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Effect of population abundances on the stability of large random ecosystems
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Random matrix theory successfully connects the structure of interactions of large ecological communities to
their ability to respond to perturbations. One of the most debated aspects of this approach is that so far studies have
neglected the role of population abundances on stability. While species abundances are well studied and empirically
accessible, studies on stability have so far failed to incorporate this information. Here we tackle this question by
explicitly including population abundances in a random matrix framework. We derive an analytical formula that
describes the spectrum of a large community matrix for arbitrary feasible species abundance distributions. The
emerging picture is remarkably simple: while population abundances affect the rate to return to equilibrium after
a perturbation, the stability of large ecosystems is uniquely determined by the interaction matrix. We confirm this
result by showing that the likelihood of having a feasible and unstable solution in the Lotka-Volterra system of
equations decreases exponentially with the number of species for stable interaction matrices.
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I. INTRODUCTION

Since the work of Lotka and Volterra, ecologists have
attempted to mathematize the interactions between populations
to build predictive models of population dynamics. This is a
complex problem: the equations describing their interactions
have been debated for decades [1], ecological communities are
often composed of a large number of species [2], and the esti-
mation of parameters and initial conditions is often unfeasible.

To circumvent this problem, May [3] introduced the
idea of modeling complex ecological communities using
random matrices. Consider the case in which the dynamics
of the populations can be described by a system of ordinary
differential equations:

dxi (t )

dt
= fi[x(t )], (1)

where x(t ) is a vector containing the populations abundances
at time t , and the function fi relates the abundance of all
populations to the growth of population i. In general, fi is a
nonlinear equation with several parameters.

Suppose that the system admits a feasible equilibrium point,
i.e., a vector x∗ such that fi (x∗) = 0 and x∗

i > 0 for all i. If we
start the system at this point, it will remain there indefinitely.
We can therefore ask whether the system will go back to
the equilibrium, or rather move away from it, following a
perturbation. This type of stability analysis can be carried
out by building the Jacobian matrix Jij = ∂fi[x(t )]/∂xj and
evaluating it at the equilibrium point, yielding the so-called
community matrix M = J |x∗ . If all the eigenvalues of M
have a negative real part, then the equilibrium is locally
asymptotically stable, and the system will return to it after

sufficiently small perturbations; if any of the eigenvalues have
a positive real part, the system will move away from the
equilibrium when perturbed.

Clearly, to build M one would need to precisely know the
functions fi , as well as their parameters, and solve for the
equilibrium (or equilibria) x∗. May took a radically different
approach and analyzed the case in which M is a random matrix
with independent, identically distributed off-diagonal elements
and constant diagonal elements [3]. For this parameterization,
he was able to show that the community matrices describing
sufficiently large and complex ecological communities are
always unstable. The random-matrix approach was recently
extended and refined to include different types of interaction
between the populations [4,5], as well as to study the effect
of more complex network structures, such as the hierarchical
organization of food webs [6] and the modular pattern often
displayed by biological networks [7].

By modeling directly the matrix M as a random matrix, one
does not require a precise characterization of the functions fi

and the equilibrium x∗. While mathematically convenient, this
approach does not explicitly take into account the abundance
of the populations—a quantity that is empirically much more
accessible than interaction coefficients or the elements of the
community matrix.

The distribution of species abundances (SADs) is one of
the most studied patterns in ecology, and it has been shown
to have remarkably similar features across different species-
rich communities [8] with a skewed shape and few highly
abundant species. The log-series distribution [9], discrete log-
normal [10], and negative binomial [11] have all been proposed
to describe empirical SADs and have been shown to emerge
from either neutral [12–15] or niche mechanisms [16,17]. An
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important limitation of these studies is that typically species
abundances are studied and modeled by considering a single
trophic level or a single taxonomic group.

The role of species abundances in structuring the commu-
nity matrix M can be easily seen when considering one of
the simplest models of population dynamics, the generalized
Lotka-Volterra (GLV) model:

dxi (t )

dt
= xi (t )

⎡
⎣ri +

∑
j

Aij xj (t )

⎤
⎦, (2)

where ri is the intrinsic growth rate of species i, and Aij is
the per-capita effect of species j on the growth of i. If a
feasible equilibrium (i.e., one where all species have positive
abundance) exists, then it can be found solving the system of
equations

0 = ri +
∑

j

Aij x
∗
j , (3)

yielding the community matrix Mij = Aijx
∗
i , which can be

written in matrix form as

M = X A, (4)

where X is a diagonal matrix with Xii = x∗
i and zeros else-

where. Even if the elements of A were independent, identically
distributed samples from a distribution, the elements of M
would not be—the matrix of abundances X couples all the
coefficients in the same row, such that the distribution of the
elements in each row would in principle be different.

One of the main goals of this work is to extend the
random matrix approach by considering a random matrix of
abundances X and a random matrix of interactions A, and
determining the stability of M under these conditions. In this
way, we address the effect of species abundances on stability,
thereby lifting one of the main criticisms of the random matrix
approach [5,18,19].

Our results extend to more complex models. For example,
consider

dxi (t )

dt
= φi[xi (t )]Hi

⎡
⎣∑

j

Aij xj (t )

⎤
⎦, (5)

where φi and Hi are positive and monotonically increasing
functions. It is easy to observe that, assuming φi (0) = 0, the
Jacobian evaluated at the fixed point has the same form of
Eq. (4), with Xii = φi (x∗

i )H ′
i (

∑
j Aij x

∗
j ). While for simplicity

we will focus on the GLV case, our approach yields insights to
more complicated dynamics and goes beyond the ecological
application that motivates this study.

As we stated above, when analyzing coexistence, we
need population abundances to be positive (feasible). Stability
cannot, at least in principle, be disentangled from the constraint
imposed by feasibility on interactions [20]. Diversity and
interaction properties have important consequences for the
range of parameters corresponding to feasible solutions
[21–23]. While the interest in feasibility has grown consider-
ably in recent years, the relationship between feasibility and
stability is still unclear. In fact, most of the studies on feasibility
assume strong conditions on the interaction matrix (e.g.,

D-stability or diagonal stability) that guarantee stability of
feasible solution [21,23] (see Appendix A). It is still unclear
whether and when these assumptions are justified, and how
likely it is for large random interaction matrices to meet these
conditions.

In the second part of this work, we focus on the relationship
between feasibility and stability. In particular, we study the
relationship between the stability of A and that of M for the
GLV model. Our results show that, given a stable random
matrix A, the probability that an arbitrary feasible equilibrium
is unstable decreases exponentially with diversity. This result
strongly suggests that, provided that the interaction matrix
A is stable, feasible solutions are almost surely stable. We
therefore provide a more robust justification to both May’s
original paper—by showing that population abundances do
not affect qualitatively stability—and the more recent work
on feasibility that assumes stability—by predicting that this
assumption is almost surely met for large random systems.

