a
ringlike shape with radius which depends on the width. A wide ribbon,
at any w̃ > 1, may have a degenerate family of shapes related by a
single parameter θ . These shapes are visualized at two given widths
w̃ = 1.075 and w̃ = 2 [markers (a) and (b), respectively], below the
main figure. Bottom configurations correspond to θ = 0, top to θ = π .

(as indicated by the zero asphericity, z = 0). However, in
the stretching-dominated (wide) regime it relates to the local
shape; the degeneracy in θ means there is a degenerate
continuous family of configurations all related by a local
change in θ . Physically, however, this huge degeneracy is
partially lifted, as variation along the ribbon’s length costs
energy [�Eder ∝ Y t3W 3(m′)2 and a similar expression for
n]; thus the ground states are uniform along the ribbon. They
correspond to shapes varying continually between a ring and
different helices (both left and right handed). For a very wide
ribbon, a straight midline (infinite pitch) is also a possible
solution. In Fig. 3 we see some of the possible configurations
of a wide (w̃ > 1) ribbon, close to the transition (a) and far
from it (b). For a given width, all the configurations have the
same energy according to Eq. (7), and are related by different
values of θ . The limit w̃ � 1 recovers the prestressed metal
ribbons studied by Guest et al. [13].

As shown in [26], in the wide limit, due to a zero-torque
boundary condition at the edge of the ribbon, a boundary layer
arises which lifts the remaining degeneracy (as depicted in
Fig. 3). Thus, at the boundary layer, the local geometry is
bending dominated (rather than the bulk which is stretching
dominated at w̃ > 1). In other words, the local geometry is
set by the spontaneous curvatures (l̄, m̄, n̄) rather than the
reference metric (K̄). This results in a boundary layer along
the ribbon’s width, such that exactly at the ribbon edge ñ = n̄.
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The width of the boundary layer then scales as
√

t
l
. As our

one-dimensional model does not account for these edge effects
by construction, we need to add them manually, if we want to
take them into account. The boundary layer’s energy for w̃ � 1
and ν = 0 is given by (for a general expression for any w̃ > 1
and ν see Appendix D)

Hbound ∝ −Y t7/2k
3/2
0

∫
| cos(θ/2)|3dx. (10)

Therefore, the boundary layer defines the actual shape of a
wide ribbon at mechanical equilibrium [a “ring” configuration
(θ = 0) is preferential]. The resulting shape in such cases is
therefore sensitive to the shape and orientation of the edges
of the elastic sheet [25]. Thus by controlling the shape of the
edge one is able to produce many different shapes from the
same material.

However, as can be seen from Eq. (10), the boundary
layer’s energy (and also size; see [14,26]) is independent of
the ribbon’s width (in contrast with the bulk energy) and
vanishes at the infinitely thin limit. Therefore, in the context
of statistical mechanics, we may consider the degeneracy of
a global angle θ only weakly broken. It can be shown (see
Sec. II B 1) that for wide enough ribbons we may always work
at temperatures where the boundary layer’s contribution to the
statistical behavior of the ribbon is negligible.

B. Shape fluctuations

In a thermal environment, our ribbons fluctuate, causing
their configuration to deviate from their (mechanical) equilib-
rium one. Characterizing these deviations is of great impor-
tance. In principle, both the boundary layer and derivatives
contribute to the statistical properties of these ribbons. In
practice, however, the boundary layer contributes only to wide
ribbons (no boundary layer for thin ribbons) and is negligible
at the thin-ribbon limit (t → 0; see the end of Sec. II B 1).
In what follows we assume a thin enough ribbon such that
the boundary layer may be neglected. In other words, we
assume that the temperatures are high enough so that the
system is practically indifferent to the boundary layer. The
derivatives’ contribution is somewhat more subtle, as it has
effects at every temperature range (there is always a small
enough scale such that fluctuations on that scale will be
suppressed). Nevertheless, the derivatives’ effect (apart of a
finite correlation length) is usually quantitative rather than
qualitative. Such is the case in every ribbon whose equilibrium
shape is extended (in contrast to compact, which is our case),
such as in [8,9,17,27]. As will be seen, in positively curved
ribbons, the derivatives affect some aspects of the thermal
behavior of the ribbon qualitatively. For simplicity, in what
follows we neglect both the boundary layer and derivatives
from the analysis, unless otherwise mentioned.

1. Curvature fluctuations

One way to describe the statistical nature of elastic ribbons
is to calculate the fluctuations in their curvatures which are the
variables in the Hamiltonian. As such they are a natural choice
to describe the statistical behavior of a ribbon. Calculation
is done in a similar manner to the one described in [17]; we

limit ourselves to the Gaussian approximation, i.e., around the
solutions in Eqs. (9). We start by expanding H to second order
about the equilibrium values,

H 	 H0 + H(2). (11)

In principle, H(2) = H(2)[z(x), h(x), ∂xz, ∂xh, ∂xθ ]; however,
as mentioned earlier, we start by neglecting derivatives. The
average of a quantity Q is then given by the functional integral

〈Q〉 = 1

Z

∫
Qe−βH(2)[z(x),h(x)]

∏
x

z(x)dz(x)dh(x)dθ (x),

(12)

where we defined the partition function Z =∫
e−βH2[z(x),h(x)] ∏

x z(x)dz(x)dh(x)dθ . At the given
approximation, integration over the angle is trivial.
Neglecting the energetic contribution of derivatives
results in no correlation at different positions, i.e.,
〈�Q(x̃)�Q(x̃ ′)〉 = δ(x̃ − x̃ ′)〈�Q2〉. Hence, the averages
and fluctuations of the curvatures are given by

〈l̃〉 = 〈h̃〉 + 〈z̃〉〈cos θ〉 = 〈h̃〉 = 〈ñ〉 ≡ h̃eq, (13a)

〈m̃〉 = 0, (13b)

〈�l̃(x̃)�l̃(x̃ ′)〉 = 〈l̃(x̃)l̃(x̃ ′)〉 − 〈l̃〉2 = δ(x̃ − x̃ ′)〈�l̃2〉, (13c)

〈�l̃2〉 = 〈�h̃2〉 + 1
2 〈�z̃2〉 = 〈�ñ2〉,

〈�m̃2〉 = 1
2 〈�z̃2〉,

〈�h̃2〉 = 〈(h̃ − h̃eq )2〉 = 〈(h̃ − h̃0)2〉 − (h̃eq − h̃0)2,

〈�z̃2〉 = 〈(z̃ − z̃eq )2〉 = 〈(z̃ − z̃0)2〉 − (z̃eq − z̃0)2,

(13d)

where h̃0, z̃0 are given in Eq. (9).
Due to the nontrivial measure (a result from z being a

non-negative variable), the resulting averages are cumbersome.
They are given fully in Appendix C and depicted in Fig. 4. Most
notably, it is immediately seen that the thermal equilibrium
values diverge with the temperature from those of the mechan-
ical equilibrium ones due to the unique integration measure
in Eq. (12). It is clearly seen in Fig. 4(a) that the thermal
equilibrium values diverge near w̃ = 1 indicating that the
calculation breaks near the critical width. Indeed we perform
in Appendix F a more accurate calculation using a saddle point
approximation (taking into account the nontrivial measure in
the integral) in which these values are finite. At low enough
temperatures the treatment shown in Fig. 4 coincides with
the saddle point approximation. In any case, at low enough
temperatures (even near w̃ = 1), the more accurate treatment
affects only quantitatively and not qualitatively any of the
following results. We therefore settle for clarity over accuracy
in what we show hereafter. For practical use, low enough
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Δ

Δ

FIG. 4. Moments of �h̃ and �z̃, for the case of ν = 0,� = E

kBT
= 10. In red are the moments of the mean curvature h̃, in blue those of

the asphericity z̃. Different values of � or ν result in similar graphs (differences are numerical only).

temperatures, and w̃ 
= 0, 1, we may approximate

h̃eq 	 h̃0, (14a)

z̃eq 	 z̃0 +
⎧⎨
⎩

√
π

2

√
(1−ν)�w̃

[
(1+ν)2−4w̃4h̃2

eq

] , w̃ < 1,

0, w̃ > 1,

(14b)

〈�h̃2〉 	
⎧⎨
⎩

1

2�w̃

[
(1+ν)3+12(1−ν)w̃4h̃2

eq

] , w̃ < 1,

1
4�w̃(1+ν)2 , w̃ > 1,

(14c)

〈�z̃2〉 	
⎧⎨
⎩

1

�(1−ν)w̃
[

(1+ν)2w̃−4(1−ν)w̃5h̃2
eq

] , w̃ < 1,

1+(1−ν)w̃4

4�w̃(1−ν)(1+ν)2 (w̃4−1) , w̃ > 1,

(14d)

where � = E
kBT

= 51/4

35/4
√

2(1−ν)3/4(1+ν)7/2

Y t7/2k
1/2
0

kBT
, and we kept de-

viations of z̃eq from z̃0 for the narrow ribbon as z̃0(w̃ < 1) = 0
and they are of order

√
T (not T ) and therefore important. It

is worth noting that even at high temperatures 〈�h̃2〉 ∝ 1/�,
〈�z̃2〉 ∝ 1/�, yet with different dependence on w̃.

