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Anomalous percolation features in molecular evolution
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Self-replication underlies every species of living beings and simple physical intuition dictates that some sort
of autocatalysis invariably constitutes a necessary ingredient for the emergence of molecular life. This led Worst
et al. [E. G. Worst, P. Zimmer, E. Wollrab, K. Kruse, and A. Ott, New J. Phys. 18, 103003 (2016)] to study a model
of molecular evolution of self-replicating molecules where spontaneous ligation and simple autocatalysis are in
competition for their building blocks. We revisit this model, where irreversible aggregation leads to a transition
from a regime of small molecules to macromolecules, and find an array of anomalous percolation features, some of
them predicted for very specific percolation processes [R. M. D’Souza and J. Nagler, Nat. Phys. 11, 531 (2015)].
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I. INTRODUCTION

How early molecular life has begun from a primordial soup
of small molecules is a fundamental question that penetrates
many scientific disciplines. Experiments by Miller have shown
that under conditions that probably prevailed on the early
Earth essential biomolecules, in particular, amino acids, are
spontaneously generated [1]. Recently, it has been found that
among a wide variety of other molecules also ethylene glycol-
based polymers were generated [2]. The presence of polymers
is remarkable as amino acids need to be concatenated to form
proteins and because it requires the presence of some catalyst.
Consequently, the mixture meets essential requirements for
molecular evolution.

Molecular systems based on RNA or DNA have been em-
ployed to understand possible mechanisms of early phases of
the Earth’s ecosystem [3–17]. Some of these systems combine
autocatalytic molecular reproduction with some degree of
spontaneous ligation, see Fig. 1, which have been identified
as two key mechanisms for the emergence of life [9,18,19].
Autocatalytic reproduction is typically needed to overcome
molecular decay [20], but also provides a mechanism by
which acquired traits can be transmitted to future generations,
whereas the spontaneous ligation of building blocks is the
simplest form of noise in the system [21,22], which is necessary
for generating mutations. How molecular evolution eventu-
ally generates living organisms, however, remains unclear.
In studies where molecules self-reproduce without dedicated
control, reproducing polymers typically end up competing for
their building blocks and yield a molecule optimized for fast
reproduction [5,9,23]. Similarly, in the theory of hypercycles
that was established by Eigen and Schuster [19], eventually a
single species wins and further evolution stops.

A step towards identifying conditions for continued molec-
ular evolution that could eventually lead to an organism
was made by introducing a system based on DNA strands,
where molecular species are defined through their lengths
[22]. Starting from building blocks of uniform length, new
species emerge through spontaneous or through template-
based ligation. As soon as the autocatalytic ligation rate is
above a critical value, however, evolution can continue as long
as building blocks are available and generates only specific
molecular species out of the myriad of possible polymers.

In Ref. [22] a model was introduced to study the transi-
tion from uncontrolled proliferation of molecule lengths to
a phase where only specific molecule lengths appear. Here,
we revisit this model and analyze it from the point of view
of percolation theory. Percolation describes the emergence of
large-scale connectivity from the gradual addition of links on
an underlying lattice or network. Polymerization processes
can be naturally mapped onto percolation. In percolation
processes, typically, a giant connected component emerges
rapidly (but still smoothly) out of smaller components at a
critical link density. The phase transition is of second order
and exhibits self-averaging, that is, in the thermodynamic limit
sample-to-sample fluctuations disappear everywhere except at
the transition point, which shows prototypical critical behavior
[24,25]. In past years, however, a number of percolation
models have been found to exhibit anomalous features such
as seemingly “explosive” but in the thermodynamic limit
still continuous transitions [26,27], genuinely discontinuous
transitions [28,29], or non-self-averaging behavior both before
[30] and after the percolation transition [24,29,31]. The rich
phenomenology of explosive percolation is presented in a
number of reviews [32–34].
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FIG. 1. Illustration of spontaneous ligation (a) and autocatalysis
(b). The rate of the autocatalytic reaction depends on the template
molecule concentration [see Eq. (1)].

Through stochastic simulations, we show that the model of
molecular evolution of Ref. [22] displays a wide variety of
these anomalous percolation features [26,35–43]. By varying
the ratio between the spontaneous and the autocatalytic ligation
rates over 13 orders of magnitude, we find discontinuous
percolation in the thermodynamic limit as well as non-
self-averaging, stochastic staircases, and oscillations in the
fluctuation function in finite-size systems. Phase transitions
are usually defined in the thermodynamic limit only. Early
molecular life, however, is a matter of the sustained emergence
of large but finite molecules and its dynamics is governed by
finite-size effects from the viewpoint of statistical physics.
We thus conclude that anomalous percolation behavior was
associated with early molecular life. Finally, we will discuss
possible implications for the emergence of life.

