
PHYSICAL REVIEW E 98, 022407 (2018)
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Application to tumor growth
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We present a theoretical framework based on an extension of dynamical density-functional theory (DDFT) for
describing the structure and dynamics of cells in living tissues and tumors. DDFT is a microscopic statistical
mechanical theory for the time evolution of the density distribution of interacting many-particle systems. The
theory accounts for cell-pair interactions, different cell types, phenotypes, and cell birth and death processes
(including cell division), to provide a biophysically consistent description of processes bridging across the scales,
including describing the tissue structure down to the level of the individual cells. Analysis of the model is presented
for single-species and two-species cases, the latter aimed at describing competition between tumor and healthy
cells. In suitable parameter regimes, model results are consistent with biological observations. Of particular
note, divergent tumor growth behavior, mirroring metastatic and benign growth characteristics, are shown to be
dependent on the cell-pair-interaction parameters.

DOI: 10.1103/PhysRevE.98.022407

I. INTRODUCTION

One of the characteristics of biological systems is their
ability to produce and sustain spatiotemporal patterns—i.e.,
structure formation. Cancer is a disease that may be viewed
as a complex system whose dynamics and growth results from
nonlinear processes coupled across a wide range of spatiotem-
poral scales. Cancer is recognized as one of the major causes of
premature death, soon to overtake heart disease as the leading
cause in the developed nations [1]. At current rates, in the
U.S.A. a third of women and half of men will develop a cancer
at some point in their life [2]. Though significant progress
has been made in cancer treatment in recent decades, much
research is still required to control all forms of the disease.

The human body is made up of order 1013 cells. Genetic
mutations are frequent, but most affected cells die by apoptosis
and are removed by the immune system. However, a few
may escape the regulatory process to produce an abnormally
growing colony that in time recruits its own vascular system
(via angiogenesis) and form a cancer. Tumor growth varies and
solid tumors can be classified as either benign or malignant
[3]. The former are localized, but their continued growth
can cause damage to neighboring healthy tissues from the
mechanical forces applied. While most tumors are initially
benign, malignancy can develop, whereby individual cells are
able to escape the main tumor mass (metastasis) and colonize
elsewhere in the body; it is these cells that give rise to the
greatest clinical concern.

Much work has gone into developing mathematical models
of cancers. Of particular interest here is the spatiotemporal
dynamics, which can be described, e.g., using continuum,
discrete, and hybrid models. Continuum approaches usually
result in a system of coupled partial differential equations
and have been used to describe avascular growth [4–10],
vascular growth [4,11–14], angiogenesis [15–17], and

treatment [18–20]. Most of these consider the overall
growth as being dependent on nutrient(s) that diffuses in
from the outside, while more sophisticated extensions of
these models treat the tumor as a poroviscous [21–23] or
poroelastic [11,15,24,25] structure. In such models, the
cell-cell interactions enter via coefficients in the mass
conservation terms and (usually) linear constitutive relations
describing the macroscale material properties of the tissue,
rather than via any genuine microscale description of the
interaction between cells. Of course, the advantage of such
models is that they are amenable to analytical techniques and
relatively small-scale computation. However, the microscopic
cell-cell interactions play a crucial role in the development
and function of multicellular organisms [26], so it is desirable
to incorporate cell-cell interaction effects in the modeling.
These interactions determine the structural integrity of tissue
and allow cells to communicate with each other in response to
changes in their microenvironment, which is essential for the
survival of the cells and the host. Such communication includes
that from physical contact and chemical signals, transported
directly through gap junctions between cells or by passive
diffusion. Some of these aspects can differ between healthy and
cancer cells, so modeling these differences can be important.

Greater detail of the cell-cell interactions are routinely
incorporated in discrete models for tumor growth, such as
cellular-automata [27–29], agent-based models [30–32], and
Potts models [33–35]. In these, cells are described at a mi-
croscopic level as entities that move and respond to neighbors
via a set of biologically motivated rules. Simulating the action
of a group of many of these cells then gives the evolution of a
tumor on the macroscale. Cellular automata models consists of
a regular grid of cells, each in one of a finite number of states,
such as “on” or “off.” In agent-based models their actions
typically follow discrete event cues or a sequential schedule of
interactions, rather than simultaneously performing actions at
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constant time steps, as in cellular automata models. Potts-type
models are able to incorporate how internal elements of the
cells respond to one another based on certain characteristics
that each possesses [28,32,34]. Though discrete models are
good for incorporating the biology and physics of cell-cell in-
teractions, they are designed for computation and are generally
difficult to study analytically.