II. CONSTRUCTING THE COMMUNITY MATRIX WITH
ARBITRARY POPULATION ABUNDANCE

We consider a system of S interacting populations whose
dynamics are described by the GLV model in Eq. (A1), assume
that a feasible equilibrium x∗ exists, and define X as the
diagonal matrix with diagonal entries Xii = x∗

i . The feasible
fixed point x∗ is locally asymptotically stable if and only if
all the eigenvalues of the community matrix M = X A, with
components Mij = x∗

j Aij , have a negative real part. Here we
model A as a random matrix and x∗ as a random vector with
positive components, with the goal of studying the spectrum
(distribution of the eigenvalues) of the community matrix M.
From the GLV model, specifying a feasible fixed point x∗ is the
same as specifying a vector of intrinsic growth rates r inside the
feasibility domain [21,23]. It is important to underline that the
focus here is in fact different from the one of Refs. [21,23]. In
particular, the goal of Ref. [23] was to study the probability
to find a feasible solution of a Lotka-Volterra system of
equations with random interaction coefficients. Reference [23],
and many others on a similar topic, assumed a strong condition
of stability on the interaction matrix. Under that assumption,
any feasible solution is stable. This paper instead assumes that
the feasibility condition holds and focuses on the stability of
feasible fixed point.

More specifically, we assume that the diagonal entries of
the diagonal matrix X are drawn from an arbitrary distribution
with positive support, mean μX, and variance σ 2

X. The diagonal
entries of A are drawn from an arbitrary distribution with
support in the negative axis, mean μd , and variance σ 2

d . Finally,
each off-diagonal pair (Aij , Aji ) in A is drawn independently
from a bivariate distribution with identical marginal means μ,
variances σ 2, and correlation ρ. Unless otherwise specified,
we focus on the case σd = 0, while we discuss in the the
appendices the effects of variability in self-regulation [24].

In the case of σd = 0 and in the limit of large S, the spectrum
of A is known and is independent of the choice of the bivariate
distribution (provided that mild conditions on the finiteness
of the moments are satisfied [25]). In particular, A has one
eigenvalue equal to −μd + Sμ [26], while the others (the
bulk of eigenvalues) are uniformly distributed in an ellipse in
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FIG. 1. The top row shows the vector of abundances x∗, the interaction matrix A, and the community matrix M = X A (where X is a diagonal
matrix with diagonal entries x∗), with colors from red (negative) to green (positive). The bottom row shows the eigenvalue distribution of A
and M, for S = 500. The diagonal entries of X are sampled from a uniform distribution on [0,1], and matrix A is built sampling independently
each pair (Aij , Aji ) from a normal bivariate distribution with identical marginals defined by μ = 0, σ = 1/

√
S, and correlation ρ = −0.5. The

diagonal elements of A are fixed at −1. The distribution of X strongly affects the shape of the eigenvalue distribution of M.

the complex plane centered in −μd − μ with horizontal axis√
Sσ (1 + ρ) and vertical axis

√
Sσ (1 − ρ) [4,25,26]. Figure 1

shows an example of the spectrum of A.
Figure 1 also shows an example of the eigenvalue distribu-

tion of the community matrix M = X A where the diagonal
entries of X are independent random variables drawn from a
uniform distribution. It is evident that the bulk of eigenvalues
of M does not follow the elliptic law. The main goal of this
work is to characterize the spectrum of M given the properties
of A and X .

III. DISENTANGLING THE EFFECT OF THE
MEAN INTERACTION STRENGTH

When the mean μ of the off-diagonal elements of the
interaction matrix A does not equal zero, the spectra of A
and M are characterized by the presence of an outlier. The
value of this eigenvalue for the matrix A is known for the case
σd = 0 and in the limit of large S [26]. It can be obtained by

decomposing the matrix A as a sum of three matrices

A = (μd − μ)I + μ1 + B, (6)

where I is the identity matrix, 1 is a matrix of ones, and B
measures the deviation of the entries of A from the meanμ. Fol-
lowing our parametrization, B is a random matrix with mean
zero that follows the elliptic law. O’Rourke and Renfrew [26]
proved that the spectrum of A is characterized by a bulk of
eigenvalues, determined by the spectrum of (μd − μ)I + B,
and the presence of an outlier, whose value is (approximately)
given by the largest eigenvalue of (μd − μ)I + μ1, which has
value μd + (S − 1)μ.

Figure 2 shows that, if μ �= 0, the spectrum of M is also
characterized by the presence of a bulk and of an outlying
eigenvalue. By decomposing the matrix M as

M = X[(μd − μ)I + μ1 + B], (7)

022410-3



GIBBS, GRILLI, ROGERS, AND ALLESINA PHYSICAL REVIEW E 98, 022410 (2018)

FIG. 2. The top row shows the three matrices M, Q, and J. The community matrix M = X A, is obtained from the interaction matrix
A that, without loss of generality, can be written as A = (μd − μ)I + μ1 + B, where 1 is a matrix of ones and B is a random matrix with
diagonal elements fixed at zero whose coefficients have mean zero and variance σ 2. We define Q = X[(μd − μ)I + μ1] and J = X (μd I + B).
Equivalently, Q is the matrix with the same parameters as M except with σ = 0, and J is obtained from the same parameters as M except
with μ = 0 for the off-diagonal terms. The bottom rows show the eigenvalues of of M, Q, and J. Remarkably, the spectra are simply related:
the bulk of the eigenvalue distributions of J and that of M are the same, while the outlier of M is the same as that of Q. We set S = 500. The
diagonal entries of X are sampled from a uniform distribution on [0,1]. The coefficients of A are sampled from a normal bivariate distribution
with identical marginals μ = 5/S, σ = 5/

√
S, and correlation ρ = −0.5.

we show in Appendix D that the bulk of the spectrum of
M is determined by the eigenvalues of the matrix J =
X[(μd − μ)I + B] and the outlier is given by largest eigen-
value of Q = X[(μd − μ)I + μ1]. Figure 2 shows an exam-
ple of this decomposition, where it is evident that the bulks
of eigenvalues of M and J are the same, and the outliers of
M and Q match. This decomposition allows us to obtain an
analytical prediction for the outlier, and in Appendix E we find
the spectrum of Q analytically.

The trace of M is given by

tr (M ) = λout + (S − 1)〈λ〉bulk, (8)

where λout is the value of the outlier and 〈λ〉bulk is the average
eigenvalue in the bulk. Since the bulks of the eigenvalues of
M and J are the same, we have that

〈λ〉bulk = 1

S
tr ( J ) = μX(μd − μ). (9)

Using the fact that

tr (M ) = SμdμX, (10)

we see that the outlier is equal to

λout = μX[μd + (S − 1)μ]. (11)

Figure 3 shows that this analytical prediction closely
matches the outlier of the spectrum of M. We can observe

deviations from our prediction when μ is small, especially
when X is drawn from a log-normal distribution. This is
because the eigenvalue corresponding to Eq. (11) is now
contained in the bulk.