II. THE SYSTEM

In the framework developed in Ref. [22], polymers consist-
ing of indistinguishable monomers concatenate either spon-
taneously or autocatalytically. This dynamics describes the
essential features of an experimental system, where the el-
ementary building blocks are formed by DNA strands with a
length of ten base pairs and where autocatalytic reproduction is
realized by template-based ligation. In the model, however, any
information on the base pair configurations, which is carried by
the DNA strands, is neglected. Reactions occur spontaneously
with a rate constant β or autocatalytically with a rate constant
α[An+m],

An + Am −−−−−−−→
α[An+m]+β

An+m, (1)

where An represent polymers of length n. The brackets denote
the corresponding densities (see Fig. 1).

We assume well-mixed molecule species in a fixed volume
where the reactions are described in the mean-field limit by the
Smoluchowsky equation

d

dt
[An+m] = (α[An+m] + β)[An][Am]

−
∑

k�1

(1+δn+m,k)(α[An+m+k]+β)[An+m][Ak].

(2)

Here δn,m = 1 if n = m and zero otherwise. The first term on
the right-hand side describes production, whereas the second
term covers all annihilation possibilities.

We start the simulations with N monomers, but no other
polymers present. In the following, we will only consider the

case that N is a power of 2, N = 2K for some natural number
K . The simulations run until only one polymer of length N

remains and no further reaction is possible anymore. We choose
a normalized Monte Carlo time so that β = 1 and run the
system using the Gillespie algorithm [44,45] and GNU Parallel
[46]. Complementary to the physical time t we also study the
system’s progression with time as a function of the relative
reaction number p, which is the number of reactions relative
to the total monomer numberN ,p = (number of reactions)/N
[40,47]. We characterize the system dynamics through the
order parameter G, which is given by the size of the largest
molecule S1 relative to the total monomer number, G = S1/N .
In the course of a simulation with initially only monomers
present, its value evolves from G = 1/N to 1.

III. RESULTS

We will start our investigations with the analysis of the
limiting cases of no or infinitely fast autocatalytic ligation and
then move on to intermediate values.

A. The limiting cases α = 0 and α → ∞
The two limiting cases of the above model, where either

α = 0 or α → ∞, have already been studied in different
contexts. The case α = 0 describes spontaneous assembly of
polymers with two reactive ends [47]. In the thermodynamic
limit N → ∞, the order parameter G is known to exhibit
a deterministic jump from zero to one at the end of the
reaction process, where p = 1 [47]. For the present system,
this property can already be guessed from finite-size sys-
tems that show a very steep increase of the order parameter
in the last steps of the simulation [see Fig. 2(a)]. The end of
the assembly process, which is given by the emergence of a
single macromolecule and also called gelation [48], is fully
described by percolation on a one-dimensional lattice. This
process exhibits a simple discontinuous percolation transition
at full link density p = pc = 1 [49]. Note that we have used the
same symbol p for the probability of having a link and for the
relative reaction number as every reaction introduces exactly
a single new link. Due to the lack of a supercritical regime,
where p > pc, this one-dimensional percolation transition is
sometimes referred to as “trivial.”

In the limit α → ∞, spontaneous concatenation is com-
pletely outcompeted by autocatalytic concatenation and re-
stricted to phases when the latter process cannot occur due to a
lack of templates. In this case, larger polymers assemble only
by merging of two polymers of exactly the same size. This leads
to a cascade of events in which the largest polymer doubles in
size. As one can see in the example given in Fig. 2(b), close to
t = 1, mergers are indeed of the type A2n + A2n → A2n+1 , n

integer. This behavior is also present for smaller t , but cannot
be seen directly on the curve in Fig. 2(b). In the last step,
two equally large clusters merge, AN/2 + AN/2 → AN (see
inset). This dynamics is a special case of a network model,
in which always the two smallest clusters merge and which
appears as the deterministic limit of some random network
models [24,28,29,37]. By definition, the last merger takes
place at exactly p = pc = 1. On the other hand, close to
p = 1, the reaction rate becomes extremely low as the system

022408-2



ANOMALOUS PERCOLATION FEATURES IN MOLECULAR … PHYSICAL REVIEW E 98, 022408 (2018)

FIG. 2. Relative size of the largest cluster G as a function of time.
Displayed are single realizations for the limiting cases α = 0 (a) and
α � β, specifically α = 107 (b). Independently of α, the model shows
a strong increase at the end of the process with jumps of order 1 close
to t = 1 (as t ≈ pc = 1, see text). Jumps of size 1/2,1/4, . . . in panel
(b), for large system sizes N . Other parameters: β = 1 and N = 220.

encompasses only a few clusters in a finite volume. Thus, the
final steps in the coalescence process consume most of the
physical time t and the reactions end at about t ≈ pc = 1.