While the statistics of a narrow (w̃ < 1) ribbon are well
captured even without including derivatives, some of the wide
(w̃ > 1) ribbon’s statistics are governed by those terms. There-
fore, we include here results of the correlations including those
terms as they will come in handy soon enough. Expanding the
Hamiltonian to second order and changing to Fourier space,
we end up with an angle (θ ) dependent expression. However,
to our needs, as we eventually integrate the angle out, we may
approximate it without introducing any significant error as (see
Appendix E for a more detailed analysis)

�H(2) = �

∫
dq

1

2

({[
8w̃5(1 − ν)

(
3h̃2

eq − z̃2
eq

) + 2w̃(1 + ν)3
]|�h̃(q )|2

+ [
8w̃5(1 − ν)

(
3z̃2

eq − h̃2
eq

) + 2w̃(1 − ν)(1 + ν)2
]|�z̃(q )|2 − 32w̃5(1 − ν)h̃eqz̃eqRe[�z̃(q )�h̃†(q )]

}
+ 16

√
5

3
(1 − ν)

k0t

1 + ν

[
(1 + ν)2w̃3q2

48

{
4(1 − ν)|�h̃(q )|2 + (3 − 2ν)

[
z̃2

eq|�θ (q )|2 + |�z̃(q )|2]}])
. (15)

The correlations and fluctuations of the mean curva-
ture h̃ and asphericity z̃ result in the usual finite corre-

lation lengths ξ 2
h (w̃) = 2

3

√
5
3

k0tw̃
2(1−ν)3/2(1+ν)

4w̃4(1−ν)(3h̃2
eq−z2

eq )+(1+ν)3 , ξ
2
z (w̃) =

2
3

√
5
3

k0tw̃
2(1−ν)1/2(1+ν)

4w̃4(3z̃2
eq−h2

eq )+(1+ν)2 , with the slight exception (as in [17],

stemming from the fact that the shape transition is a function
of w̃ and not T ) that they are finite even at zero temperature,
such that

〈�h̃(x̃)�h̃(x̃ ′)〉 = 〈�h̃2〉
2ξh

e
− |x̃−x̃′|

ξh , (16a)

〈�z̃(x̃)�z̃(x̃ ′)〉 = 〈�z̃2〉
2ξz

e
− |x̃−x̃′|

ξz , (16b)

where 〈�h̃2〉, 〈�z̃2〉 are as given above in Eq. (14). This result
is true for any finite width, except at w̃ = 1, where technically
ξz → ∞ (and 〈�z̃2〉).

The expressions in Eqs. (13) now change:

〈�l̃(x̃)�l̃(x̃ ′)〉 = 〈�h̃2〉
2ξh

e
− |x̃−x̃′ |

ξh + 1

2
e
− |x̃−x̃′ |

ξθ z̃2
eq

+ 〈�z̃2〉
4ξz

e
− |x̃−x̃′|

ξz

= 〈�n(x̃)�n(x̃ ′)〉, (17a)

〈�m(x̃)�m(x̃ ′)〉 = 1

2
e
− |x̃−x̃′ |

ξθ z̃2
eq + 〈�z̃2〉

4ξz

e
− |x̃−x̃′ |

ξz
, (17b)

where ξθ = 16�

√
5
3 (1 − ν) k0t

1+ν

(3−2ν)(1+ν)2w̃3 z̃2
eq

48 . By taking the
limit ξz, ξh, ξθ → 0 we retrieve the previous results. Thus far,
inclusion of derivatives has changed the nature of the corre-
lation by adding finite correlation lengths. In the following
sections we will see how (and when) these correlation length
affect the shape of the ribbon (see Sec. II B 4).
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Finally, as a wide ribbon also has an energetic contribution
from a boundary layer, it is worth seeing when the boundary
layer is important. From Eq. (10), the boundary layer’s con-
tribution scales as �; therefore for � � 1 we may neglect it
completely. From Eqs. (13) it is clear that the low-temperature
limit is achieved for � � 1

w̃
; hence in the wide regime we may

choose to work in regimes so that 1
w̃

� � � 1. From this point
on we neglect the boundary layer.

2. Shape fluctuations

Experimentally the curvatures are hard to measure, and
they are not an intuitive tool to understand the ribbon’s shape.
In polymer science, other measures are used to describe the
ribbon’s stiffness and shape; the most common [10] are the
persistence length �p, the gyration radius Rg , and the Kuhn
length �k . The persistence length �p is the scale over which the
tangent-tangent correlation decays,

�p: 〈v̂3(x)v̂3(x ′)〉 ∝ e
− |x−x′ |

�p . (18a)

The gyration radius Rg approximates the shape-enclosing
volume of the gyrating ribbon in a thermal environment as
a sphere and is given by

R2
g =

〈∫ L

0

dx

L

[
r (x)2 − 2�r (x)�r0 + r2

0

]〉

= −〈
r2

0

〉 + 1

L

∫ L

0
〈r (x)2〉dx, (18b)

where �r (L) is the end-to-end distance of the ribbon, and �r0 is its
center of mass. The Kuhn length �k is defined as the segment
length of a random freely jointed chain that reproduces the
same end-to-end length,

�k = lim
L→∞

1

L
〈r2(L)〉. (18c)

Another, less common measure is the torsional correlation
length �τ which is the scale over which the binormal-binormal
correlation decays [9],

�τ : 〈v̂1(x)v̂1(x ′)〉 ∝ e− |x−x′|
�τ . (18d)

Nevertheless (as will be seen in the next sections), these
quantities fail to encompass the shape of a gyrating ribbon.
To this end we should calculate the gyration tensor which
approximates the volume in which a ribbon gyrates as an
ellipsoid (rather than a sphere),

Rij (L) = 1

L

∫ L

0
[〈ri (x)rj (x)〉 − 〈(r0)i (r0)j 〉]dx, (18e)

where ri (x) = �r (x) · v̂i (0). Note that R2
g = R11 + R22 + R33.

As it turns out, Rij is hard to calculate (see Appendix B); we
therefore add to the list another measure to probe the shape of
a gyrating ribbon, the frame-origin correlations

ρij (x) = 〈
vi

3(x)vj

3 (x)
〉
, (18f)

where vi
3(x) = v̂i (x) · v̂3(0).

Using the second-order expansion of the Hamiltonian (7),
we find that for x > x ′ (see Appendix B)

〈v̂i (x)v̂j (x ′)〉 = 〈
e− ∫ x

x′ �dξ ′′ 〉
ij

= [e−�(x−x ′ )]ij , (19)

FIG. 5. T̃ ∗ = 1
�∗ , the temperature above which a ribbon behaves

like a random coil as a function of ribbon width w̃ (ν = 0).

T ∗ = 51/4

35/4
√

2(1−ν )3/4(1+ν )7/2

Y t7/2k
1/2
0

kB
T̃ ∗. At w̃ = 0, 1, T̃ ∗ = 0. Area I

corresponds to the ideal chain phase, area II is the plane ergodic
phase, and area III is the random structured phase (see Secs. II B 3
and II B 4, respectively).

where (neglecting derivatives)

� =
⎛
⎝0 0 0

0 0 〈l〉
0 −〈l〉 0

⎞
⎠

+ 1

2

⎛
⎝〈�m2〉 0 0

0 〈�m2〉 + 〈�l2〉 0
0 0 〈�l2〉

⎞
⎠. (20)

The averages are given above in Eqs. (13), (14). Retrieving di-
mensionality is straightforward (note that 〈�m2〉 = k0〈�m̃2〉,
and similarly for �l2). The � matrix is central for calculations
of the entities presented above.

As � encompasses significant information (yet not all) re-
garding the ribbon’s thermal behavior and structure, it is useful
to study some of its properties. Specifically, its eigenvalues are

λ0 = �11 = 1
2 〈�m2〉,

λ± = 1
4 (〈�m2〉 + 2〈�l2〉 ± √


 ),


 (T , w̃) = 〈�m2〉2 − 16〈l〉2. (21)

At any given width, 〈�m2〉 and 〈�l2〉 roughly scale as T [28]
[see also Eq. (14) for a low-temperature approximation]. This
is in contrast to 〈l〉 which is a nonzero constant as T → 0,
and (depending on w̃) at high T scales as T . Therefore, at
low T , 
 < 0 and λ± are complex conjugates. At some T ∗,

 (T ∗) = 0, and λ± are equal. Above T ∗, they are positive
reals, signifying that the ribbon lost all structure, and behaves
as a random coil. Since for every w̃ there exists only such one
(positive) temperature, T ∗(w̃) is well defined. It is important to
note that experimentally the ribbon will seem to lose structure
at lower temperatures. This will happen roughly as the typical
fluctuation will be of magnitude similar to the curvature
of the ribbon—in other words, when either 〈�l2〉 ∼ 〈l〉 or
〈�m2〉 ∼ 〈l〉. As it turns out, in this case at least, the former
happens earlier than the latter. Nevertheless, T ∗ remains
a better defined parameter. Solving for T ∗ analytically is
difficult; we therefore plot it in Fig. 5 for the case ν = 0. We see
the critical temperature divides the graph into three regions. It
is essentially the phase diagram of the ribbon, which we are yet
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FIG. 6. Dimensionless Kuhn length, �̃k = �kk0 [(a)–(c)], and dimensionless torsional correlation length, �̃τ = �τ k0/� (d), for ν = 0 (note
the difference in definition). While �τ is independent of temperature (up to scaling by � = 1

T̃
), �k is very sensitive to temperature change. At

w̃ = 1 both �τ , �k = 0 as the ribbon is anomalously soft at the critical width.

to characterize. Region I is the high-temperature limit, or the
ideal chain phase, where the ribbon behaves as a random coil.
We named regions II and III the plane ergodic and the random
structured phases, respectively. In the following subsections
we characterize them. Note that formally, the low-temperature
approximation fails at most values of T ∗. Nevertheless, this is
not expected to change the phase diagram qualitatively.

3. Narrow ribbon w̃ < 1

In this section we characterize the thermal dependence
of a narrow, cold T < T ∗ ribbon. In all calculations in this
section we omit derivatives as their contribution is negligible
in the limit of T → 0 (as they give rise to finite, temperature-
independent correlation lengths).

As in [9], �τ and �p hold important information about
the structure of the ribbon. Specifically they are the scales
on which binormal-binormal and tangent-tangent correlations
decay exponentially. From � [Eq. (20)] we can easily extract
�τ = 2/〈�m2〉 and �p = 2/〈�l2〉. Asymptotically

�τ /�p
w̃→0−−−→ 8 − π (1 + ν)

(4 − π )(1 + ν)
. (22)

While �̃τ and �̃p have a slight dependence on temperature,
their ratio �τ /�p is independent of it. �̃τ and �τ /�p are depicted
in Figs. 6 and 7, respectively, for the cases ν = 0,± 1

2 . The
result remain qualitatively the same for different values of ν.