A continuum theory that also incorporates the cell-cell
interactions at a microscopic level was proposed (but not
analyzed) in Ref. [36]. The central idea is to base the model on
dynamical density functional theory (DDFT) [37–39], which is
a theory for the dynamics of interacting Brownian (colloidal)
particles, able to describe the time evolution of the density
distribution of the particles over length scales comparable
with the size of the individual particles. This is the approach
we extend and implement here. DDFT provides a systematic
means of obtaining a continuum description of the density
distribution of the cells that also incorporates a description
of the microscale interactions between cells. One can solve
the DDFT numerically for large enough systems to enable a
macroscopic description at the population level, but perhaps
more importantly is that it is amenable to mathematical analysis
(e.g., determination of linear stability thresholds) providing
further insight to the population collective behavior. DDFT is
itself based on equilibrium density functional theory (DFT),
an approach that has long been used to describe the structure
of matter, be it (crystalline) solid, liquid, or gas [40–42].
We analyze in detail a version of the DDFT proposed in
Ref. [36] (here we specify a particular model for the interaction
potential between cells) and also extend the model to describe
the dynamics of systems representing multiple cell types,
incorporating the various different pair interactions between
pairs of healthy cells, between pairs of cancer cells and the
cancer-healthy pair interaction. The DDFT we use is based on
a DFT able to describe both the fluid and (crystalline) solid
phases of soft particles. In the latter, the density distribution
corresponds to a regular array of peaks, defining where the
particles are located. It is in this regime, where the peaks
represent the loci of cell centers, that the theory is relevant to
describing the microscopic density distribution of both cancer
and healthy cells, which are treated as soft particles.

This paper is laid out as follows: In Sec. II we present the
DDFT for a single species of cells, perform a linear stability
analysis, and present some typical simulation results. In Sec. III
we extend this model to describe the competition between
cancer and healthy cells and again elucidate the behavior of
the model using a linear stability analysis and simulations.
Finally, in Sec. IV, we present our conclusions.

II. MODEL FOR A SINGLE SPECIES OF CELLS

A. Dynamical density functional theory

DDFT [37–39] is a theory for the spatiotemporal evolution
of the ensemble average number density distribution ρ(r, t )
of a system of interacting Brownian particles, where t is the
time and r is the position in space. The theory shows that the
dynamics is given by

∂ρ(r, t )

∂t
= �∇ ·

[
ρ(r, t )∇

(
δF[ρ(r, t )]

δρ(r, t )

)]
, (1)

where � is a mobility coefficient and

F[ρ(r)] = kBT

∫
drρ(r)(ln[�dρ(r)] − 1) + Fex[ρ(r)]

+
∫

drVext(r)ρ(r) (2)

is the Helmholtz free-energy functional from equilibrium
DFT [40–42]. The first term in Eq. (2) is the ideal gas
contribution to the free energy, d is the dimensionality of space,
kB is Boltzmann’s constant, T is the temperature, � is the
thermal de Broglie wavelength, Vext(r) is the external potential,
and Fex[ρ(r)] is the excess contribution due to the interactions
between particles. In general, Fex[ρ(r)] is not known exactly.
However, there are many different approximations which may
be used [41,42], with some being more appropriate than others,
depending on the nature of the interactions between the fluid
particles.

The equilibrium properties of the system are obtained by
minimizing the grand potential functional,

�[ρ(r)] = F[ρ(r)] − μ

∫
drρ(r), (3)

where μ is the chemical potential, which is effectively the
Lagrange multiplier that enforces the constraint that the aver-
age number of particles in the system is N = ∫

drρ(r). Note
that Eq. (1) also enforces this constraint due to having the form
of a continuity equation.