We conclude that the limiting cases α = 0 and α → ∞
present discontinuous percolation in the thermodynamic limit.
Also for any other value of α (and β), the percolation transition
is discontinuous in the thermodynamic limit. Indeed, a contin-
uous transition would require an acceleration of the growth
of large polymers through merging small molecules [48,49].
Compared to the limiting case α → ∞, however, all other
values of α lead to a slower autocatalytic merging of smaller
molecules. Similarly, compared to the limiting case α = 0, any
other value of α is equivalent to reducing the value of β from
the limit β → ∞ to a finite value and thus a lower rate of
spontaneous concatenation. As a consequence, the stochastic
process Eq. (1) exhibits a discontinuous transition for any value
of α/β.

We will now turn to the general case of intermediate
autocatalytic reaction rates in greater detail. There we will
focus our attention on finite system sizes.

B. Doubling cascades

Let us consider the time evolution of the abundances of
small molecules for different values of the autocatalytic rate
constant α. For α = 10−9, molecules of all possible sizes are
produced. They emerge in a sequence of increasing molecule
length. Initially, they grow algebraically in number, reach a
maximum, and eventually vanish algebraically [see Fig. 3(a)].
The exponent for the growth phase is roughly 1 for A2 and
initially increases for larger molecules, whereas the exponent
for the decay is essentially independent of the molecule size.

From the autocatalytic reproduction of molecules one might
have expected an exponential increase in molecule numbers.
However, spontaneous production of molecules largely out-
competes autocatalytic reproduction for this small value of α.
Explicitly,

d

dt
[A2] ≈ β[A1]2 − β[A1][A2] + α[A2][A1]2 (3)

≈ β[A1]2, (4)

where we have only kept terms that are lowest order in t . In
this regime, the number of dimers increases roughly linearly,
[A2] ≈ β[A1]2t , showing that autocatalytic reproduction of
dimers is negligible in the initial phase. In addition, the
consumption of A2 for the formation of larger molecules
prevents a potential exponential proliferation of dimers.

For molecules of larger size, given the low abundance of
building blocks, for example, A2 for the formation of A3,
the rate of their spontaneous formation is limited. Again, the
spontaneous formation of even larger molecules suppresses an
exponential growth. In the case of A3 we have explicitly

d

dt
[A3] ≈ β[A1][A2] (5)

and thus
[A3] ≈ β2[A1]3t2/2. (6)

For a somewhat larger autocatalytic rate constant of
α = 10−1, the overall dynamics changes dramatically [see
Fig. 3(b)]. Now, molecules of sizes that are a power of 2 vastly
dominate the distribution up to the size 64. In this doubling
cascade, the growth phase of the concentration of a species
is initially exponential and then crosses over into algebraic
growth. This reflects the autocatalytic contribution. The growth
phase is followed by a plateau phase. Eventually, the molecules
of a species are used to form even larger molecules and their
concentration decays. At some point also molecules of length
other than a power of 2 gain a significant concentration, i.e., a
concentration larger than molecules of the doubling cascade.
From that time on, the doubling cascade ceases to exist and the
distribution of molecular species widens.

For very large autocatalytic rate constants α � β, there are
abrupt transitions between phases, in which molecules of only
one size are present [see Fig. 3(c)]. The sizes are subsequent
powers of 2. After the spontaneous formation of a molecule
of size 2n, the very fast autocatalytic process leads to an
almost instantaneous transformation of all molecules of size
2n−1 into pairs and thus into molecules of size 2n. The times
between two transitions are distributed exponentially, which
reflects the Poissonian character of spontaneous concatenation
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FIG. 3. Time course of molecule concentrations. Single realization for α = 10−9 (a), α = 0.1 (b), and α = 106 (c). Other parameters: β = 1
and N = 217. Note that only the concentrations for molecules of size of powers of 2 are displayed as otherwise the curves would be too close
together. (d) Critical value αc,n of the autocatalytic rate for selection up to species An (for n = 4,8,16) as a function of the initial monomer
concentration N .

in a background of molecules of only one size that occurs at
rate β.