A direct calculation (Appendix B) shows that the Kuhn
length is given by (�−1)33. The inverse of � is

�−1 =

⎛
⎜⎝

2
〈�m2〉 0 0

0 2〈�l2〉
ς

−4〈l〉
ς

0 4〈l〉
ς

2 〈�l2〉+〈�m2〉
ς

⎞
⎟⎠,

ς = 〈�l2〉(〈�l2〉 + 〈�m2〉) + 4〈l〉2 (23)

⇓

�k = 2
〈�l2〉 + 〈�m2〉

ς
. (24)

�k is plotted at different temperatures in Fig. 6 [for the case
of ν = 0, panels (a)–(c)]; the result stands in stark contrast to
�τ (Fig. 6) and �p. Not only does �k has a nonmonotonic de-
pendence on the ribbon’s width; its temperature dependence is
also very unique (in contrast with [17]) as it converges to 0 also
at low temperatures (T → 0), not only high (T → ∞), while
it reaches a maximum at some intermediate temperature. This
unique dependence of the Kuhn length �k on the temperature,
in contrast to that of the persistence and torsional correlation
lengths (�p and �τ ), directly relates to the fact that �p and
�τ measure arcdistance (on the ribbon), while �k measures
distance in the embedding space.

At high temperatures (T � T ∗), this result is easily un-
derstood as the ribbon loses all structure, and reverts to the
classical behavior of a freely jointed chain where �k ∼ �p ∝ 1

T
.

This result is merely the “ideal chain” phase that every ribbon

FIG. 7. The ratio �τ /�p for a narrow ribbon is independent of
temperature, but varies with w̃, plotted here for the cases ν = 0, ± 1

2 .
At different values of ν, the narrow limit follows �τ /�p|w̃=0 =

8−π (1+ν )
(4−π )(1+ν ) . At w̃ = 1, �τ /�p|w̃=1 = 1.
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FIG. 8. �k (colored surface) and �τ (black mesh) as a function of
w̃ and T̃ . The red curve marks �τ (T̃ ∗). The orange peaks in �k occur
at lower temperatures, marking an “apparent melting” of the ribbon.

of any kind exhibits at high enough temperatures. At low
temperatures (T � T ∗), the ribbon mostly retains its structure
(large �p, �τ ). Since at T = 0 a narrow (w̃ < 1) ribbon is
ring shaped, the end-to-end distance has a maximal value,
〈r2〉 � 4R2 (where R is the ring’s radius). Therefore at the
limit we get

lim
L→∞

1

L
〈r2(L)〉T =0 = 0.

At finite low temperatures, the ribbon retains its shape for a
long, but finite, arclength. This results in �k (T � T ∗) ∝ T .
The local maxima in Figs. 6(a) and 6(b) occur roughly around
the widths such that T ∼ T ∗(w̃). Indeed, at T̃ = 4, a narrow
ribbon may be considered “completely melted” (i.e., lost all
structure) as at any 0 < w̃ < 1, T ∗(w̃) � T . At w̃ = 1 the
ribbon is infinitely soft, indicated by the fact that �τ , �p, �k ,
and T ∗(w̃ = 1) are all equal to zero. Counterintuitively, the
ribbon gets softer as it widens and approaches the transition.
Both �τ and �k are depicted as a function of T̃ and w̃ in Fig. 8.
In it, also �τ (T ∗) is plotted to visualize T ∗ (red line); it is
immediately seen that the apparent “melting” of the ribbon
(peaks in �k) occurs when T is significantly smaller than T ∗.
Nevertheless, T ∗ remains a better defined parameter.

Following these results, the ribbon’s shape comes into
question: what should we expect to see when looking into
a thermal soup of such ribbons? The fact that �p � �τ at
most widths suggests that the ribbon gyrates nonspherically,
at least for some range of lengths. However, �τ and �p are
“internal” measures, in the sense that they tell us how long
we should measure the arclength of a ribbon before we see
some change. �k supplies an “external” measure, yet it turns
out to be insufficient as there is no randomly jointed chain of
finite-length rods that can reproduce the statistical behavior of
the end-to-end vector in the cold limit (as indicated by the fact
that �k = 0 at this limit).

As discussed earlier, one way to quantify the shape of
a gyrating ribbon is the gyration tensor Rij , Eq. (18e). In
Appendix B we develop a formal expression of this tensor, yet
even a numerical approximation of it is difficult to calculate
as it requires an infinite sum without any immediate cutoff
parameter. We therefore decide to use other measures to shed
light on the overall shape of the ribbon. First we calculate the

FIG. 9. The squared gyration radius R̃2
g = k2

0R
2
g as a function of

L̃ = k0L. At different temperatures (as indicated in the figure), for
w̃ = 0.055, ν = 0. Gray dash-dotted lines mark asymptotics of R̃2

g , as
indicated in figure. At this width T̃ ∗ = 1

�∗ = 1; note that the (narrow)
ribbon seems to lose structure already at T = 1/10 (i.e., lose the
R2

g ∼ constant region between the ∼L2 and ∼L regions). Also note
that at T ∗ the gyration radius (and �k) already start to decrease. The
graphs remain qualitatively the same for different values of ν and w̃.

At T → 0, R2
g

L̃�L̃min−−−→ constant.

gyration radius R2
g = Tr(Rij ), which is essentially a spherical

approximation of the ribbon’s shape. We also calculate the
frame-origin correlation matrix, ρij [Eq. (18f)], analytically.
Together these two measures enable us explore the overall
shape (Rg) and any anisotropies (ρij ) of the ribbon, allowing
us to estimate the ribbon’s (anisotropic) shape.

A direct calculation (see Appendix B) yields

R2
g =

[
1

3
�−1L − �−2 + 2

L
�−3 − 2

L2
�−4(1 − e−�L)

]
33

.

(25)

R̃2
g = k2

0R
2
g is plotted in Fig. 9, as a function of the ribbon’s

length L̃ = k0L for different temperatures. At low tempera-
tures, one can describe

R2
g ∝

⎧⎨
⎩

L2, 0 � L < Lmin,

constant, Lmin < L < L∗,
�kL, L∗ < L.

(26)

L∗(T ) ∝ �p is the scale at which ribbons start to behave as an
ideal chain; shorter ribbons should be considered as stiff. This
scale depends on the temperature and width of the ribbon, but
also on its structure (k0, t); it exists for ribbons of any type,
not just the ones studied here. Lmin is temperature independent
and scales as the ribbon’s curvature radius; it marks the scale
at which the ribbon’s ring shape manifests itself. Ribbons
shorter than Lmin may be considered, practically at least, as
straight and featureless. Since L∗ decreases as T increases,
there exists some temperature such that L∗ ∼ Lmin beyond
which the ribbon will appear “melted” and structureless. At the
chosen width in Fig. 9, T ∗ = 1; however we already see that
the ribbon has an apparent “melting” point around T ∼ T ∗/10
(at which point the typical magnitude of fluctuations is of
similar size to the curvature scale, 〈�m2〉 ∼ 〈l2〉). It is worth
noting that a similar dependence of Rg should be expected
also for noncompact ribbons (e.g., helical ribbons). The main
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(a) (b) (c)

(d) (e)

FIG. 10. Correlation at different temperatures and width. Panels (a)–(e): The components of ρij (x, x ), semilogarithmic scale. ρ11, red; ρ22,
blue; ρ33, green; ρ23, black. (a) � = 103, w̃ = 0.1. (b) � = 103, w̃ = 0.5. (c) � = 103, w̃ = 0.9. (d) � = 102, w̃ = 0.1. (e) � = 10, w̃ = 0.1.
The oscillations seen in all panels indicate correlations; a ring configuration has only oscillations and no exponential decay terms.

difference is the behavior at the midrange Lmin < L < L∗,
where R2

g ∝ sin(φ)L2, φ being the ribbons’ pitch angle.
Being a scalar quantity, R2

g cannot provide information
about statistical structural properties of the the ribbon. A direct
example of this is the fact that at Lmin < L < L∗ (especially
at low temperatures), the ribbon is shaped like a ring. Such
configurations are described by a bounding oblate spheroid,
while a spherical description using Rg is misleading. To see
this we study the frame-origin correlation matrix (FOCM)
ρij (x) (as the gyration tensor Rij is difficult to calculate even in
simpler cases). It measures correlations between components

of the ith and j th frame vectors at x which are parallel to the
ribbon’s tangent at the origin x = 0:

ρij (x) = 〈
vi

3(x)vj

3 (x)
〉 = 〈[v̂i (x) · v̂3(0)][v̂j (x) · v̂3(0)]〉.

(27)

This matrix is plotted in Fig. 10. Using our knowledge of �τ , �p,
the curvatures, and the fact that at long distances ρij → 1

3δij

(δij being Kronecker’s delta), we may heuristically evaluate
ρij (which turns out to be a good approximation):

ρij (x) =

⎛
⎜⎜⎝

1
3 − 1

3e
− x

�τ /2 0 0

0 − 1
2 cos(2〈l〉x)e− x

�p/4 + (
1
2 − 1

3

)
e
− x

�τ /2 + 1
3

1
2 sin(2〈l〉x)e− x

�p/4

0 1
2 sin(2〈l〉x)e− x

�p/4 1
2 cos(2〈l〉x)e− x

�p/4 + (
1
2 − 1

3

)
e
− x

�τ /2 + 1
3

⎞
⎟⎟⎠. (28)

This evaluation and the actual results (Fig. 10) may be ex-
plained as follows: At low temperatures and at short distances
(x < �p), the ribbon behaves as a stiff ring, as indicated by
the fact ρ11 	 0, and by the strong oscillatory contributions
in the remaining nonzero elements of ρ. At intermediate
positions �p < x < �τ , while ρ11 ∼ 0 remains, we see the
oscillations subside (depending on �τ /�p) and we may roughly
approximate (especially for large values of this ratio)

ρij ∼

⎛
⎜⎝

0 0 0

0 1
2 0

0 0 1
2

⎞
⎟⎠, (29)

suggesting the ribbon’s tangent is randomly directed in 2D.
That is, the ribbon occupies an oblate spherical volume with
a large aspect ratio. At further positions x > �τ we find that
the gyrating ribbon occupies an evermore spherically shaped

volume such that

ρij (x → ∞) = 1
3δij , (30)

corresponding to randomly directed tangents in 3D. The fact
that the tangents of the midline at distance x from the origin
are randomly distributed does not mean that the ribbon lacks
any structure (as also indicated by the fact that some of the
eigenvalues of � are complex). Rather, it means that there is
no long-range order (of the Darboux frame) in the system.
Knowledge at one point along the ribbon does not tell us
anything about parts of the system far away from it.