The equation of motion for each of the N interacting
particles (cells) that is assumed in deriving Eq. (1) is the
following over-damped Langevin equation,

dri

dt
= �

⎛
⎝Fext

i +
N∑

j=1

Fint
ij

⎞
⎠ +

√
2Dηi (t ), (4)

where ri is the position of the center of mass of the ith particle
and D = �kBT is the diffusion coefficient. This assumes no
cell-cell friction; incorporating such friction would involve the
inclusion of an additional viscous drag force in the Langevin
equation. The force Fext

i = −∇Vext(ri , t ) is the force due to the
external potential, e.g., due to any confining structures present,
and the force Fint

ij = −∇Vint(ri − rj ) is cell-cell interaction
force between particles i and j , that is assumed to be governed
by the pair potential Vint that depends on the distance between
the two cells. The vector ηi (t ) is a Gaussian random noise with
components ηα

i (t ) satisfying 〈ηα
i (t )〉 = 0 and 〈ηα

i (t )ηβ

j (t ′)〉 =
δij δαβδ(t − t ′), where 〈·〉 denotes a statistical average over
different noise, realisations, δij and δαβ are Kronecker deltas,
δ(t − t ′) is a Dirac delta function and α, β are coordinate
indices.

B. Extension to describe living cells

As discussed in Ref. [36], if living cells [density ρ(r, t )]
are treated as interacting Brownian particles, then an equation
for the time evolution of the density of the form of Eq. (1) is
appropriate. However, since the cells can reproduce and die,
there is an additional term D

(1)
BD[ρ(r)] added to the right-hand

side of Eq. (1) to describe the nonconserved component of the
dynamics due to birth and death (BD) processes.
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As a simple model of BD, we assume that a single cell can
undergo mitosis with a nutrient-dependent rate am = am(n),
where n(r, t ) is the local concentration of nutrient (e.g.,
dissolved O2). We model cell death (apoptosis) as occurring
with a rate constant λd . This can be implemented as a Markov
process and affects the number of cells in the population
N = N (t ) [36]. The nutrient is provided by the vascular system,
diffuses through the system, and is taken-up by the cells, and
thus satisfies the reaction-diffusion equation

∂n(r, t )

∂t
= Dn∇2n(r, t ) + Snf (r) − λnρ(r, t )n(r, t ), (5)

where Dn is the nutrient diffusion coefficient, Sn represents the
amplitude of the nutrient source, and f (r) is a function that
defines where in space the nutrient source is located. Here,
we consider both a uniform source f (r) = 1 and a localized
source in the form of Gaussian, namely,

f (r) = e−(x−L/2)2
, (6)

which corresponds to a source of nutrient along the line x = L
2 ,

where L is the domain width, e.g., due to a capillary being
there. Here, λn is a nutrient uptake rate constant. The term in
Eq. (5) describing this process is assumed to be proportional to
n. From the fact that the first moment of the BD process is the
result of two mass action laws gives D

(1)
BD[ρ] = am(n)ρ − λdρ,

where am(n) is a nutrient-dependent growth rate and λd is a
death rate constant. We assume that am(n) = λmn, where λm

is constant.
As a simple model for the cell-cell forces, we assume

the cells interact via a soft, purely repulsive, and radially
symmetric pair potential,

Vint(r ) = ε exp[−(r/R)N ], (7)

where r is the distance between the centers of the cells and
the parameters ε and R are the cell-cell interaction energy and
cell radius, respectively, defining the strength and range of the
potential. This is the so-called generalized exponential model
with exponent N , or “GEM-N ” potential [43]. Here, we set
the exponent N = 4. Such soft potentials arise as the coarse-
grained effective potential between soft polymeric macro-
molecules in solution [43–51]. In this study, the parameter R

typically represents the radius of a cell, so cells repulse each
other when the distance between their centres are less than 2R.
While this property of Vint is necessary for biological relevance,
longer range effects (for distances � 2R), such as cell-cell
adhesion [30,32,35], can be straightforwardly built in to the
interaction function [40–42]. Note also that whilst adhesion is
important for maintaining cohesion, the structure of condensed
systems is dominated by the interparticle repulsions [42].

We consider this model because the bulk structure and
phase behavior of the GEM-N systems are well understood
in both two dimensions (2D) and three dimensions, and also
the following simple approximation for the excess free energy
functional is fairly accurate and widely used [43,52–60],

Fex[ρ(r)] = 1

2

∫
dr

∫
dr′ρ(r)ρ(r′)Vint(|r − r′|). (8)

Taking the functional derivative and then substituting the result
into the extension of Eq. (2), including the BD term described

TABLE I. Model parameters and their units. Values marked with
an asterisk (*) are estimates from the Appendix.