These observations suggest that there is a critical value αc

of the autocatalytic rate above which molecular doubling out-
competes the spontaneous generation of molecules of length
that are not powers of 2. For α > αc molecules of length 2n

for some n are the dominant length in the system. This critical
value depends on the initial monomer number N . To see this,
let us define a critical value that depends on n, αc,n, such that for
α > αc,n molecules that are shorter than 2n have a length that
is equal to a power of 2. We plot this critical value for n = 2,3,
and 4 in Fig. 3(d). Clearly, αc,n ∼ N−1 and αc,n < αc,n+1,
where αc,n+1/αc,n decays with n. Further details can be found
in Ref. [22].

The transition between the doubling cascade and unre-
stricted growth is also visible in the system’s entropy, to which
we turn now.

Entropy oscillations

We define the entropy through the polymer densities as
S = −∑

n[An] log[An]. At the beginning but also at the end
of a simulation, we clearly have S = 0 as only one molecular
species is present at these times. For early times the entropy
has a general tendency to increase (see Fig. 4). However, the
overall increase is modulated by oscillations, such that periods
of decreasing entropy recurrently appear. The time interval

between such two periods as well as their duration increases
exponentially with time. At some point, these “oscillations”
cease, reflecting the transition between the doubling cascade
and the unrestricted appearance of new molecule lengths.
Eventually, the now monotonically increasing entropy reaches

FIG. 4. Entropy as a function of time. Single realization for
α = 10, β = 1, and N = 220. The entropy necessarily vanishes in the
beginning (N “clusters” of size 1/N ) and in the end of the process
(one cluster of size N ).
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a maximum and decays to zero. The maximum in the entropy
signals another transition. At this point the broadest distribu-
tion in molecule sizes is reached. Afterwards the finite number
of monomers in the system restricts a further broadening and
it collapses eventually onto the molecule of the maximal size.
During this collapse, the entropy decreases.

The occurrence of oscillations in S = −∑
n[An] log[An] as

a function of time necessarily implies oscillations in the relative
variance of the percolation order parameter, because both
observables describe the degree of the system’s disorder. More
generally, the evolution of molecule sizes can be interpreted in
terms of standard percolation observables, as we demonstrate
next.

C. Dynamics of the order parameter

We now analyze the dynamics of the order parameter G.
As we recall, G is the size of the largest molecule relative
to the maximally possible size N . As a function of time, the
order parameter is a stochastic quantity. For sufficiently large
values of the autocatalytic rate constant α our data suggest
that it remains stochastic even in the thermodynamic limit [see
Fig. 5(a)]. In fact, the maximum and the minimum value of
the order parameter increase exponentially as a function of
time until they eventually collapse after the maximum of G

has inevitably reached the value 1.
In contrast, as a function of the relative reaction number p

and for α → ∞, the doubling cascade becomes deterministic
in the thermodynamic limit. This is suggested by simulations
for N = 220 [see Fig. 5(b)]. Up to some value of p, the
maximum and the minimum of the order parameter coincide.
For larger values of the relative reaction number, the maximum
and minimum values of G separate. This difference reflects the
nonzero fraction of spontaneous concatenations, which only
vanishes for β/α = 0.

1. Non-self-averaging

To quantify the variations in the order parameter between
different realizations, we consider the relative variance in G,
which is given by

Rv = 〈G − 〈G〉〉2

〈G〉2
. (7)

In this expression, brackets denote ensemble averaging. In case
Rv → 0 for N → ∞, the system is said to be self-averaging as
sample-to-sample fluctuations vanish and the order parameter
becomes sharp. In the opposite case, the system is said to be
non-self-averaging. Recall that in the thermodynamic limit the
order parameter G jumps from zero to one at p = pc = 1,
that is, at the end of the process. As a consequence, at p = 1
the dynamics defined by Eq. (2) is necessarily self-averaging
in the thermodynamic limit, Rv → 0 for N → ∞, except
for a singular peak exactly at p = pc [24,25]. This limit
can, however, be approached very slowly [50,51]. Only very
recently a number of percolation processes have been proven
to exhibit genuine peaks in the relative variance Rv , which do
not disappear in the thermodynamic limit. Still, the width of
any peak in the subcritical regime must approach zero in the
thermodynamic limit [30].