We used Monte Carlo (MC) simulations (see Fig. 11 and
Appendix G for more details) to visualize a thermalized ribbon
at different temperatures. The results are plotted in Fig. 11,
where different colors correspond to different directions of
the binormal (v̂1). It is immediately seen that at lower tem-
peratures, larger same-color segments appear, indicating large
correlation lengths of the binormal. We term this behavior
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FIG. 11. Visualization midline configuration at T̃ = 10−3 [except
panel (c)] and w̃ = 0.1 (all) after 104 MC iterations, obtained using
MC simulation; all panels are to scale. Colors correspond to different
direction of the binormal: red, up and down; blue, right and left; green,
front and back. Main: Full length of a ribbon L̃ = k0L = 105. Panel
(a): A segment of L̃ = 104 of the same ribbon. Panel (b): A segment of
L̃ = 103. Panel (c): Left: A segment of length L̃ = 104 at T̃ = 10−4.
Right: A similar segment facing sideways (hence colored blue) to
emphasize the high aspect ratio. Uniform color indicates the ribbon
has not lost its binormal correlation, yet the shape clearly shows it has
lost any long-range tangent-tangent correlation.

(and hence the phase of the ribbon) “plane ergodic” (PE).
The existence of this state depends on the ratio of �τ /�p

and temperature. If �τ /�p � 1, at a given temperature, the
“planar” regions of the ribbon are made of longer segments
and are more easily observed. If, however, �τ /�p = 1, then
this phase does not exist at all. At higher temperatures, this
phase is harder to observes as it spans shorter distances, while
at temperatures larger than T ∗ the ribbon has lost structure
completely, therefore behaving as an ideal chain, and no such
phase may be observed.

4. Wide ribbons w̃ > 1

We now turn to study the statistics of a wide ribbon.
As mentioned in Sec. II A, at the wide regime one cannot
neglect derivatives even at mechanical equilibrium. As they
are the only energy scale (regarding θ fluctuations), they affect
the statistics significantly. We therefore repeat the calcula-
tions of 〈v̂i (x)v̂j (x ′)〉 = 〈e− ∫ x̃

x̃′ �dx〉 [Eq. (19)], and find that

ln〈e− ∫ x̃

x̃′ �dx〉 = 〈�〉� + O(�2), for small� = |x̃ − x̃ ′|, while
ln〈e− ∫ x̃

x̃′ �dx〉 	 �ξ� for large �, where to leading order

�ξ = 〈�〉 + 1

2

⎛
⎜⎜⎜⎝

1
2

(
〈�z̃2〉 + z̃2

eqξθ

)
0 0

0 1
2 〈�h̃2〉 + 〈�z̃2〉 + z̃2

eqξθ 0

0 0 1
2

(
〈�h̃2〉 + 〈�z̃2〉 + z̃2

eqξθ

)
⎞
⎟⎟⎟⎠. (31)

It is easily verified that lim
ξθ→0

�ξ = �, thus retrieving Eq. (20).

At low temperatures (ξθ → ∞), �ξ reduces to

�ξ =

⎛
⎜⎜⎜⎝

z̃2
eqξθ

4 0 0

0
z̃2

eqξθ

2 0

0 0
z̃2

eqξθ

4

⎞
⎟⎟⎟⎠, (32)

where we also omitted the 〈�〉 term as it is negligible. This
means that on scales much larger than ξθ the ribbon statistically
behaves as an ideal chain �τ = �p = �k , while on smaller
scales it behaves as rigid. However, unlike an ideal chain,
the different Kuhn segments are not structureless. Rather, they
have different shapes ranging from rings, through helices, to
straight segments depending on the chosen angle and the width
of the ribbon (as depicted in Fig. 12); we term this unusually
soft phase “random structured.” Due to the nontrivial position
dependence, even numeric calculation of Rg and ρij is difficult.
Nevertheless we can compare the above interpretation with MC
simulation. Indeed, in Fig. 12, we compare the result of an MC
simulation (left) to a “naive” model consisting of a random,
uniform angle for segments exactly ξθ long. The similarity
between plots is clear; thus our interpretation is supported by
the simulation.

As mentioned before, at very low temperatures T̃ � 1 the
boundary layer dominates the ribbon’s configuration giving
rise to statistical behavior identical to that of the plane ergodic

phase. As temperature get higher the ribbons smoothly transi-
tion into the random structured (RS) phase. Direct calculation
shows that the RS phase describes the ribbon sufficiently at
T̃ � 0.1.

5. Ribbon’s phase diagram

We may now finally plot the phase diagram of our ribbons.
In Fig. 13 we plotted all three phases that we have described so
far. The blue curve is T ∗(w̃) separating the “structured” phases
from the “melted” (ideal chain) phase (light red). This phase is
termed the ideal chain (IC) phase, since at high temperatures
the ribbon is well described by the ideal chain model at all
scales. Under T ∗, in a continuous yet sharp manner, we find
two other phases, separated at the critical width. A narrow
ribbon will exhibit the plane ergodic (PE) phase, in which
at intermediate scales we may find the ribbon coiled into
rings which slowly drift away yet contained within a plane,
while at large scales the ribbon drifts out of plane. Thus the
ribbon may be described as made of “planar” segments that
are randomly connected (both in orientation and position, as
seen in Fig. 11). Note that in this phase �p ∝ 1

T
yet �k ∝ T ,

suggesting that the actual size of the planar segments varies
only slightly with temperature. It is important to emphasize
that this phase is geometrical in nature and appears solely due
to the ribbon’s underlying structure (ringlike). Finally we have
the random structured (RS) phase at w̃ > 1, T < T ∗. This is
a unique phase appearing due to the incompatibility of the
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FIG. 12. Left: MC simulation of a possible midline configuration at the wide regime with T̃ = 10, w̃ = 10 (random structured phase) of
total length L̃ = 103 after 104 MC iterations. Colors correspond to different values of θ as indicated by the color bar; ξθ ∼ 100. Right: Naive
reproduction of a random structured ribbon, made by assigning a random angle to a segment exactly ξθ = 100 long.

ribbon. A ribbon in this phase is soft, and appears almost
like an ideal chain on large scales. On intermediate scales
one can see that the ribbon has a randomly selected structure:
it is made of segments whose shapes are uniform along the
segment and may be either right-handed or left-handed helical
of various pitches as visualized in Fig. 12. These segments’
size scales as 1

T
. It is important to note that at intermediate

temperatures (T < T ∗ but not T � T ∗) the segments’ shape
is not completely uniform and may fluctuate. Nevertheless,
the segments are still distinct and well defined in their shape,
losing it only when we get close to T ∗. At extremely low
temperatures (T̃ � 0.1) this phase exhibits a PE-like behavior,
as the boundary layer becomes important also from a statistical
point of view (and not only mechanical).

III. CONCLUSIONS

Using a newly developed formalism to describe incompat-
ible ribbons [17], we identified and quantified the phase space

FIG. 13. Ribbon phases. IC, ideal chain; RS, random structured;
PE, plane ergodic. The RS phase does not exist in compatible
ribbons; the thin green region at the bottom of the RS phase marks
the temperature range at which the boundary layer also affects the
statistics, exhibiting a similar behavior to that of the PE phase. PE
exists even in compatible ribbons, but is different in the details. IC is
the natural limit of every statistical theory of elastic ribbons.

of incompatible ribbons with positive spontaneous curvature
at different temperatures and widths. Such ribbons exhibit
configuration transition at a critical width, even at zero temper-
ature. At small widths, the ribbon is bending dominated; i.e.,
its configuration is set by its spontaneous curvature, while at
large widths, it is stretching dominated, and its flat (Euclidean)
in-plane geometry prescribes a range of developable config-
urations. We showed that the mechanics of such ribbons is
nontrivial and strongly depends on ribbon width. In particular,
wide ribbons are abnormally floppy, as their bulk energy is
degenerate and their rigidity stems solely from variations in
boundary layer energy. At finite temperature, these nontrivial
mechanics lead to nontrivial statistical properties, which do
not exist in compatible ribbons. We calculate explicitly and
find that different statistical geometrical measures, such as
the persistence length �p, the torsional correlation length �τ ,
and the Kuhn length �k , vary nonmonotonically with ribbon
width and with temperature. The volume occupied by a ribbon
varies in temperature and width in a nontrivial way. Part of
this variation is presented as three different phases (Fig. 13),
which we term ideal chain (at high temperatures), plane ergodic
(narrow, cold ribbons), and random structured (wide, cold
ribbons). While the first is common to all elastic ribbons,
the second is purely geometrical in nature and we would
expect all ribbons (including compatible) with some underling
structure (i.e., not flat) to have a similar phase. The third
phase exists only in positively curved incompatible ribbons and
arises purely due to the unique residual stresses in the problem
we studied. In this phase, degeneracy in the bulk energy
of the ribbon leads to a continuous family of (mechanical)
equilibrium configurations. This, at low but finite temperatures,
leads the ribbon to look like a random coil on large scales,
yet with segments that have a definite and well-defined shape,
in contrast to compatible ribbons where there is a single
equilibrium shape. Though the details of the transitions and
the characteristic configurations are unique to positively curved
ribbons, we expect a qualitatively similar phase space to appear
in other cases of incompatible ribbons. The mechanics and
geometry of all such systems are nontrivial and dominated by
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the competition between the residual bending and stretching
energies. In this sense, our results point to a general phase
space, that should be expected even in relatively simple self-
assembled systems. It should be emphasized that the work on
such ribbons is far from closure as such ribbons (especially
in plane ergodic phase) are densely coiled, and self-avoidance
effects should be important. Other important corrections may
arise at high temperatures, where the Gaussian approximation
should fail. It is worth noting that the resulting phase diagram
is reminiscent of quantum phase transition, in the sense of the
existence of a critical point even in zero temperature. While
somewhat similar connections between elastic and quantum
systems were made in the past [29], the extent of this similarity
in the context of this paper is ill understood and requires further
investigation.
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APPENDIX A: FORMALISM

A ribbon is a thin, narrow, and long sheet whose thickness,
width, and length satisfy t � W � L, respectively. We choose
coordinates on the ribbon (x, y) ∈ [0, L] × [−W

2 , W
2 ], where

L is the ribbon’s length and W � L is its width. Thus, the
ribbon’s configuration is �r (x, y), and its midline is given by
�r (x, 0).