Symbol Typical value Unit Source

ρ(r, t ) 3×105∗ cm−2 Estimated
n(r, t ) 3∗ mg/L Estimated
Vint(r ) ε Joule Estimated
N (t ) ρ0L

2 Dimensionless Sec. II E
R 0.001 cm [61]
λm 0.00015∗ L min−1mg−1 Estimated
λd 0.00005∗ min−1 Estimated
λn 3∗ min−1 Estimated
Dc 1.3×10−9∗ cm2min−1 Estimated
Dn 0.0012 cm2min−1 [9]
� 3×1010∗ min g−1 Estimated
T 310 K [61]
kB 1.38×10−23 Joule/K [62]
ε ≈ kBT Joule Estimated
ρ0 3×105∗ cm−2 Sec. II E
L2 6×10−4 cm2 Sec. II E
Sn 433∗ mg L−1min−1cm−2 Estimated

above, we obtain

∂ρ(r, t )

∂t
= ∇ ·

[
�ρ(r, t )∇

[
kBT ln(�dρ(r, t ))

+
∫

dr′ρ(r′, t )Vint(|r − r′|)
]]

+[λmn(r, t ) − λd ]ρ(r, t ). (9)

The coupled pair, Eqs. (9) and (5), define our model for a single
type of cells coupled to a source of nutrients. The parameters
and their estimated values are listed in Table I. See also the
Appendix, where we justify the particular values we use here.
For simplicity, we henceforth assume the system is 2D within a
square domain of area L2 with periodic boundary conditions.
Thus, r = (x, y). Two key quantities for understanding the
behavior of the system are the average cell and nutrient
densities in the domain defined as

ρ̄(t ) = 1

L2

∫∫
ρ(x, y, t )dxdy, (10)

n̄(t ) = 1

L2

∫∫
n(x, y, t )dxdy, (11)

respectively.

C. Nondimensionalization

We now nondimensionlize the model before performing a
linear stability analysis and presenting some typical numerical
results. Writing

t = R2t∗

Dc

, x = x∗

R
, y = y∗

R
, ρ = ρ∗

R2
, n = λdn

∗

λm

,

Vint(r/R) = εṼint(r
∗), (12)

where the asterisked quantities are dimensionless variables,
Dc = �kBT is the dimensional coefficient of diffusion of cells
and Ṽint(r ) = exp(−rN ) is the dimensionless pair potential.
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TABLE II. Dimensionless parameter values of the model.

Dimensionless param. Dimension form Value Used value

c1 R2λd/Dc 0.038 1

D̃ Dn/Dc 106 1, 10, 102

S̃n R2Snλm/λdDc 106 10,35

λ̃n λn/Dc 106 1

βε βε O(1) 1

We also define the dimensionless parameters

c1 = R2λd

Dc

, D̃ = Dn

Dc

, S̃n = R2Snλm

λdDc

, λ̃n = λn

Dc

. (13)

With these, we obtain the following nondimensional pair of
coupled equations

∂ρ(r, t )

∂t
= ∇2ρ(r, t )

+∇ ·
(

ρ(r, t )∇
∫

dr′ρ(r′, t )βεṼint (|r − r′|)
)

+c1[n(r, t ) − 1]ρ(r, t ), (14)

∂n(r, t )

∂t
= D̃∇2n(r, t ) + S̃nf (r) − λ̃nρ(r, t )n(r, t ), (15)

where we have dropped the asterisks for clarity. Note that
β = 1/kBT so that the dimensionless quantityβε in the integral
term is the dimensionless pair interaction energy.

Our estimated values for the various dimensionless param-
eters in the model are listed in Table II. We note that the ratio
of diffusion coefficients D̃ in Eq. (13) is large, which means
that quantities in Eqs. (14) and (15) take dimensionless values
covering several order of magnitudes O(10−2)–O(106). This
is because the nutrient density distribution evolves on much
faster timescales than the cells, which creates challenges for
the numerical methods that we use below. Since the algorithm
must run over a long time, the (nutrient) terms associated
with the O(106) parameters equilibrate very rapidly by a time
t ∼ O(10−6), compared to the slower (cells evolution) pro-
cesses which take times t ∼ O(102). Consequently, tempering
the large valued parameters, say by setting (106) 
→ 1 for the
large parameters, has little effect on the long-term results but
greatly helps in the running of the numerical code. We therefore
select the parameter set given in Table II and henceforth use
these as our standard parameter set. We also present results
below, illustrating how the long-time results for ρ(r, t ) depend
only very weakly on the value of D̃, as it is varied in the range
1 � D̃ � 102.