For mutualistic systems (where μ > 0), the outlier is the
eigenvalue determining the stability of the matrix M. Equa-
tion (11) implies that for mutualistic systems, if the matrix
A is stable, then the community matrix M is also stable, and
therefore all the feasible fixed points are expected to be stable.
In this case, λM , the rightmost eigenvalue of M , is simply equal
to μXλA, implying that communities with larger population
abundances are expected to be less stable and experience larger
fluctuations. Interestingly, in mutualistic systems local stability
implies global stability [27], and the feasibility conditions
have been extensively studied [21,23], also in connection with
empirical data [28].

IV. ANALYTICAL SOLUTION IN THE CASE ρ = 0

In Sec. III we showed that the spectrum of M is char-
acterized by a bulk of eigenvalues and an outlier, which is
determined by the mean interaction μ. In the following, we
focus on the bulk of eigenvalues, so we assume μ = 0.

Using the cavity method [7,29,30], we derive in Appendix F
a system of equations for the spectral density of the matrix
M. These equations cannot be explicitly solved in the most
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FIG. 3. The three panels show that our analytical prediction [Eq. (3)] correctly matches the outlier of the spectrum, for different values of
ρ and population abundance distributions. The matrix A is built independently sampling the coefficients from a normal bivariate distribution
with identical marginals defined by μ, σ , and ρ. Here we set S = 1000 and σ = 1/

√
S, and vary μ between −10 and 10 to test our prediction.

We draw X from three different distributions with positive support: uniform (on [0,1]), log-normal (with mean log-mean 0.5 and log-standard
deviation 0.5), and half-normal (shifted rightwards to have support (1, ∞), and with parameter θ = 1).

general case, but they take a particularly simple form when the
correlation ρ = 0. In this case, it is possible to write an implicit
equation for the support of the spectrum, which takes the form∫

dx ds PXD (x, s)
Sx2σ 2

|λ − sx|2 = 1, (12)

where PXD (x, s) is the joint distribution of the population
abundances x, with mean μX and variance σ 2

X, and the self-
regulation terms (i.e., the diagonal elements of the interaction
matrix) with mean μd and variance σ 2

d . The complex solutions
λ of this equation define the support of the spectrum in the
complex plane. In Appendix F we explicitly solve the case
of constant self-regulation terms (i.e., σd = 0) and population
abundances drawn from a uniform distribution.

When the self-regulation terms are constant, Eq. (12)
reduces to ∫

dx PX(x)
Sx2σ 2

|λ − μdx|2 = 1, (13)

where PX(x) is the species abundance distribution. Figure 4
compares the analytical prediction with the bulk of eigenvalues
of M for different distributions of X , showing that the solutions
of Eq. (13) closely match the support of the spectrum of M.
Interestingly, the integral in Eq. (13) is finite for any normalized
PX(x), implying that our result holds even for very broad
species abundance distribution, without any requirement on
its moments (see Appendix G and Fig. 13).

Equation (13) also predicts that if A is stable, then M is
stable. In fact, Eq. (13) predicts that the matrix A is stable iff
μd + Sσ 2 < 0. If this condition is met, it is simple to observe
that

Sx2σ 2

|λ − μdx|2 < 1 (14)

for any complex λ with positive real part and any posi-
tive real x. When this inequality is used in Eq. (13), one
obtains that the points on the boundary of the support, and
therefore all the eigenvalues, always have a negative real
part.

V. THE STABILITY OF LARGE COMMUNITY MATRICES
DOES NOT DEPEND ON POPULATION ABUNDANCE

In the previous section, we derived the spectrum in the case
ρ = 0, finding that if the interaction matrix A is stable, then
M is stable. The goal of this section is to study more deeply
the relationship between the stability of A and that of M. More
specifically, given a stable random matrix A, we ask what is
the probability of finding a positive diagonal matrix X , such
that M = X A is stable.

A matrix A is D stable if, for any positive diagonal matrix
X, X A is stable [31]. An explicit condition for D stability
that does not require checking all the possible choices of X is
not known in dimension larger than four [32]. Therefore, it is
not known, in general, under which values of μ, σ, ρ, and μd

random matrices are expected to be D stable.
A stronger condition for stability is diagonal stability. A

matrix A is diagonally stable if there exists a positive diagonal
matrix X such that X A + At X is stable. Interestingly, diagonal
stability implies D stability [31]. As for D stability, a simple
necessary and sufficient test for diagonal stability is not known.
On the other hand, it is simple to observe that the stability
of ( A + At )/2 is a sufficient condition for diagonal stability
(corresponding to choosing a constant diagonal matrix X) and
therefore also implies D stability.

All the eigenvalues of ( A + At )/2 are real, and, if A is a
symmetric random matrix of independently distributed entries
with bounded higher moments, the bulk of eigenvalues of

022410-5



GIBBS, GRILLI, ROGERS, AND ALLESINA PHYSICAL REVIEW E 98, 022410 (2018)

−1.0

−0.5

0.0

0.5

1.0

−4 −3 −2 −1

Real

Im
ag

in
ar

y

Uniform

−1

0

1

−20 −15 −10 −5 0

Real

Im
ag

in
ar

y

Log Normal

−1

0

1

−12.5 −10.0 −7.5 −5.0 −2.5

Real

Im
ag

in
ar

y

Half Normal

Uniform LogNormal HalfNormal

−0.9 −0.6 −0.3 −0.9 −0.6 −0.3 −0.9 −0.6 −0.3

−0.9

−0.6

−0.3

Dominant Eigenvalue

P
re

di
ct

ed
 D

om
in

an
t E

ig
en

va
lu

e

SDA 0.25 0.5 0.75

FIG. 4. The top row shows that the analytical prediction for the support of the eigenvalue distribution obtained in Eq. (13) (solid blue line)
correctly identifies the support of the spectrum of M = X A. In all the three plots, A is built using a bivariate normal distribution with identical
marginals μ = 0, σ = 1/

√
S, and correlation ρ = 0. The diagonal entries of A are fixed at −2. We considered three different abundance

distributions: uniform (X is sampled from a uniform distribution on [0.25, 1.75]) lognormal (X is sampled from a log-normal distribution with
log-mean 0.5 and log-standard deviation 0.5), and half-normal [X is sampled from a half-normal, shifted rightwards to have support (1,∞),
and with parameter θ = 1]. The bottom row shows the value of the rightmost eigenvalue of M against the analytical prediction for the leading
eigenvalue of matrices with the same abundance distributions used above, but varying their variances σ 2

X . Different colors correspond to different
values of σ . Each point is an average over 20 simulations. The deviations form the prediction are due to finite-size effects, which depend on the
distribution of the population abundances.