In order to calculate the statistics of a ribbon, we need
an energetic model. Nevertheless, we may write a formal
expression describing the various statistical measures of the
ribbon even without one. Following Panyukov and Rabin
[8], we begin by defining the frame correlation matrix
(FCM)

Cij (x, x ′) ≡ 〈v̂i (x)v̂j (x ′)〉 = Tx

[
e− ∫ x

x′ �(x ′′ )dx ′′]
ij

(A1)

for x > x ′, and 〈X〉 marks a thermal averaging of X. In
some sense, � is the generator of C(x, x ′), and in general∫ x

x ′ �(x ′′)dx ′′ = ∫ x

x ′ �(x ′′; x, x ′, T )dx ′′. From C alone, we
may extract various statistical measures of the thermal ribbon
(see Appendix B for details):

�p : C33(x, x ′) ∝ e−(x−x ′ )/�p , (A2)

�k ≡ lim
L→∞

1

2L
〈r2(L)〉

= lim
L→∞

1

L

[∫ L

0

∫ x

0
C33(x, x ′)dx ′dx

]
, (A3)

R2
g (L) ≡ 1

L

∫ L

0
〈r2(x)〉dx − 〈

r2
0

〉
,

〈
r2

0

〉 = 2

L2

∫ L

0

∫ x

0

[∫ x

x ′

∫ x ′

0
C33(y, y ′)dy ′dy

+ 2
∫ x ′

0

∫ y

0
C33(y, y ′)dy ′dy

]
dx ′dx, (A4)

where �r (L) = �r (L, 0) is the end-to-end vector, and r0 =
1
L

∫ L

0 �r (x)dx is the ribbon’s center of mass. �p is the persistence
length which is the scale on which tangent-tangent correlations
decay. Hence Eq. (A2) above is not an equation defining
�p; rather it is a relation that �p satisfies. �k is the Kuhn
length of the ribbon; it is defined as the segment length
of a random freely jointed chain with the same end-to-end
length. Classically [10] �k ∝ �p; however it is readily seen
that in general, �k, �p do not satisfy any simple relation; only
when �13 = �23 = �31 = �32 = 0 and �33 = constant do
we recover the classical results. Another statistical measure,
which is somewhat less common, is the torsional correlation
length, �τ [9], defined as the scale along which we lose
binormal-binormal correlations:

�τ :C11(x, x ′) ∝ e−(x−x ′ )/�τ . (A5)

While the measures in Eqs. (A2)–(A4) are important and use-
ful, they are scalars, and as such cannot capture the dimensions
of a gyrating ribbon well. A better parameter would therefore
be a tensorial quantity; this is the gyration tensor describing
the ellipsoid containing the ribbon. It is a symmetric tensor,
defined as

Rij (L) = 1

L

∫ L

0
[〈ri (x)rj (x)〉 − 〈(r0)i (r0)j 〉]dx, (A6)

where ri (x) = �r (x) · v̂i (0). Another, somewhat more useful
measure (that appears in the calculation of T ) is the frame-
origin correlation tensor (FOCT),

ρAB (x, x ′) = ρaa′bb′ (x, x ′) = 〈Oab(x, x ′)Oa′b′ (x, x ′)〉,
(A7a)

where we used a multi-index notation as ρ is an average of
a Kronecker (tensorial) product of two rotation matrices, and
may be represented by a matrix. Using an indexless notation
we may write

ρ(x, x ′) = 〈O(x, x ′) ⊗ O(x, x ′)〉 ≡ e
∫ x

x′ �dx ′′
, (A7b)

where � = �(x ′′; x, x ′, T ), similarly to �. If we define
the partial trace PTr[ρ]ab = ∑

k ρakkb, it can be seen that
PTr[ρ](x, x ′) = C(x, x ′).

Without any specification regarding the elastic model it is
hard to advance, since (at least in principle) the markings �,�

are only formal in the sense that they may depend on many
different parameters (including the integration limits x, x ′).
We will therefore assume that one may expand the energy as
a bilinear form of the deviation from equilibrium values (as is
often the case), i.e.,

Eel =
∫

[All�l2(x) + Amm�m2(x) + Ann�n2(x)

+Alm�l(x)�m(x) + Aln�l(x)�n(x)

+Anm�n(x)�m(x)]dx, (A8)
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where �X = X − 〈X〉. If the model includes higher orders or
even derivatives of the curvatures, then one must modify the
following equations.

Under Eq. (A8), 〈�l(x)�l(x ′)〉 ∝ δ(x − x ′), and similarly
for every other combination of (�l,�m,�n),

�(x) = − lim
y→x

〈O(y, x)〉
y − x

= 〈�〉 − 1

2
〈��2〉, (A9a)

�(x) = lim
y→x

〈O(y, x) ⊗ O(y, x)〉
y − x

= −(� ⊕ �) + 〈�� ⊗ ��〉, (A9b)

where A ⊕ B = A ⊗ IB + IA ⊗ B is the Kronecker
sum, defined for square matrices only, and IA is a
unit matrix with the same dimensions as the matrix A,
where we marked �� = � − 〈�〉. From our assumption
〈��(x)��(x ′)〉 = 〈��2〉δ(x − x ′) and 〈��(x) ⊗
��(x ′)〉 = 〈�� ⊗ ��〉δ(x − x ′). Direct calculation

results in

〈��2〉 = M−1 − I3×3TrM−1, (A10a)

〈�� ⊗ ��〉aa′bb′ = εabiεa′b′j (M−1)ij , (A10b)

where εikj is the Levi-Civita tensor, and

M−1 =
⎛
⎝ 〈�l2〉 0 〈�l�m〉

0 0 0
〈�l�m〉 0 〈�m2〉

⎞
⎠.

We are now missing the last piece of the puzzle: an
elastic model. We use a quasi-one-dimensional Hamiltonian
describing the elasticity of a residually stressed ribbon, derived
in [17]. It is based on a dimensional reduction of previous
work by Efrati et al. [24] describing the elastic energy of a
residually stressed sheet. We assume a ribbon whose thickness
(t) is much smaller that its width W , which in turn is much
smaller than the ribbon’s length (t � W � L). This model
enables us to treat residually stressed (as well as nonresidually
stressed) ribbons analytically.

APPENDIX B: STATISTICAL MEASURES

Following [8], and assuming an energetic model as in Eq. (A8), we start from the frame correlation matrix definition:

Cij (x, x ′) = 〈v̂i (x)v̂j (x ′)〉. (B1)

We start from the calculation of the gyration radius as it encompasses also that of �k ,

R2
g =

〈∫ L

0

dx

L

[
r (x)2 − 2�r (x)�r0 + r2

0

]〉
= −〈

r2
0

〉 + 1

L

∫ L

0
〈r (x)2〉dx. (B2)

Thus

〈r2
0 〉 = 1

L2

∫ L

0

∫ L

0
〈�r (x)�r (x ′)〉dxdx ′ = 2

L2

∫ L

0

∫ x

0
〈�r (x)�r (x ′)〉dxdx ′ = 2

L2

∫ L

0

∫ x

0

∫ x

0

∫ x ′

0
〈v̂3(x̃)v̂3(x̃ ′)〉dxdx ′dx̃dx̃ ′

= 2

L2

∫ L

0

∫ x

0

[∫ x

x ′

∫ x ′

0
〈v̂3(x̃)v̂3(x̃ ′)〉dx̃dx̃ ′ + 2

∫ x ′

0

∫ x̃

0
〈v̂3(x̃)v̂3(x̃ ′)〉dx̃dx̃ ′

]
dxdx ′

= 2

L2

∫ L

0

∫ x

0

[∫ x

x ′

∫ x ′

0
C33(x̃, x̃ ′)dx̃dx̃ ′ + 2

∫ x ′

0

∫ x̃

0
C33(x̃, x̃ ′)dx̃dx̃ ′

]
dxdx ′

Eq. (A8)= 2

L2

∫ L

0

∫ x

0

[∫ x

x ′

∫ x ′

0
(e−�(x̃−x̃ ′ ) )33dx̃dx̃ ′ + 2

∫ x ′

0

∫ x̃

0
(e−�(x̃−x̃ ′ ) )33dx̃dx̃ ′

]
dxdx ′

= 2

L2

∫ L

0

∫ x

0

[∫ x

x ′

∫ x ′

0
(e−�(x̃−x̃ ′ ) )33dx̃dx̃ ′ + 2

∫ x ′

0

∫ x̃

0
(e−�(x̃−x̃ ′ ) )33dx̃dx̃ ′

]
dxdx ′

=
[

2

3
�−1L − �−2 − 2

L
�−3e−�L + 2

L2
�−4(1 − e−�L)

]
33

, (B3a)

1

L

∫ L

0
〈r (x)2〉dx = 1

L

∫ L

0

∫ x

0

∫ x

0
〈v̂3(x̃)v̂3(x̃ ′)〉dx̃dx̃ ′dx = 2

L

∫ L

0

∫ x

0

∫ x̃

0
C(x̃, x̃ ′)33dx̃dx̃ ′ds

Eq. (A8)= 2

L

∫ L

0

∫ x

0

∫ x̃

0
(e−�(x̃−x̃ ′ ) )33dx̃dx̃ ′ds

=
[
�−1L − 2�−2 + 2

L
�−3(1 − e−�L)

]
33

. (B3b)
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Hence

�k ≡ lim
L→∞

1

2L
〈r2(L)〉 = lim

L→∞
1

L

[∫ L

0

∫ x

0
C33(x, x ′)dx ′dx

]
Eq. (A8)= (�−1)33. (B4)

Finally we conclude this Appendix with the calculation of the gyration tensor Rij (L) (and the frame-origin correlation tensor
ρAB).