D. Linear stability analysis

For S̃n > 0 and f (r)=1 there is a unique uniform density
steady state that is a stationary solution of Eqs. (14) and (15),
that is

n = n0 = 1, ρ = ρ0 = S̃n/λ̃n. (16)

We now investigate the linear stability of the uniform density
state (ρ0, n0) to nonuniform perturbations [δρ(r, t ), δn(r, t )],

with ‖δρ‖∞ = ξ and ‖δn‖∞ = χξ , where ξ � 1. The analysis
also applies more generally to determine the growth or decay
of a perturbation about a uniform density state (ρ0, n0), with
values different to those in Eq. (16), i.e., the timescale for cell
repositioning in response to the perturbation is much faster than
cell growth; we note c1 � 1 from data, see Table II. Note that
it is the parameter values where the uniform system is unstable
(and forms peaks) that are of relevance biologically.

To determine the linear stability of the flat state, we assume
that the cell density profile take the form

ρ = ρ0 + δρ(r, t )

= ρ0 + ξei(k·r)+ωt , (17)

and the nutrient density profile

n = n0 + δn(r, t )

= n0 + χξei(k·r)+ωt , (18)

where 0 < ξ � 1 is the initial amplitude of the sinusoidal
perturbation that has wave number k = |k|, χ is the ratio be-
tween the amplitude of the modulation in the two components,
and the growth or decay rate of the perturbations is given by
the dispersion relation ω = ω(k). Substitution of Eqs. (17)
and (18) into the dynamic Eq. (14), and then linearizing in
δρ, we obtain (cf. Refs. [38,60])

ω(k) = −k2[1 + ρ0βεV̂ (k)] + c1(n0 + ρ0χ − 1), (19)

where V̂ (k) is the Fourier transform of the pair potential. Since
we have assumed the system is in 2D, the Fourier transform is

V̂ (k) =
∫

dreik.rṼint(r) = 2π

∫ ∞

0
rṼint(r )J0(kr )dr, (20)

where J0(x) is the Bessel function of order 0.
The limit of linear stability is defined as the locus of points in

parameter space, where the maximum in the dispersion relation
Eq. (19) is at zero, i.e., ω(k = kc ) = 0, where kc is the wave
vector where ω(k) is maximum, where dω

dk
|k=kc

= 0. In the case
of c1 � 1, we have

1 + ρ0βεV̂ (k = kc ) ≈ 0, (21)

where kc ≈ 5.1 and V̂ (kc ) ≈ −0.16 (recall that in the nondi-
mensionalization we effectively set the unit of length R = 1),
which implies that the locus of where the system becomes
linearly unstable is

ρ0 ≈ 1

βε|V̂ (kc )| , (22)

which in the density ρ0 versus “dimensionless temperature”
kBT /ε = 1/βε plane is a straight line passing through the
origin [60]. For densities greater than this value, the system
is linearly unstable. Note that even though we have assumed
c1 � 1 in the derivation, it turns out that even for c1 = O(1),
Eq. (22) gives a good estimate for where the system is linearly
unstable. Given the data in Table II, the analysis suggests that
dominant terms governing instability is the cell density and
the cell-cell interaction parameters; cell growth and nutrient
consumption rates are secondary to this process.
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Cells Density, ρ(r) Nutrient

FIG. 1. Density of the cells (left) and local nutrition concentration
(right) over time. We assume that the population growth constant
c1 = 1 and the energy scale in the interaction potential between cells
βε = 1. The diffusion coefficient ratio D̃ = 1. The nutrient source
is homogeneous with f (r) = 1 and S̃n = 10, and the nutrient uptake
rate λ̃n = 1. The area of the domain is 25.62 and �x = 0.1.

E. Numerical results for the cell evolution

The coupled Eqs. (14) and (15) are solved numerically using
the method of lines. The density profiles are discretized on a
spatially uniform grid, with the convolution integral evaluated
in Fourier space using fast Fourier transforms, while for the
time stepping the Adam-Bashforth method is implemented,
via the freeware ODEPACK routine DLSODE [63,64]. We
note that this time-stepping method is significantly faster than
the Euler time-stepping routines used for the similar problem
in Ref. [60]. We note that all quantities shown in the figures,
including those of Sec. III D, are dimensionless.
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FIG. 2. The average cell density [see Eq. (10)] and the average
nutrient density [see Eq. (11)], corresponding to the results in Fig. 1.