FIG. 5. Relative size of the largest molecule as a function of the
reaction time t (a) and of the reaction number p (b). Shown are the
maximum, minimum, average (curve in between in green/gray), and
three realizations [black, displayed only in panel (a)]. Parameters:
α = 107, β = 1, and N = 220. The maximum, minimum, and average
have been obtained from 10 000 realizations.

Peaks in the relative variance of the order parameter can be
observed for our system if the distribution of molecule lengths
exhibits a doubling cascade (see Fig. 6). The width of the peaks
decreases with increasing α and with increasing N . The heights
of the peaks increases with increasing N , but for the same N

they decrease with increasing α. Furthermore, the maximum
shifts towards pc with increasing N .

The peaks in the relative variance correspond to molecule
length doubling events. Consequently, the distance between
two peaks decreases exponentially as p increases.

2. Discrete scale invariance

Discrete scale invariance (DSI) arises when the scale invari-
ance of an observable O(x) ∼ xα obeying O(λx) = λαO(x) is
broken such that the scaling relation does not hold for all λ, but
only for a countable set λ1,λ2, . . .. These discrete values are
linked through λn = λn, where λ is the fundamental scaling
ratio of the system [52,53].

Doubling cascades in explosive percolation have been
shown to follow DSI [30]. Figure 6 suggests that the peaks
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FIG. 6. Non-self-averaging and discrete scale invariance. Rela-
tive variance Rv of the order parameter G as a function of the distance
to the phase transition in the relative reaction number p − pc for
α = 10−6 (a), α = 105 (b), and α = 107 (c). Other parameters β = 1
and system sizes N = 215, 217, and 220 in comparison.

in Rv occur at pn = pc − 2−n with n � 0. At these positions,
the value of the order parameter G doubles. Consequently,

pc − pn+1

pc − pn

= 1/λ (8)

and
G(pn+1) = λG(pn) (9)

with λ = 2 [30,52,53]. This prediction for large α is in good
agreement with Figs. 6(b) and 6(c).

IV. FINAL REMARKS

We have studied a model which adopts the minimal in-
gredients of molecular evolution: self-replicating molecules in
presence of spontaneous ligation [22], which are molecular
forms of proliferation and mutation. We analyzed the model in
terms of a dynamic percolation process, where the percolated
state corresponds to the final state, when all monomers are
incorporated in a single polymer. Since we neglect any breakup
of molecules, percolation is inevitable in this model. Our study
revealed, however, that the percolation transition shows various
features that are uncommon.

First of all, for any choice of the ratio between the
spontaneous concatenation rate and the autocatalytic rate
constant, β/α, the percolation phase transition, defined in the
thermodynamic limit, is discontinuous, with a deterministic
jump of the order parameter at the end of the process. Then,
for small molecules in a finite system, we find large sample-
to-sample fluctuations and the order parameter is non-self-
averaging (Fig. 6). This situation characterizes the early stage
of molecular life where small molecules necessarily dominate
the reaction process. The emergence of large molecules is
then announced by stochastic staircases. This is reminiscent of
discontinuous phase transitions, which have been observed in
models of digital life where the fitness exhibits first-order phase
transitions [14,54]. As our model incorporates a somewhat
limited form of mutation and does not involve an explicit fitness
landscape one might argue that this is a mere coincidence.
Still, it is exactly mutation in the form of spontaneous ligation,
which allows the system to explore “species” beyond those that
can be reached by variations of letters in an alphabet, as well
as the autocatalytic proliferation rate, which can be viewed
as a state-dependent fitness function, that make this model
special: these features allow the system to avoid evolutionary
dead ends. In this way, it might fall into the same class of
models of digital life exhibiting discontinuous phase transi-
tions. Probably more importantly, since the relative variance
is a monotonous function of the entropy associated with the
cluster size distribution, our results explain why evolution of
(molecular) life is necessarily linked to oscillations of the
fluctuation function and entropy [55].

To conclude, an array of anomalous percolation features
is inherent to the emergence of molecular life: anomalous
behaviors of the molecule concentrations, stochastic staircases,
and finite-size non-self-averaging. Future research must es-
tablish how our results are affected quantitatively or even
qualitatively by more complex processes in the emergence
of molecular life, in particular, if the polymer species con-
tain information beyond their length and if the information
contained in the polymers is used in functional processes
like reproduction. Even more ambitiously, one could consider
the case when molecule reproduction is tightly linked to
compartmentalization [21].
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