Gyration tensor

As before, we are interested in the thermal average

Rij =
∫ L

0

ds

L

[
ri (s)rJ (s) − ri (s)rj

0 − rj (s)ri
0 + ri

0r
j

0

] = −〈
ri

0r
j

0

〉 + 1

L

∫ L

0
〈ri (s)rj (s)〉ds. (B5)

In all the following results one must understand all equalities as being taken under the symmetry operator (i.e., taking only the
symmetric part, in relation to the indices i and j ).

Similarly to the previous calculation,

〈
ri

0r
j

0

〉 = 2

L2

∫ L

0

∫ x

0
〈ri (x)rj (x ′)〉dxdx ′

= 2

L2

[∫ L

0

∫ x

0

∫ x

x ′

∫ x ′

0

〈
v̂i

3(x̃)v̂j

3 (x̃ ′)
〉
dxdx ′dx̃dx̃ ′ + 2

∫ L

0

∫ x

0

∫ x ′

0

∫ x̃

0

〈
v̂i

3(x̃)v̂j

3 (x̃ ′)
〉
dxdx ′dx̃dx̃ ′

]

= 2

L2
[I1 + 2I2], (B6a)

1

L

∫ L

0
〈ri (x)rj (x)〉dx = 2

L

∫ L

0

∫ x

0

∫ x̃

0

〈
vi

3(x̃)vj

3 (x̃ ′)
〉
dx̃dx̃ ′dx. (B6b)

While this may seem a relatively simple calculation, much like the previous one, this is not the case. In order to calculate the tensor
we must have external coordinates (in the embedding space). However, all our formalism is defined on the ribbon’s manifold
using a Darboux frame. We use the symmetry for solid-body rotations to define the external coordinate system using the Darboux
frame at the beginning of the ribbon. Thus〈

vi
3(x)vj

3 (x ′)
〉 = 〈[v̂3(x)v̂i (0)][v̂3(x ′)v̂j (0)]〉 = 〈O3i (x, 0)O3j (x ′, 0)〉, (B7)

where O(x, x ′) = e− ∫ x

x′ �(x ′′ )dx ′′
, where the exponent is time (position) ordered. Notice that the trace of this quantity recalls the

previous result 〈v̂3(x)v̂3(x)〉 = 〈O33(x, x ′)〉. Looking at the more general tensor〈
vi

α (x)vj

β (x)
〉 = 〈Oαi (x, 0)Oβj (x ′, 0)〉 = 〈Oαμ(x, x ′)〉〈Oμi (x, 0)Oβj (x ′, 0)〉, (B8)

and we identify and define ρ(x, 0) = 〈O(x, 0) ⊗ O(x, 0)〉 = 〈e
∫ x

0 −�dx ′⊕∫ x

0 −�dx ′ 〉 (or any other position rather than 0), where ⊗ is
the outer product and ⊕ is the Kronecker sum. From the distribution of the curvatures it is clear that ρ(x, x ′) = ρ(x, x ′′)ρ(x ′′, x ′)
where x > x ′′ > x ′, and we need to understand the multiplication between those tensors by the rules of multiplication of the outer
product,

ρ(x, x ′)aa′bb′ = ρ(x, x ′′)aa′cc′ρ(x ′′, x)cc′bb′ , ρ(x, x ′)aa′bb′ = 〈O(x, x ′)abO(x, x ′)a′b′ 〉. (B9)

We may thus write ρ in a multi-index manner ρaa′bb′ ≡ ρAB , where ρAB satisfies the regular matrix rules. In order to find the
functional form of ρ we follow [23]

ρ(x, x ′) = ρ(x, x ′′)ρ(x ′′, x ′)

⇓

ρ̇(x, x ′) = ∂ρ(x, x ′)
∂x

= lim
x ′′→x

ρ(x, x ′′)
x − x ′′ ρ(x ′′, x ′).

Thus

�(x) ≡ lim
x ′′→x

ρ(x, x ′′)
x − x ′′ = lim

x ′′→x

〈O(x, x ′′) ⊗ O(x, x ′′)〉
x − x ′′

= lim
x ′′→x

〈[− ∫ ′′x
s

�(x̃)dx̃ + ∫ ′′x
s

∫ ′′x
s

∫ ′′x
s

�(x̃)�(x̂)dx̃dx̂ + · · · ] ⊗ [− ∫ ′′x
s

�(x̃)dx̃ + ∫ ′′x
s

∫ ′′x
s

∫ ′′x
s

�(x̃)�(x̂)dx̃dx̂ + · · · ]〉
x − x ′′

= [−�(x)] ⊕ [−�(x)] + g(x),
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where

� = 〈�〉 − 1

2
(H−1 − I3×3TrH−1), g = lim

x ′′→x

∫ ′′x
s

∫ ′′x
s

〈�(x̃) ⊗ �(x̂)〉dx̃dx̂

x − x ′′ , gaa′bb′ = εabiεa′b′jH
−1
ij ,

where H−1 is the correlation matrix of the curvatures (l, m), εijk is the Levi-Civita tensor, and I3×3 is the 3 × 3 unit matrix.
Therefore,

ρ(x, x ′) = e
∫ x

x′ �(x̃ )dx̃ .

Also notice that � is not invertible. Hence there exists some transformation U such that

U�UT =
(

G 0
0 0

)
, (B10)

where G is some n × n, n < 9 matrix. Thus,

e
∫

�dx = UT

(
e

∫
Gdx 0
0 I9−n×9−n

)
U.

Finally we may then write

〈
vi

a (x)vj

b (x ′)
〉 = [e− ∫ x

x′ �⊗Idx ′′
e

∫ x′
0 �dx ′′

]abij . (B11)

In our case all the matrices are constant so it makes calculation easier:

〈
vi

a (x)vj

b (x ′)
〉 = [e−�⊗I(x−x ′)e�x ′

]abij = [e−A(x−x ′ )e�x ′
]abij = [e−AxeAx ′

e�x ′
]abij , (B12)

where we defined A = � ⊗ I. In what follows we omit indices, and use the following markings:

F(x) =
∫ x

0
dx ′e�x ′ = UT

(
G−1(eGx − 1) 0

0 x

)
U,

D(x) =
∫ x

0
dx ′F(x ′) = UT

(
G−2(eGx − 1) − G−1x 0

0 1
2x2

)
U,

J(x) =
∫ x

0
dx ′D(x ′) = UT

(
G−3(eGx − 1) − G−2x − 1

2 G−1x2 0
0 1

6x3

)
U,

︷︸︸︷
X ≡ A−1

∞∑
n=0

(−1)nA−nX�n.

In the following we omit for simplicity the index 3i3j that we need to take from all the tensorial expressions:

I1 =
∫ L

0
dx

∫ x

0
dx ′

∫ x

x ′
dx̃

∫ x ′

0
dx̃ ′〈v̂i

3(x̃)v̂j

3 (x̃ ′)
〉 =

∫ L

0
dx

∫ x

0
dx ′

∫ x

x ′
dx̃

∫ x ′

0
dx̃ ′e−Ax̃eAx̃ ′

e�x̃ ′

=
∫ L

0
dx

∫ x

0
dx ′ A−1(e−Ax ′ − e−Ax )

︷ ︸︸ ︷
eAx ′

e�x ′ − 1 =
∫ L

0
dx

∫ x

0
dx ′ A−1[

︷ ︸︸ ︷
e�x ′ − e−Ax ′ −e−Ax

︷ ︸︸ ︷
eAx ′

e�x ′ − 1]

=
∫ L

0
d A−1

︷ ︸︸ ︷
[F(x) + A−1(e−Ax − 1) −

︷︸︸︷
e�x +

︷︸︸︷
e−Ax +e−Axx]

= A−1

︷ ︸︸ ︷
[D(L) − A−1L + A−2(1 − e−AL) −

︷︸︸︷
F(L) +A−1

︷ ︸︸ ︷
(1 − e−AL) −A−1e−ALL + A−2(1 − e−AL)]

= A−1

︷ ︸︸ ︷
[D(L) − A−1L −

︷︸︸︷
F(L) −A−1e−ALL + A−1(1 − e−AL)(

︷︸︸︷
1 +2A−1)] . (B13)
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In the last row we merely reordered the expressions from highest to lowest orders in L,

I2 =
∫ L

0
dx

∫ x

0
dx ′

∫ x ′

0
dx̃

∫ x̃

0
dx̃ ′〈v̂i

3(x̃)v̂j

3 (x̃ ′)
〉 =

∫ L

0
dx

∫ x

0
dx ′

∫ x ′

0
dx̃

∫ x̃

0
dx̃ ′ e−Ax̃eAx̃ ′

e�x̃ ′

=
∫ L

0
dx

∫ x

0
dx ′

∫ x ′

0
dx̃

︷ ︸︸ ︷
[e�x̃ − e−Ax̃] =

∫ L

0
dx

∫ x

0
dx ′

︷ ︸︸ ︷
[F(x ′) + A−1(e−Ax ′ − 1)]

=
∫ L

0
dx

︷ ︸︸ ︷
[D(x) − A−1x + A−2(1 − e−Ax )] =

︷ ︸︸ ︷[
J(L) − 1

2
A−1L2 + A−2L − A−3(1 − e−AL)

]
. (B14)

Thus we find that

〈
ri

0r
j

0

〉 = 2

L2

︷ ︸︸ ︷[
2

(
J(L) − 1

2
A−1L2 + A−2L − A−3(1 − e−AL)

)]

+ 2A−1

L2

︷ ︸︸ ︷
[D(L) − A−1L −

︷︸︸︷
F(L) −A−1e−ALL + A−1(1 − e−AL)(

︷︸︸︷
1 +2A−1)]