1. Results with homogeneous nutrient source

We assume initial conditions

ρ(r, 0) = 1 + γ (r),

n(r, 0) = 1, (23)

where γ (r) is a small amplitude random variable and γ (r) ∼
U (0, 1), where U is a uniform distribution. We set the dimen-
sionless model parameters to be c1 = 1, βε = 1, λ̃n = 1, and
D̃ = 1. We set the area of the domain in which the model is
solved to be 25.6×25.6, with grid spacing �x = 0.1 (smaller
values were also tested, but this value is normally sufficiently
small) and periodic boundary conditions on all sides. We set
the nutrient source to be uniform f (r) = 1, with amplitude
S̃n = 10.

In Fig. 1, the plots in the left-hand column are the density
profile of the cells at a series of different times (t = 2.6, 2.7, 2.8,
and 5), while the right-hand column displays plots of the local
nutrient concentration. From the left column, it is clear that the
total density of cells increases with time, as can also be seen
in Fig. 2, where we plot the average cell density and nutrient
density over the whole system as a function of time, which are
defined in Eqs. (10) and (11). We see the peaks (i.e., locations of
the centres of the cells) grow and split to fill the entire domain,
due the fact that there is a source of nutrient everywhere, in
contrast to the behavior seen, for example, in Fig. 3, where the
source of nutrient is localized along the midline of the system.
In Fig. 2 we see that initially the nutrient density increases, due
to the low initial average cell density. Then, at t ≈ 0.5, while
the cell density increases, the nutrient density starts to decrease,
due to the increased consumption. Over the time 2 � t � 3 the
peaks in the cells density distribution form. Consequently, the
nutrient concentration then increases again at t ≈ 3. After this,
n̄(t ) is roughly a constant ≈1.2, as shown in Fig. 2. The cell
density continues to slowly increase to plateau at a constant
value ≈10 at the time t ≈ 6.

2. Results with inhomogeneous nutrient source

Figure 3 compares results for the cell density profile time
evolution for three different values of D̃ = 1, 10, and 100
(from left to right). For example, the results in the left-hand
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Cells Density when D̃=1 Cells Density when D̃=10 Cells Density when D̃=100 Nutrient when D̃=1

FIG. 3. The local density of the cells (left three columns, for D̃ = 1, 10, and 100, from left to right) and the nutrient density for D̃ = 1 (right
hand column). The population growth constant c1 = 1 and the energy scale in the interaction potential between cells βε = 1. The nutrient source
term has S̃n = 35 with f (r) given in Eq. (6) and nutrient uptake rate λ̃n = 1. The area of the system is 25.62, with grid spacing �x = 0.05.

column of Fig. 3 shows the evolution of cell density, displaying
snapshots for the times t = 1.2, 2, 2.1, and 10. In these cases
the nutrient source is located along the vertical mid line of the
system [cf. Eq. (6)]. From an initial randomised distribution,
the cell density grows in the vicinity of central nutrient source.
When the density is sufficiently large, an instability (cf.
Sec. II D) leads first to a striped pattern and then peaks. The
density peaks (i.e., cells) are arranged in a roughly hexagonal
pattern, which also impacts the nutrient distribution. The right
hand column of Fig. 3 show the time evolution of the nutrient
density for the case D̃ = 1, corresponding to the left hand
column cell density profiles.

In Fig. 4 we display plots of the total cell density and nutrient
density calculated using Eqs. (10) and (11), corresponding to

Fig. 3. These results are for three very different values of D̃ =
1, 10 and 100. Nonetheless, we see that in all three cases the
results are all qualitatively rather similar, which demonstrates
that for D̃ � 1 the results do not qualitatively depend on the
precise value of D̃. Recall that in Sec. II D we note that the true
value is D̃ ≈ 106 [see also the Appendix and Eq. (A5)], but also
argue that we do not need to have such a large value. Owing to
the qualitative similarity of the results shown in Fig. 3, we see
that smaller values of D̃ ≈ 10 are acceptable.

The similarities for different values of the diffusion coef-
ficient ratio D̃ can also be seen from the results in Fig. 4,
whereby the steady value of ρ̄ ≈ 5 and n̄ ≈ 0.5 is reached by
t ≈ 4. Note that for the smaller D̃ = 1 case there are small
amplitude oscillations in both the cell and nutrient average
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FIG. 4. The average cell density [see Eq. (10)] and the average
nutrient density [see Eq. (11)], corresponding to the results in Fig. 3
when the diffusion coefficient D̃=1, 10, and 100, respectively.

densities for t > 2. These are due to new cells being formed
and then dying in a periodic fashion.