( A + At )/2 follows Wigner’s semicircle distribution [33,34]

� A+At

2
(λ) =

√
2Sσ 2(1 + ρ) − [λ − (μd − μ)]2

πSσ 2(1 + ρ)
, (15)

with one outlying eigenvalue equal to μd + (S − 1)μ.
For positive mean μ, if μ > (1 + ρ)σ/

√
S, the rightmost

eigenvalue is the outlier. In this case, the rightmost eigen-
value of A and of ( A + At )/2 are the same. Therefore, for
non-negative μ, stable random matrices are almost surely
diagonally stable. Since diagonal stability implies D stability,
if A is stable, then M = X A is stable. This argument is in
agreement with our formula for the outlier of M in the case of
nonvanishing mean μ, obtained in Eq. (11). For positive mean
μ (e.g., in mutualistic systems), the rightmost eigenvalue of
M is equal to μXλA, where λA is the rightmost eigenvalue of
A and μX is positive by definition. The sign of the rightmost
eigenvalue of M is therefore the same as that of the rightmost
eigenvalue of A.

Since a negative μ only produces a equal shift in the
rightmost eigenvalue of A, ( A + At )/2 and M, we can restrict
our analysis to the case μ = 0. For vanishing mean, the
rightmost eigenvalue of ( A + At )/2 is equal to [34]

λ A+At

2
= μd +

√
2Sσ 2(1 + ρ), (16)

which should be compared with the rightmost eigenvalue of
A:

λA = μd +
√

Sσ 2(1 + ρ). (17)

As shown in Refs. [23,34], λ A+At

2
� λA and they are equal

in the case ρ = 1. Equation (16) imposes a sufficient condition
on diagonal stability: if

μd +
√

2Sσ 2(1 + ρ) < 0, (18)

A is diagonally stable, and, for any choice of positive di-
agonal matrix X, M = X A is stable. The nontrivial regime
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FIG. 5. We computed the probability that a matrix M = X A is unstable (i.e., that the leading eigenvalue has positive real part), given that
A is a stable random matrix with rightmost eigenvalue equal to λmax = −d . This probability decreases exponentially with S for different values
of ρ (−0.5 in the left panel, 0 in the center, and 0.5 in the right) and λmax (different colors). For a given number of species S, we construct
the random matrix A by sampling its entries from a bivariate normal with identical marginals μ = 0, σ = 1/

√
S, and given ρ. The diagonal

elements of A are all equal, and their value is determined in order to have dominant eigenvalue equal to λmax. The diagonal entries of X were
sampled from a uniform distribution on [0,1]. For each value of the parameters ρ, λmax, and S, we constructed 15 000 matrices A and X and
computed the fraction of matrices M = X A with positive rightmost eigenvalue.

therefore corresponds to the values of parameters where μd +√
2Sσ 2(1 + ρ) > 0 and μd + √

Sσ 2(1 + ρ) < 0 [23].
Since an explicit condition for D stability does not exist,

we computed numerically the probability that, given a stable
random matrix A, a positive diagonal matrix X would make
M = X A unstable. Note that, since any matrix has a non-null
probability of being generated when entries are sampled from
a bivariate distribution with infinite support, this probability
is always nonzero. The relevant question in this context is
therefore how this probability depends on the number of
species S. Figure 5 shows that the probability of finding a
X with a destabilizing effect decreases exponentially with the
number of species S, with a rate that depends on the rightmost
eigenvalue λA and the correlation ρ. This implies that, for large
values of S, the probability of finding an unstable matrix M
when A is stable vanishes, and therefore, for S → ∞, M is
almost surely stable if A is stable (see also Figs. 9 and 11 in
the appendices).

VI. FIXED POINTS ARE ALMOST SURELY STABLE IN
LARGE RANDOM LOTKA-VOLTERRA EQUATIONS

If we consider the Lotka-Volterra equations [Eq. (A1)], and
we set the values of the intrinsic growth rates r , the fixed point
has components

x∗
i =

∑
j

A−1
ij rj . (19)

Let us also assume that all these components are positive
(i.e., r is inside the feasibility domain). In Sec. V we showed
that the matrix obtained by multiplying a stable random matrix
A and a random positive diagonal matrix X is more and more
likely to be stable as S increases. It is evident [from Eq. (19)]
that the components of x∗ are not independent of the entries
of the matrix A. The presence of this correlation implies that,

at least in principle, choosing a random vector r inside the
feasibility domain to define X could produce different results
from sampling independent entries from a specified species
abundance distribution.

In this section we repeat the simulations detailed in Sec. V,
but instead of considering a random fixed point x∗, we find
the x∗ determined by a random intrinsic growth rate vector
r sampled uniformly from the feasibility domain. The most
intuitive method for this simulation would consist of taking
a random matrix A, choosing a value r at random on the
unit sphere, checking if it corresponds to a feasible fixed-
point using Eq. (19), and finally computing the eigenvalue of
M = X A. However, as the number of species S increases, this
method becomes practically unfeasible. In fact, the fraction
of intrinsic growth rate vectors r corresponding to a feasible
solution decreases exponentially with S [23]. If this intuitive
method was employed, most of the simulation time would be
spent trying to find vectors r inside the feasibility domain.

On the other hand, since the relation between r and x∗
[via Eq. (19)] is bijective, we can easily construct all the
vectors r inside the feasibility domain by considering all
the possible feasible solution x∗. In Sec. V we specified a
distribution on the x∗. This distribution translates to a nontrivial
distribution on the r [that can be obtained from Eq. (19)]. In
this section, we instead assume a distribution on the r and
derive a corresponding distribution for the x∗. For instance, if
we assume that the vectors r are uniformly distributed on the
unit sphere, the distribution of the (feasible) x∗ reads [23]

P (x∗|A) = 1

�( A)

δ(‖x∗‖2 − 1)

‖Ax∗‖S

S∏
i=1

�(xi ), (20)

where �( A) is a normalization factor.
Sampling vectors x∗ according to this distribution is equiv-

alent to sampling vectors r uniformly from the feasibility
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FIG. 6. These panels plot the same quantity as of Fig. 5. Instead
of sampling X from a uniform distribution, we used the distribution
of Eq. (20), which guarantees an unbiased sampling of the intrinsic
growth rates of a Lotka-Volterra systems. This sampling method is
in fact equivalent to sampling a random interaction matrix A and
an intrinsic growth rate vector r inside the feasibility domain and
checking the stability of the corresponding feasible fixed point. The
exponential decay with increasing S strongly suggests that the set of
feasible unstable fixed points has measure zero for large, randomly
interacting Lotka-Volterra systems.

domain. It is important to observe that when x∗ is drawn
according to this distribution, its entries are not i.i.d. inde-
pendent random variables and their densities depend on A.