= 2

L2

︷ ︸︸ ︷
{2J(L) + A−1[D(L) − L2]} + 2A−1

L2

︷ ︸︸ ︷
[−

︷︸︸︷
F(L) +A−1(1 − e−AL)L + A−1(1 − e−AL)

︷︸︸︷
1 ] . (B15)

Finally

1

L

∫ L

0
〈ri (x)rj (x)〉dx = 2

L

∫ L

0
dx

∫ x

0
dx̃

∫ x̃

0
dx̃ ′ 〈

v̂i
3(x̃)v̂j

3 (x̃ ′)
〉 = 2

L

∫ L

0
dx

∫ x

0
dx̃

∫ x̃

0
dx̃ ′e−Ax̃ eAx̃ ′

e�x̃ ′

= 2

L

∫ L

0
dx

∫ x

0
dx̃

︷ ︸︸ ︷
[e�x̃ − e−Ax̃] = 2

L

∫ L

0
dx

︷ ︸︸ ︷
[F(x) + A−1

(
e−Ax − 1

)
]

= 2

L

︷ ︸︸ ︷
[D(L) − A−1L + A−2(1 − e−AL)] . (B16)

We therefore conclude

Rij = 2

L

︷ ︸︸ ︷
[D(L)L − 2J(L) − A−1D(L) + A−1

︷︸︸︷
F(L) −A−2(1 − eAL)

︷︸︸︷
1 ]3i3j . (B17)

APPENDIX C: SIMPLE GAUSSIAN APPROXIMATION

The equations describing the thermal averages within the simple Gaussian approximation around mechanical equilibrium are

h̃eq − h̃0 =

⎧⎪⎨
⎪⎩

0, w̃ � 1,

w̃(1−ν)
[

1+Erf
(√

2�g z̃2
eq

)]
2(1+ν)3

(√
2�
πg

e
−2�g z̃2

eq
)
+2� z̃eq

[
1+Erf

(√
2�g z̃2

eq

)] , w̃ > 1,
(C1a)

〈(h̃ − h̃0)2〉 =

⎧⎪⎪⎨
⎪⎪⎩

1

2w̃�
[
(1+ν)3+12(1−ν)w̃4h̃2

eq

] , w̃ � 1,

√
(1−ν)z̃eq

�[1+(1−ν)w̃4]

(1−ν)+2(1−ν)2w̃4+√
2π (ν+1)4w̃z̃eq

√
�
g

e
2g� z̃2

eq
[

1+Erf
(√

2�g z̃2
eq

)]
4(ν+1)4w̃3/2

{√
� z̃eq

g
+√

2π� z̃
3/2
eq e

2g� z̃2
eq

[
Erf

(√
2�g z̃2

eq

)
+1

]} , w̃ > 1,

(C1b)

z̃eq − z̃0 =

⎧⎪⎪⎨
⎪⎪⎩

√
π

2

√
(1−ν)�w̃

[
(1+ν)2−4w̃4h̃2

eq

] , w̃ � 1,

√
π (1+ν)

[
1+Erf

(√
2g� z̃2

eq

)]
4w̃

√
g(1−ν)� z̃eq

{
e
−2g� z̃2

eq +√
π
√

2g� z̃2
eq

[
1+Erf

(√
2g� z̃2

eq

)]} , w̃ > 1,

(C1c)

〈(z̃ − z̃0)2〉 =

⎧⎪⎨
⎪⎩

1

(1−ν)w̃�
[
(1+ν)2−4w̃4h̃2

eq

] , w̃ � 1,

(1−ν)2
{√

2(1−ν)�
√

gz̃eqe
−2g� z̃2

eq +√
πw̃(� z̃eq )3/2[(1+ν)4−(1−ν)2gw̃3]

[
1+Erf

(√
2g� z̃2

eq

)]}
√

�(1+ν)2w̃2(2�gz̃eq )3/2
{

e
−2g� z̃2

eq +√
π
√

2g� z̃2
eq

[
1+Erf

(√
2g� z̃2

eq

)]} , w̃ > 1,
(C1d)
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where � = E
kBT

= 51/4

35/4
√

2(1−ν)3/4(1+ν)7/2

Y t7/2k
1/2
0

kBT
, g = (1+ν)4w̃

(1−ν)[1+(1−ν)w̃4] , and −1 < Erf(x) < 1 is the error function. These results are
depicted in the main text. Note that the equilibrium values diverge near the critical width, suggesting that this approximation
fails close enough to the transition. Indeed one may approximate the equilibrium values using a saddle point approximation. This
is done in Appendix F. Nevertheless, the results here are valid at low temperatures, where these differences are not important.
Furthermore, the more exact treatment only changes the result quantitatively and not qualitatively.

APPENDIX D: BOUNDARY LAYER

The boundary layer energy for an arbitrary width w̃ > 1 and arbitrary Poisson’s ratio is

Hbound ∝ −Y t7/2k
1/2
0

∫
(1 − ν)2(1 + ν)3/2[(w̃4 − 1) cos(2θ ) + 3w̃4 + 4

√
w̃4 − 1w̃2 cos(θ ) − 1]

4
√

2w̃3

√√
w̃4 − 1 cos(θ ) + w̃2

dx̃. (D1)

APPENDIX E: SMALL-FLUCTUATION AVERAGING OF θ (q = 0)

The derivative term in the Hamiltonian is given by

HDer ∝ 4(1 − ν)(�h′)2 + [3 − 2ν + (1 − 2ν) cos(2θ0)](�z′)2 + z2
eq[3 − 2ν − (1 − 2ν) cos(2θ0)](�θ ′)2

− 2zeq(1 − 2ν) sin(2θ0)�θ ′�z′ − 8(1 − ν)�h′[cos(θ0)�z′ − zeq sin(θ0)�θ ′], (E1)

where θ0 is the uniform (q → 0) value. Using Fourier space we can now calculate the different averages in the main text. For
example,

〈l〉 = 〈h + �h〉 + 〈(z + �z)Ree(iθ0+i�θ )〉 = h + z〈Ree(iθ0+i�θ )〉 + 〈�zRee(iθ0+i�θ )〉,
since

〈Ree(iθ0+i�θ )〉 = Re〈eiθ0〈ei�θ 〉q〉0 = Re〈eiθ0e−〈�θ2〉q 〉0,

where the average over �θ obviously depends on θ0. However,

〈�θ2〉q =
∫

dq

2π

1

q2[a + b cos(2θ0)]
,

which formally diverges; hence (taking the limit) 〈Ree(iθ0+i�θ )〉 vanishes.
The second term is the given by

〈�zRee(iθ0+i�θ )〉 = Re〈eiθ0〈�zei�θ 〉q〉0 	 Re〈eiθ0〈�z + i�z�θ − �z�θ2/2〉q〉0 = Re〈eiθ0〈i�z�θ〉q〉0

= Re

〈
eiθ0 i

∫
dq

2π

1

q2a sin(2θ0)

〉
0

.

The last term is proportional to 〈 sin(θ0 )
sin(2θ0 ) 〉0 which is ill defined but may be shown to be 0 at the proper limit.

The correlations 〈�l(x1)�l(x2)〉 = 〈�l1�l2〉 of the curvatures at positions (x1, x2) are then given by

〈�l(x1)�l(x2)〉 = 〈�l1�l2〉 = 〈[�h1 + (z + �z1) cos(θ0 + �θ1)][�h2 + (z + �z2) cos(θ0 + �θ2)]〉
= 〈�h1�h2〉 + z2〈cos(θ0 + �θ1) cos(θ0 + �θ2)〉 + 〈�z1�z2 cos(θ0 + �θ1) cos(θ0 + �θ2)〉

+ z〈�z1 cos(θ0 + �θ1) cos(θ0 + �θ2)〉 + 〈�h1�z2 cos(θ0 + �θ2)〉 + z〈�h1 cos(θ0 + �θ1) cos(θ0 + �θ2)〉,
where we omitted terms containing the interchanging of 1 and 2. Using

cos(θ0 + �θ1) cos(θ0 + �θ2) = 1
2 [cos(2θ0 + �θ1 + �θ2) + cos(�θ1 − �θ2)],

we now note that

〈cos(θ0 + �θ1) cos(θ0 + �θ2)〉 = 1
2 〈cos(2θ0 + �θ1 + �θ2) + cos(�θ1 − �θ2)〉 = 1

2 Re〈e2iθ0ei(�θ1+�θ2 ) + ei(�θ1−�θ2 )〉
= 1

2e−〈(�θ1−�θ2 )2〉/2.

Also, marking α+ = 2, α− = 0 we may calculate

〈�z1�z2 cos(α±θ0 + �θ1 ± �θ2)〉 = Re〈eα±iθ0〈�z1�z2e
i(�θ1±�θ2 )〉q〉0

= Re〈eα±iθ0 (〈�z1�z2〉q〈ei(�θ1±�θ2 )〉q + 〈�zi�θ〉q〈�zi�θ〉q + · · · )〉0

= Re
〈

1
2e−〈(�θ1−�θ2 )2〉q/2〈�z1�z2〉q

〉
0.
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This term, after averaging over θ0, differs only slightly from those calculated using the “naive” approximation in the main text.
Similarly, terms like 〈�z cos(α±θ0 + �θ1 ± �θ2)〉 = 〈�h cos(α±θ0 + �θ1 ± �θ2)〉 = 0. The last terms we need are then

〈�h1�z2 cos(θ0 + �θ2)〉 = Re〈�h1�z2e
iθ0+i�θ1〉 = Re〈eiθ0〈�h1�z2e

i�θ1〉q〉0 (E2)

= Re〈eiθ0〈�h1�z2〉q〈ei�θ1〉q〉0 = 0. (E3)

Other terms are obviously zero. For a specific realization of θ0 we do not need to average of course. To the required order and
accuracy, such results may as well be evaluated with an effective Hamiltonian as given in the main text.