By t ≈ 10 the cell density profiles in Fig. 3 no longer change
qualitatively, however, they are not stationary. We see that
around the nutrient source along the line x = L/2, we have
a region where the peaks grow and then split—modeling cell
division—and then move away from the nutrient source, where
they subsequently die due to the lack of nutrient away from the
center line. In Fig. 5 we display a magnification of the cell
density profile to highlight these mitotic events. The sequence
of snapshots in Fig. 5 illustrates the cell splitting events that
occurs between the times t = 2.05 and t = 2.10 with time
increments of 0.01. We observe that a peak first elongates
and then splits to form new peaks which remarkably mirrors a
mitotic event. In the fourth row in Fig. 5, a peak spontaneously
emerges between two existing ones, describing the average
location of a new cell resulting from mitosis of one of the cells
either side of it.

III. COMPETITION BETWEEN CANCER
AND HEALTHY CELLS

In this section we extend the model presented in the previous
section to include a second species of cells. Our aim is to study
the competition between cancer cells and healthy cells. We
denote the density of the cancerous and the healthy cells as ρ1

and ρ2, respectively. The generalization of Eqs. (5) and (9) is

∂ρ1(r, t )

∂t
= �1∇ ·

[
ρ1(r, t )∇

(
δF[ρ1, ρ2]

δρ1(r, t )

)]
+[λm1n(r, t ) − λd1]ρ1(r, t ), (24)

∂ρ2(r, t )

∂t
= �2∇ ·

[
ρ2(r, t )∇

(
δF[ρ1, ρ2]

δρ2(r, t )

)]
+[λm2n(r, t ) − λd2]ρ2(r, t ), (25)

∂n(r, t )

∂t
= Dn∇2n(r, t ) + Snf (r) − λn1ρ1(r, t )n(r, t )

−λn2ρ2(r, t )n(r, t ), (26)

FIG. 5. Snapshots of several peak splitting events that occur
between the times t = 2.05 and t = 2.10. The figures above are
in time increments of 0.01 going from top left to bottom right,
corresponding to the profiles plotted in the left hand column of Fig. 3,
which are for D̃ = 1.

where λmi, λdi, λni , and �i have the same as their counterparts
in Sec. II B for species i. The generalization of DDFT to
describe a two component colloidal suspension was discussed
in Ref. [65]. The above reduces to this DDFT if the BD terms
are set to zero.

For such a binary system we may approximate the intrinsic
Helmholtz free energy of the system as in Refs. [43,65],
namely,

F[{ρi (r, t )}] = kBT

2∑
i=1

∫
drρi (r, t )

{
ln

[
�d

i ρi (r, t )
] − 1

}

+1

2

2∑
i,j=1

∫
dr

∫
dr′ρi (r, t )ρj (r′, t )Vij (|r − r′|), (27)

where Vij are the pair interactions potentials, discussed further
below and �i are the thermal de Broglie wavelengths for
species i. The indices i, j = 1, 2 label the two different species
of particles (healthy and cancer); we assign 1 for cancer cells
and 2 for healthy cells. Substituting Eq. (27) into Eqs. (24)
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and (25), we obtain

∂ρ1(r, t )

∂t
= ∇ ·

(
�1ρ1(r, t )∇

{
kBT ln

[
�d

1ρ1(r, t )
]

+
∫

dr′ρ1(r′, t )V11(|r − r′|)

+
∫

dr′ρ2(r′, t )V12(|r − r′|)
})

+[λm1n(r, t ) − λd1]ρ1(r, t ) (28)

and

∂ρ2(r, t )

∂t
= ∇ ·

(
�2ρ2(r, t )∇

{
kBT ln

[
�d

2ρ2(r, t )
]

+
∫

dr′ρ1(r′, t )V21(|r − r′|)

+
∫

dr′ρ2(r′, t )V22(|r − r′|)
})

+[λm2n(r, t ) − λd2]ρ2(r, t ). (29)

As in Sec. II we model the cell-cell interactions via soft, purely
repulsive, and radially symmetric pair potentials given by

Vij (r ) = εij e
−(r/Rij )4

, (30)

where the parameters εij specify the strength of the repulsion
between pairs of cells of species i and j and Rij define the range
of the interactions. Thus, we choose R11 � R22, modelling
cancer cells that are the same size or slightly larger than the
healthy cells, and we choose ε12 > ε11 = ε22, so that peaks of
the different species do not occur at the same point in space.
In some cases, we choose R12 = 1

2 (R11 + R22), but we also
consider cases where R12 > 1

2 (R11 + R22) since this promotes
demixing of the two cell species and also R12 < 1

2 (R11 + R22),
which promotes penetration of the cancer cells in between the
healthy cells [43,52,65].