Figure 6 shows the stability of M = X A when the diagonal
entries of X are sampled from the probability distribution
defined in Eq. (20). Despite the presence of a correlation
between the entries of X and A, the result obtained in Sec. V
is confirmed: the probability of observing a stable A but an
unstable M decreases exponentially with S. If the interaction
matrix A is stable, in the limit of large S, the set of intrinsic
growth rates corresponding to feasible unstable solutions has
measure zero (see also Figs. 10 and 12 in the appendices).

In Appendix H, we extended our analysis to include addi-
tional biological constraints on the intrinsic growth rates. For
instance, in a predator-prey system, the intrinsic growth rates
of predators are restricted to be negative, as they cannot survive
in absence of their prey. As shown in Appendix H, our results
hold even when these biological constraints are imposed.

VII. DISCUSSION

We explored the effect of population abundances on the
stability of random interacting ecosystems. We derived an
expression for the spectral density of a community matrix
that explicitly includes the species abundance distribution.
The effect on the eigenvalues is highly heterogeneous and
strongly depends on the specific choice of the abundance
distribution, with potentially important consequences on the
identity of species mostly affected by the perturbation [35].
On the other hand, a remarkably simple message emerges for
large randomly interacting ecosystems: the community matrix
is stable if and only if the interaction matrix is stable. In

other words, the abundances of species seem to not affect the
sign of the eigenvalues. We further explored this intriguing
result by explicitly estimating the probability of choosing a
species abundance distribution leading to instability. While for
finite systems this probability is always positive, it decreases
exponentially with the number of species, confirming what
was found studying the spectrum of the community matrix
analytically.

While (local asymptotic) stability has a central role in
the ecological debate, it is notoriously difficult to measure.
Moreover, had we found that particular distributions of species
abundance would favor stability, then we could have sought
confirmation of our theory in the empirical literature. Given
that we have found the opposite—choosing any species
abundance does not affect stability—the task is obviously
more complicated. Many researchers proposed that species
abundances play a key role in stabilizing communities and
maintained that the fact that May’s theory brushed them aside
was one of its major drawbacks [18,19]. Showing that this is
not the case shifts the focus away from species abundances
towards other mechanisms for stabilization.

Our results strongly suggest that large random matrices
are D stable almost surely: the set of destabilizing positive
diagonal matrices has measure zero. This fact has important
consequences on Lotka-Volterra systems of equations, imply-
ing that feasible unstable fixed points are very unlikely. This
result allows to disentangle the problem of feasibility (how
often are fixed points feasible?) from the problem of stability
(how often are fixed points stable?), justifying a posteriori what
assumed in many studies on feasibility [21,23] and expanding
the validity of their results.

A stronger notion than D stability is diagonal stability.
While for Lotka-Volterra systems, the former implies local
asymptotic stability of any feasible solution, the latter implies
global stability. We showed that large random stable matrices
are always D stable. Under which conditions they are also
diagonally stable is an important open problem. A sufficient
condition for diagonal stability is negative definiteness [23].
In the context of random matrices, negative definiteness is
equivalent to the condition expressed in Eq. (18). The condition
for negative definiteness should be compared to the condition
for stability [see Eq. (17)]. For large random matrices, two
extreme scenarios are possible: negative definiteness is almost
surely a necessary condition for diagonal stability, or stable
random matrices are almost surely diagonally stable. It is also
possible that the condition for diagonal stability is less trivial,
corresponding to values of parameters between the conditions
imposed by Eqs. (18) and (17). Even more complicated, it
is also possible that a sharp condition for diagonal stability
does not exist for random matrices, and, in the limit of large
S, stable and non-negative definite random matrices have a
nonvanishing probability of being (or not being) diagonally
stable.

Our results shed light on one of the most controversial
aspects of the classic result of May [3] and its extensions.
Many authors [5,18–20,36,37] have argued that the unrealistic
assumption of constant population abundances was a key
choice in May’s paper, suggesting that more realistic abun-
dance distribution would have produced drastically different
results. We showed that the conditions obtained in the original
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paper and in its extension [3,4] are in fact valid for any
species abundance distribution. In other words, the stability
of fixed points (i.e., the stability of the community matrix) is
determined only by the stability of the interaction matrix.
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APPENDIX A: PREMISE: STABILITY AND
DIAGONAL STABILITY

In the generalized Lotka-Volterra (GLV) model:

dxi (t )

dt
= xi (t )

⎡
⎣ri +

∑
j

Aij xj (t )

⎤
⎦, (A1)

a feasible fixed point (if exists) is given by

0 = ri +
∑

j

Aij x
∗
j . (A2)

The community matrix (i.e., the Jacobian evaluated at the fixed
point) has elements Mij = Aijx

∗
i .

If all the eigenvalues of M have real part (i.e., M is stable),
then the fixed point is stable. In general, the stability of A does
not guarantee that also M is stable. A is said to be D stable if,
for any positive diagonal matrix D, D A is also stable. Clearly,
by definition, D stability implies local stability of any feasible
fixed point. A stronger condition than D stability is diagonal
stability. A is diagonally stable if it exists a positive diagonal
matrix D such that AD + D At is stable. In the GLV model,
if A diagonally stable then the feasible fixed point (if it exists)
is globally stable.

If A is a random matrix, it is stable if

μd + max{
√

Sσ 2(1 + ρ), μS} < 0, (A3)

where the diagonal entries of A are equal to μd . Each pair
of off-diagonal entries (Aij , Aji ) is drawn from a bivariate
distribution with identical marginal means μ, variances σ 2,
and correlation ρ. A simple, sufficient condition for diagonal-
stability is that a( A + At ) is stable, which corresponds to
choose a constant diagonal matrix D = a I in the definition
of diagonal stability. If A is a random matrix with parameters
μ, σ, ρ, and μd, a( A + At ) is a symmetric random matrix,
with diagonal 2aμd , mean 2aμ, variance 2a2σ 2(1 + ρ), and
correlation ρH = 1. The condition for stability for a( A + At )
reads then

2aμd + max{
√

S2a2σ 2(1 + ρ)(1 + ρH ), 2aμS} < 0, (A4)

which simplifies into

μd + max{
√

2Sσ 2(1 + ρ), μS} < 0. (A5)

In the case when the maximum is dominated by the term with
the variance, by comparing this equation with Eq. (A3), we

can easily see that if

(1 + ρ)2 <
μ2

d

Sσ 2
< 2(1 + ρ), (A6)

the matrix A is stable, while a( A + At ) is not [39]. In this
regime diagonal stability is not trivially guaranteed, and it
becomes interesting to ask whether fixed points are locally
stable.