APPENDIX F: SADDLE POINT APPROXIMATION

One way to describe the statistical nature of elastic ribbons is to calculate the fluctuations in their curvatures. These, being our
order parameters, are a natural choice. Calculation is done in a similar manner to the one described in [17]; we limit ourselves
to the Gaussian approximation. We start from the partition function Z = ∫

e−βH [z(x),h(x)] ∏
x z(x)dz(x)dh(x)dθ , where we note

the nontrivial measure. We define the free energy F and free energy density F :

−�F = −�

∫
F (z̃, h̃, θ )dx̃ = −�

∫
H(z̃, h̃, θ )dx̃ +

∫
ln(z̃)dx̃

⇓

F = H − 1

�
ln(z̃), (F1)

where � = 51/4

35/4
√

2(1−ν)3/4(1+ν)7/2

Y t7/2k
1/2
0

kBT
. And we may write Z = ∫

e−�F [z(x),h(x)]dx̃
∏

x dz(x)dh(x)dθ .
It is clear that the minimum of F , unless T = 0, differs from that in Eq. (9) in the main text. We use the saddle point

approximation (SPA) to solve for the thermal equilibrium values (marked h̃eq and z̃eq).
We then expand F to second order about the equilibrium values:

F 	 Feq + F(2) = Feq +
∫

F(2)dx. (F2)

In principle, F(2) = F(2)[z(x), h(x), ∂xz, ∂xh, ∂xθ ]. However, as mentioned earlier, we will assume for simplicity that we may
omit the derivatives (as we have shown in the past that these do not change the results significantly, and their main effect in this
case is that they give rise to finite correlation lengths). Thus,

F(2) = H(2) + 1

2�

(
�z̃

z̃eq

)2

= 1

2

{[
8w̃5(1 − ν)

(
3h̃2

eq − z̃2
eq

) + 2w̃(1 + ν)3]�h̃2

+
[

8w̃5(1 − ν)
(
3z̃2

eq − h̃2
eq

) + 2w̃(1 − ν)(1 + ν)2 + 1

� z̃2
eq

]
�z̃2 − 32w̃5(1 − ν)h̃eqz̃eq�z̃�h̃

}
. (F3)

The average of a quantity Q is given by the functional integral

〈Q〉 = 1

Z

∫
Qe−βF(2)[z(x),h(x)]

∏
x

dz(x)dh(x)dθ (x). (F4)

Where we redefined the partition function Z = ∫
e−βF2[z(x),h(x)] ∏

x dz(x)dh(x)dθ . At the given approximation, integration
over the angle is trivial. Omitting derivatives means that there are no correlations at different positions, i.e., 〈Q(x̃)Q(x̃ ′)〉 =
δ(x̃ − x̃ ′)〈Q2〉. Hence, the averages and fluctuations of the curvatures are given by

〈l̃〉 = 〈h̃〉 + 〈z̃〉〈cos θ〉 = 〈h̃〉 = h̃eq = 〈ñ〉, (F5a)

〈m̃〉 = 0, (F5b)

〈�l̃(x̃)�l̃(x̃ ′)〉 = 〈l̃(x̃)l̃(x̃ ′)〉 − 〈l̃〉2 = δ(x̃ − x̃ ′)〈�l̃2〉, (F5c)

〈�l̃2〉 = 〈�h̃2〉 + 1

2
(〈�z̃2〉) = 〈�ñ2〉,

〈�m̃2〉 = 1

2
〈�z̃2〉,

〈�h̃2〉 = 〈(h̃ − h̃eq )2〉,
〈�z̃2〉 = 〈(z̃ − z̃eq )2〉, (F5d)
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〈�h̃2〉 =
2
[
8(1 − ν)w̃5

(
3z̃2

eq − h̃2
eq

) + 2(1 − ν)(1 + ν)2w̃ + 1
� z̃2

eq

]
�w̃�

, (F6a)

〈�z̃2〉 = 4
[
4(1 − ν)w̃4

(
3h̃2

eq − z̃2
eq

) + (1 + ν)3
]

��
, (F6b)

where

� = 2
[
12h̃2

eq(1 − ν)w̃4 + (1 + ν)3 − 4(1 − ν)w̃4z̃2
eq

][
8(1 − ν)w̃5

(
3z̃2

eq − h̃2
eq

) + 2(1 − ν)(1 + ν)2w̃ + 1

� z̃2
eq

]

− 256(1 − ν)2w̃9h̃2
eqz̃

2
eq,

where � = 51/4

35/4
√

2(1−ν)3/4(1+ν)7/2

Y t7/2k
1/2
0

kBT
, g = (1+ν)4w̃

(1−ν)[1+(1−ν)w̃4] ; −1 < Erf(x) < 1 is the error function. These results are depicted in
Fig. 14.

h̃eq = (1 + ν)

(1 − ν)w̃4

[
1 − 2z̃2

eqw̃�
(
5ν + (1 − ν)

{
ν2 − 4z̃2

eq(ν + 1)2w̃5�
[
4z̃2

eq − (ν + 1)2
]

+ w̃4
[
4z̃2

eq + (ν + 1)2
] + 4z̃2

eq(ν + 1)4w̃�
} + 3

)]
, (F7a)

z̃eq =
√

2w̃3 + �(1 + ν)2{w̃4[8
√

ζ + (1 + ν)2 + 8 sgn(w̃ − 1)
√

φ] − (1 + ν)2}
16�(1 + ν)2w̃4

, (F7b)

where

ζ = 1

256

∣∣∣∣∣ (w̃4 − 1)3(ν − 1)(ν + 1)12 + 2w̃3(w̃4−1)[3(ν−1)w̃4+ν−5](ν+1)8

�
+ 8w̃6[(ν−1)w̃4+2](ν+1)4

�2

w̃12(ν − 1)(ν + 1)6
√

φ

∣∣∣∣∣ − μ + 2υ, φ = μ + υ,

υ =
4(ν−1)w̃6

�2 + 3(ν − 1)(ν + 1)8(w̃4 − 1)2 + 4(ν+1)4w̃3[ν+3(ν−1)w̃4−5]
�

192(ν − 1)(ν + 1)4w̃8
,

μ =
3
√

2χ2 + 2w̃4
(

(ν−1)2w̃6

�2 +(ν+1)8[(ν+1)2+3(ν2−6ν+5)w̃4]+ 2(ν−1)(ν+1)5w̃3

�

)
�2

48 22/3(ν − 1)(ν + 1)4w̃7χ
, χ = 1

�

{
�3η + τ

}1/3
,

τ = w̃6

(
2(ν − 1)3w̃9

�3
+ 6(ν − 1)2(ν + 1)5w̃6

�2
+ 2(ν + 1)12{(ν + 1)3 + 27(ν − 1)2w̃8 − 9(ν − 1)[(ν − 1)ν + 4]w̃4}

+ 3(ν − 1)(ν + 1)8w̃3[2(ν + 1)2 + 3(ν − 1)(ν + 19)w̃4]

�

)
,

η = 1

�3

{
τ 2 − 4w̃12

(
(ν − 1)2w̃6

�2
+ (ν + 1)8[(ν + 1)2 + 3(ν − 5)(ν − 1)w̃4] + 2(ν − 1)(ν + 1)5w3

�

)3
}1/2

.

F(2) = H(2) + 1

2�

(
�z̃

z̃eq

)2

= 1

2

{[
8w̃5(1 − ν)

(
3h̃2

eq − z̃2
eq

)
+ 2w̃(1 + ν)3

]
�h̃2

+
[

8w̃5(1 − ν)
(

3z̃2
eq − h̃2

eq

)
+ 2w̃(1 − ν)(1 + ν)2 + 1

� z̃2
eq

]
�z̃2 − 32w̃5(1 − ν)h̃eqz̃eq�z̃�h̃

}

+ 8

√
5

3
(1 − ν)

k0t

1 + ν

{
(1 + ν)2w̃3

48

[
4(1 − ν)� ˙̃h2 + (3 − 2ν)

(
z̃2

eq�θ̇2 + � ˙̃z2
)]}

. (F8)
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FIG. 14. Moments of �h and �z at different temperatures, as indicated by the legends and figure titles.
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APPENDIX G: DETAILS OF THE MONTE CARLO
SIMULATIONS

For the Monte Carlo simulations, a discrete version of
Eq. (7), including derivative terms, was written. To this end we
divide the ribbon into small enough segments of size a < 1 so
that discrete errors will be minimal. We found that a = 0.1 was
enough for most practical uses. Then Eq. (7) may be written
as

H = aE

L̃/a∑
i=1

2(1 − ν)w̃5
(
h̃2

i − z̃2
i

)2 + (1 + ν)2w̃

× [(h̃i − 1)2(1 + ν) + z̃2
i (1 − ν)] + der. (G1)

Here der is the discrete analog of the derivative term in Eq. (15)
where we replaced X′2

i = 1
2a2 [(Xi+1 − Xi )2 + (Xi − Xi−1)2].

Xi is the value of variable X at the ith segment. Thus for
a ribbon with N = L̃/a segments a single MC iteration is
described below:

(1) Randomly select a position j ∈ {1, . . . , N}.
(2) Randomly select one of three curvatures k ∈ l, m, n.
(3) Assign a random value so that σ k

j ∈ [− 1
a
, 1

a
] (σ l ≡

l, σm ≡ m, σn ≡ n).
(4) Calculate the (local) difference in energy, �E =

Hnew − Hold.
(i) If �E � 0 accept the change.
(ii) Otherwise, accept the change with probability

e−�E/T̃ .
(5) Repeat 3N times.

FIG. 15. The mechanical equilibrium solutions’ dependence on
Poisson’s ratio, as indicated in the figure. As mentioned in the main
text, different values of Poisson’s ratio give rise to different asymptotic
values. The nature of the transition remains the same.

We then ran the simulation for Nit iterations (of order 104).
The code was written in MATLAB. If one plans to calculate any
average values, one also needs to make sure the system reaches
“equilibrium.” We found that typically (depending on exact
parameters) this happens after Nthermal ∼ 102–103 iterations.

APPENDIX H: DEPENDENCE OF THE SOLUTIONS
ON POISSON’S RATIO ν

The exact dependence of the solutions, as given in Eqs. (9)
in the main text, on Poisson’s ratio ν is shown in Fig. 15.
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