APPENDIX B: NOTATION AND GOALS

We aim to study the spectral density of a matrix M of the
form M = X A, where X is a positive diagonal matrix and A a
random matrix with arbitrary distribution. The diagonal entries
of X are drawn from an arbitrary distribution with positive
support, mean μX, and variance σ 2

X. The diagonal entries of A
are drawn from an arbitrary distribution with negative support,
mean μd , and variance σ 2

d . Each pair of off-diagonal entries
(Aij , Aji ) is drawn from a bivariate distribution with identical
marginal means μ, variances σ 2, and correlation ρ.

Let B be an S × S random matrix with complex eigenvalues
λi for i = 1, . . . , S. Its spectral density is defined as

�(x, y) = 1

S

S∑
i=1

δ[x − �(λi )]δ[y − �(λi )], (B1)

which, in the limit of large S, converges to

�(x, y) = E{δ[x − �(λi )]δ[y − �(λi )]}, (B2)

where E[·] stands for the expectation over matrices in the
ensemble.

We introduce the resolvent [40]

G(q; B) = 1

S

S∑
i=1

(λi − q )−1 = 1

S
tr (B − q I )−1. (B3)

The variable q = λ + εj is a quaternion (see Appendix C for
definitions and notation), and the resolvent is a function G :
H → H.

The resolvent and the spectral density are related by the
following formulas [40]:

G(q; B) =
∫

dx dy �(x, y)(x + iy − q )−1 (B4)

and

�(x, y) = − 1

π
lim

ε→0+
�

[
∂

∂λ̄
G(λ + εj ; B)

]∣∣∣∣
λ=x+iy

, (B5)

where ∂

∂λ̄
is the Wirtinger derivative

∂

∂λ̄
:= 1

2

(
∂

∂x
+ i

∂

∂y

)
. (B6)

APPENDIX C: QUATERNIONS:
BRIEF REVIEW AND NOTATION

In this section we briefly review the algebra of quaternions,
which is needed to efficiently perform the operation with the
resolvent defined in Eq. (B3) [40].

When constructing the complex numbers from the real
numbers, one defines a variable i to be a root of the equation
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x2 + 1 = 0. The algebraic structure of C descends from the
equation i2 = −1 and the algebraic structure of R. Similarly,
the algebra of quaternions H can be defined by introducing the
symbols i, j , and k and the relations

i2 = j 2 = k2 = ijk = −1. (C1)

From these equations all the multiplication rules can be
obtained. In particular, it follows that multiplication in H is
not commutative (e.g., ij = −ji).

A quaternion q can be written as

q = a + bi + cj + dk, (C2)

where a, b, c, d ∈ R. Equivalently, by introducing the two
complex numbers z = a + bi and w = c + di and using k =
ij , one can write

q = z + wj. (C3)

Another equivalent way to represent quaternions is to write
them in matrix form

q =
(

z w

w̄ z̄

)
. (C4)

It can be shown that, when written in this form, the mul-
tiplication rules of quaternions match the rules of matrix
multiplication. In particular, one has that

(z + wj )(u + vj ) = (zu − wv̄) + (zv + wū)j. (C5)

We also introduce the operation

(z + wj ) ◦ (u + vj ) = zu − wvj, (C6)

which, in matrix notation, corresponds to element-by-element
multiplication.

The conjugate of a quaternion q = z + wj is defined as
q̄ = z̄ − wj . From this definition, one obtains the norm of a
quaternion

|q|2 ≡ qq̄ = |z|2 + |w|2, (C7)

and the inverse

q−1 ≡ q̄
1

|q|2 . (C8)

Moreover, the real part of a quaternion is defined as

�(q ) ≡ q̄ + q = �(z) = a. (C9)

APPENDIX D: BULK AND OUTLIERS
OF THE SPECTRUM OF M

In this section, we want to show that the mean of A does not
affect the bulk of eigenvalues of M. We decompose the matrix
M as

M = X (D − μI + B + μ1), (D1)

where I is the identity matrix, 1 is a matrix of ones, and D
is the diagonal matrix consisting of the diagonal entries of A.
Written in this way, B is a random matrix with mean zero
and null diagonal. We will show that the bulk of the spectrum
of M is equivalent to the bulk of eigenvalues of the matrix
J = X ( D − μI + B).

Using Eq. (D1), the resolvent of M can be written

G(q; M ) = E

[
1

S
tr (q I − X D − μX − X B − μX1)−1

]

= E

[
1

S
tr (q I − J − μX1)−1

]
. (D2)

Using the Sherman-Morrison formula, if Y and Y + Z are
invertible matrices and Z has rank 1, then

(Y + Z)−1 = Y−1 + 1

1 + tr(ZY−1)
Y−1 ZY−1. (D3)

Since μX1 has rank one, we have

(q I − J − μX1)−1

= (qI − J )−1 + 1

1 + tr[μX1(qI − J )−1]

× (qI − J )−1μX1(qI − J )−1. (D4)

By introducing the linear operator 〈·〉 defined by 〈C〉 = 1
S

tr C
for an S × S matrix C , we obtain

G(q; M ) = G(q; J ) + μ

1 + Sμ〈X1(qI − J )−1〉
× 〈(qI − J )−1 X1(qI − J )−1〉. (D5)

In the limit of large S, the contribution from the second term
in Eq. (D5) is subleading. Therefore, the resolvent of M
converges to the resolvent of J when S is large. In other words,
as shown in Fig. 7, the bulks of the eigenvalues of M and J
are the same—up to finite-size corrections.

APPENDIX E: THE CASE σ = 0

When σ = 0, we derive the spectrum of a matrix Q =
X (D + μ1). This case corresponds to setting B = 0 in
Eq. (D1). As shown in the main text, the spectral density of the
matrix Q is characterized by the presence of an outlier. In this
section, we focus on the bulk of eigenvalues.

If we take J = X (D − μI + B) as before and set σ = 0,
then B = 0, so that M = Q and J = X (D − μI ). The bulk
of eigenvalues of Q and J will be the same. The resolvent of
J in the case σ = 0 reads

G(q; J ) = 1

S
tr (q − J )−1

= 1

S
tr (q − X D)−1

= 1

S

S∑
i=1

1

q − XiDi

(E1)

since q − X (D − μI ) is symmetric. In the limit of large S, the
sum in Eq. (E1) tends toward E[(q − X D)−1]. If PXD (x, s) is
the joint distribution of the entries of X and D, we obtain

G(q; J ) = 1

S

S∑
i=1

1

q − XiDi + μXi

= E{(q − X[D − μI )]−1}
=

∫
dx ds

PXD (x, s)

q − xs
. (E2)
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FIG. 7. The eigenvalue distributions for M and J of size S = 250 with D and X following different distributions. In each case, A is a
bivariate normal distribution with identical marginals μ = 2/S, σ = 0.5, and ρ = 0. Uniform D has D following a uniform distribution on
(−1.5,−0.5). LogNormal X has X following a log-normal distribution with log-mean 0 and log-standard deviation 0.35. HalfNormal X has X
following a half-normal distribution with support (1, ∞) and parameter θ = 1.

In the case of a constant diagonal matrix D = d I , this equation
simplifies to

G(q; J ) =
∫

dx
PX(x)

q − xd
= 1

d

∫
dy

PX

(
y

d

)
q − y

(E3)

with the change of variables y = xd. Using Eq. (B4), we obtain
that the spectral density �J (λ) will be

�J (λ) = 1

d
PX

(
λ

d

)
. (E4)

In Fig. 8 we plot the prediction from Eq. (E4) against the bulk
of the spectrum of Q for two distributions of X .

APPENDIX F: DERIVATION OF THE SPECTRAL
DENSITY USING THE CAVITY METHOD

In Appendix D, we showed that we can isolate the effect
of μ �= 0. In this appendix, we use the cavity method [29,30]
to derive the spectrum of the matrix J = X (D − μI + B),

where D and X are two random diagonal matrices and B is a
random matrix following the elliptic law.

We introduce the resolvent matrix

G = (M − q I )−1. (F1)

The resolvent can be written as

G(q; B) = 1

S
tr G. (F2)

Note that each element of the resolvent matrix is a quaternion.
In particular we will use the notation

Gik = αik + βikj ≡
(

αik βik

β̄ik ᾱik

)
, (F3)

while G = α + βj , where α = ∑
i αii/S and β = ∑

i βii/S.
The cavity method allows us to compute the elements of G
(and therefore the resolvent G) if the matrix M has a tree
structure [29,30]. It also allows to compute the spectral density
for large, densely connected, random matrices [7,29,30]. In the
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FIG. 8. Histograms of the eigenvalue distribution for two matrices Q of size S = 1500. In each matrix, σd = 0, μd = −1, and μ = 5/S.
The Uniform plot has X following a uniform distribution on (0,1), and the LogNormal plot has X following a log-normal distribution with
log-mean and log-standard deviation both 0.5.
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FIG. 9. The conditional probability of a matrix M becoming stable given an unstable interaction matrix A with leading eigenvalue −d . The
off-diagonal elements of A follow a bivariate normal distribution and, for each S, μ =0, σ = 1/

√
S, and ρ = −0.5, 0, or 0.5. The elements

of X are drawn from a uniform distribution on (0,1), so that μX = 0.5 and σ 2
X = 1

12 . The diagonal elements of A are fixed at −1 since σ 2
d = 0

and μD = −1. Each probability is calculated from 1000 trials from 1000 simulated matrices M = X A.

limit of large S, for a densely connected matrix M, the cavity
equations read [7,30]

Gil ≡
(

αil βil

β̄il ᾱil

)
= −

⎡
⎣(

λ ε

ε λ̄

)
+

∑
jk

(
Mij 0

0 Mji

)

×
(

αjk βjk

β̄jk ᾱjk

)(
Mkl 0

0 Mlk

)⎤
⎦

−1

. (F4)

By introducing

M̃ ij =
(

Mij 0
0 Mji

)
, (F5)

we obtain the more compact equation

Gil = −
⎛
⎝q +

∑
jk

M̃ ij Gjk M̃kl

⎞
⎠

−1

. (F6)

Our goal is to find the resolvent for a random matrix of the
form M = X (D + B), where X and D are diagonal matrices,
while B is a random matrix following the elliptic law. We
introduce the matrix

( −q I X̃

− D̃ − B̃ I

)
, (F7)

which, when quaternions are represented as 2 × 2 matrices,
is a 4S × 4S matrix. In particular, this matrix is composed of
S24 × 4 blocks with entries

⎛
⎜⎜⎜⎜⎝

−λδij −εδij Xiiδij 0

−εδij −λ̄δij 0 Xiiδij

−Diiδij − Bij 0 δij 0

0 −Diiδij − Bji 0 δij

⎞
⎟⎟⎟⎟⎠. (F8)
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FIG. 10. As in Fig. 9, except now the conditional probability is weighted by feasibility.
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FIG. 11. The conditional probability of a matrix M becoming unstable given a stable interaction matrix A with leading eigenvalue −d . The
off-diagonal elements of A follow a bivariate normal distribution and, for each S, μ =0, σ = 1/

√
S, and ρ = −0.5, 0, or 0.5. The elements

of X are drawn from a uniform distribution on (0,1), so that μX = 0.5 and σ 2
X = 1

12 . The diagonal elements of A follow a uniform distribution
on (−0.75, −1.25) so that σ 2

d = 1
48 and μD = −1. Each probability is calculated from 1000 trials from 1000 simulated matrices M = X A.

It is simple to observe that

T =
(−q X

−A I

)−1

=
(

(−q I + X (D + B))−1 · · ·
· · · · · ·

)

=
(

G · · ·
· · · · · ·

)
. (F9)

If we write the cavity equation for T , assuming dense matrices,
we obtain

T ii =
⎡
⎣( −q X̃ ii

− D̃ii 1

)
−

∑
j,k

(
0 0

B̃ij 0

)
T jk

(
0 0

B̃ki 0

)⎤
⎦

−1

. (F10)

We can apply the law of large numbers to take the expecta-
tion of the matrices over B. Using the following expectations
over the elements of B

E[Bij ]=0, E[(Bij )2]= σ̃ 2

S
, E[BijBji]=ρ

σ̃ 2

S
, (F11)

we find that the nondiagonal terms of T go to zero in
expectation. By introducing the notation

T ii ≡
(

Gii T b
ii

· · · · · ·
)

(F12)

and

T � ≡ 1

S

∑
i

T ii =
(
G T b

�

· · · · · ·
)

, (F13)

the cavity equations for the diagonal terms read

T ii =
( −q Xii

−Dii − t ◦ T b
� I

)−1

, (F14)

where T � = ∑
i T ii/S, while t = σ̃ 2ρ + σ̃ 2j with ◦ denoting

the element-by-element matrix product (see Appendix C).
We obtain a system of 2S quaternionic equations

T b
ii = −Xii[−q − Xii (−Dii − t ◦ T b

�])−1

Gii = [−q − Xii (−Dii − t ◦ T b
� )]−1, (F15)
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FIG. 12. As in Fig. 11, except now the conditional probability is weighted by feasibility.
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where

T b
� = 1

S

∑
i

T ii . (F16)

Assuming that the elements of X and D are drawn from
a given joint distribution PXD , we obtain the following two
equations:

T b
� = −

∫
dx ds PXD (x, s)x[−q + x(s + t ◦ T b

� )]−1

G =
∫

dx ds PXD (x, s)[−q + x(s + t ◦ T b
� )]−1. (F17)

At this point one can use T b
� = αb + βbj and G = α + βj

to obtain four equations of complex variables. It is simple to
observe that βb = 0 is always a solution and β = 0 if and only
if βb = 0. The solution β = βb = 0 always corresponds to a
null spectral density [40]. The values of λ for which a nonzero
solution for β exist correspond to the support of the spectral
density. Setting βb �= 0 and ε = 0, one obtains from Eq. (F17)

αb =
∫

dx ds PXD (x, s)
x(λ̄ − sx − xσ̃ 2ρᾱb )

|λ + x(−s − αbρσ̃ 2)|2 + |xσ̃ 2βb|2

1=
∫

dx ds PXD (x, s)
x2σ̃ 2

|λ + x(−s − αbρσ̃ 2)|2 + |xσ̃ 2βb|2 .

(F18)

By using the second equation, the system of equations further
simplifies to

αb + ρᾱb =
∫

dx ds PXD (x, s)

× x(λ̄ − sx)

|λ + x(−s − αbρσ̃ 2)|2 + |xσ̃ 2βb|2

1 =
∫

dx ds PXD (x, s)

× x2σ̃ 2

|λ + x(−s − αbρσ̃ 2)|2 + |xσ̃ 2βb|2 . (F19)

The values of λ for which a solution of Eqs. (F19) exists are
contained in the support of the spectral density. We assume that
the solution βb of these equations vanishes at the boundaries
of the support. In this case, the points at the boundaries of the
support of the spectral density are the complex solutions λ of

αb + ρᾱb =
∫

dx ds PXD (x, s)
x(λ̄ − sx)

|λ + x(−s − αbρσ̃ 2)|2

1 =
∫

dx ds PXD (x, s)
x2σ̃ 2

|λ + x(−s − αbρσ̃ 2)|2 ,

(F20)

where we used the second equation
We should note here that this method does not prove the

convergence in any mode of the spectral bulk, but does yield a
prediction for its support.
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FIG. 13. The analytical predictions for the support of the eigen-
value distribution obtained in Eq. (G2) (solid blue line) correctly pre-
dict the support of the spectrum of M = X A for Cauchy-distributed
diagonal elements of X . In all the three plots, A is built using a
bivariate normal distribution with identical marginals μ = 0, σ =
1/

√
S, and correlation ρ = 0. The diagonal entries of A are fixed

at −1. X is sampled from the distribution defined in Eq. (G4) with
parameters xm = 1 and γ = 1. Our analytical calculation correctly
predicts the boundaries of the spectrum even if none of the moments
of PX(x ) is finite.

APPENDIX G: SUPPORT OF THE SPECTRAL DENSITY
IN THE CASE ρ = 0

In the case ρ = 0, the two equations (F20) become inde-
pendent, and the support is defined by the solutions of

1 = σ̃ 2
∫

dx ds PXD (x, s)
x2

|λ − sx|2 . (G1)

In the case σ̃ 2
d = 0, this equation further simplifies to

1 = σ̃ 2
∫

dx PX(x)
x2

|λ − μdx|2 . (G2)

For instance, if PX is a uniform distribution on [0,1], one
can evaluate the integral, obtaining

1 =
∫ 1

0
dx

x2σ̃ 2

|λ − μdx|2

= σ̃ 2

μ3
d

[
2λμd − μ2

d + 2λ(μd − λ) log

∣∣∣∣ λ

λ − μd

∣∣∣∣
]
. (G3)

The complex solutions λ of this equation define the boundary
of the support of the spectral density.

It is interesting to observe that the integral that defines the
boundary of the support converge for any distribution PX(x),
independently of whether the moments of PX(x) are finite. For
example, one can consider

PX(x) = 2

π

γ

(x − xm)2 + γ 2
�(x − xm), (G4)

where xm and γ are two positive parameters, while the theta
function �(x − xm) defines [xm,∞) as the support of the
distribution. It is simple to observe that, since this distribution
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FIG. 14. The left panel shows probability that a matrix M = X A is unstable (i.e., that the leading eigenvalue has positive real part), given
that A is a stable random matrix with rightmost eigenvalue equal to λmax = −0.01. The interaction matrix A is parametrized as shown in
Eq. (H1). We considered all the feasible population abundances (blue points), and only population abundances corresponding to positive growth
rates for prey and negative for predators (red points). In both the case we observe an exponentially decaying fraction of destabilizing vectors.
The right panels shows that the fraction of biological growth rates is also exponentially decreasing, making the result shown in the left panel
non trivial. Here we considered uniformly distributed population abundances and constant diagonal competition matrices. The entries of B P

were drawn from a uniform distribution with mean −1 and standard deviation equal to 0.5. The entries of B A were drawn from a uniform
distribution with mean 0.25 and standard deviation equal to 0.125.

has a power-law tail with exponent −2, all the moments
(including the mean) diverge. On the other hand, the integral in
Eq. (G2) converges. Figure 13 compares the analytical result
obtained in Eq. (G2) with numerical simulations for the power-
law distribution of population abundances defined in Eq. (G4).

APPENDIX H: CONSTRAINING THE SIGN OF THE
INTRINSIC GROWTH RATES

The only constraint that we have imposed on the population
abundances, is that they are positive (i.e., feasible). In the con-
text of Lotka-Voltera equations, this is equivalent to consider
all the possible combinations of intrinsic growth rates inside
the feasibility domain. On the other hand, other constraints than
feasibility can further restrict the range of biologically realistic
growth rates. For instance, in a predator-prey system, the in-
trinsic growth rates of predators are constrained to be negative,
since predators cannot survive in the absence of their prey.

Here we explicitly consider a predator-prey system in order
to test whether these additional constraints can affect our
results. We focus on a bipartite predator-prey system. In this
case the interaction matrix has the following block structure:

A =
(

C P B P

B A C A

)
, (H1)

where the first SP entries of the vector of abundance
correspond to prey and the last SA entries correspond to

predators. The square matrices C P (C A) is the competi-
tion matrix between prey (predators). The SP × SA matrix
B P measures the rate of predation, while the SA × SP ma-
trix B P measures the growth of the predators thanks to
predation. By definition, all the elements of the matrices
C P , C A and B P are negative, while the elements of B A are
positive.

We considered two alternative scenarios. In one case, we
considered all the feasible solutions, by sampling at random
species abundances (unconstrained scenario). In the second
case, we considered only feasible solutions corresponding
to positive growth rates for prey and negative for predators
(constrained scenario). For both the constrained and the un-
constrained scenario, we computed the probability of finding
a destabilizing vector of abundances (analogously to Fig. 5).
Figure 14 shows that the probability of finding a destabilizing
vector decrease exponentially with the number of species in
both the unconstrained and the constrained scenarios, strongly
suggesting that adding these biological constraints to the
growth rates does not affect our results. It is important to notice
that the exponential decay for the constrained scenario would
trivially follow from the unconstrained case only if a constant
fraction of feasible growth rates respected the sign constraints.
As shown in Fig. 14 this is not the case: an exponentially
decaying fraction of growth rates vectors have biologically
realistic signs.
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