A. Nondimensionalization

We nondimensionlize the system of integropartial differen-
tial equations given in Eqs. (28), (29), and (26) in a manner sim-

ilar to previously, using t = R2
11t

∗

Dc
, x = x∗

R11
, y = y∗

R11
, ρ1 = ρ∗

1

R2
11

,

ρ2 = ρ∗
2

R2
11

, n = λd1n
∗

λm1
, and Vij (r/R11) = εij Ṽij (r∗), where the

asterisked quantities are dimensionless and Dc = �1kBT .
Here, the scaling on space is based on the range of the interac-
tion between two cancer cells, R11. Defining the dimensionless
parameters [cf. Eq. (13)],

c1 = R2
11λd1

Dc

, c2 = R2
11λm2λd1

Dcλm1
, α = λd2λm1

λd1λm2
,

D̃2 = �2

�1
, D̃n = Dn

Dc

, S̃n = R2
11Snλm1

λd1Dc

,

λ̃n1 = λn1

Dc

, λ̃n2 = λn2

Dc

,

noting that D̃2 is the ratio of the diffusion coefficients of healthy
cells to cancer cells. We get
∂ρ1(r, t )

∂t
= ∇2ρ1(r, t )

+ ∇ ·
[
ρ1(r, t )∇

∫
dr′ρ1(r′, t )βε11Ṽ11(|r − r′|)

]

+∇ ·
[
ρ1(r, t )∇

∫
dr′ρ2(r′, t )βε12Ṽ12(|r − r′|)

]
+ c1[n(r, t ) − 1]ρ1(r, t ), (31)

∂ρ2(r, t )

∂t
= D̃2∇2ρ2(r, t )

+∇ ·
[
ρ2(r, t )∇

∫
dr′ρ1(r′, t )βε21Ṽ21(|r − r′|)

]

+∇ ·
[
ρ2(r, t )∇

∫
dr′ρ2(r′, t )βε22Ṽ22(|r − r′|)

]
+c2[n(r, t ) − α]ρ2(r, t ), (32)

∂n(r, t )

∂t
= D̃n∇2n(r, t ) + S̃nf (r)

−λ̃n1ρ1(r, t )n(r, t ) − λ̃n2ρ2(r, t )n(r, t ). (33)

Where the asterisks have been dropped for clarity.

B. Parameters values

For both the healthy and cancer cell growth rate parame-
ters, diffusion coefficients, and the parameters relating to the
nutrient dynamics we use the same values that are argued for
in the Appendix. The main change is to make the growth
rate parameters for the cancer cells larger than those of the
healthy cells in order for them to reproduce and grow faster
(or die slower) than the healthy cells. The parameter values are
summarised in Table III and the corresponding dimensionless
parameter values are given in Table IV. The other main addition
to the model for both healthy and cancer cells that must be
considered are the parameter values in the interaction potential
between the different types of cells, given in Eq. (7). The
parameter values we choose are given in Table III. These values
are chosen to (i) make the cancer cells either the same size or
slightly larger than the healthy cells [66] and (ii) to make sure
the cancer cells do not overlap with the healthy cells.

C. Linear stability analysis for two species model

The governing equations for the time evolution of the
density profile of the cancer cells, the healthy cells and
the nutrient are given by Eqs. (31)–(33). We note for α �=1 there
is no spatially uniform positive steady state to this system. We
consider here the linear stability of uniform state ρ1 = ρb

1 > 0
and ρ2 = ρb

2 > 0 for the case c1, c2 � ξ � 1, where ξ is the
amplitude of the density perturbation; the small magnitude of
c1 and c2 in comparison to the other parameters is evident
from Table IV. In setting c1 = c2 = 0 for the purposes of the
linear stability analysis, we are assuming the growth of cells
occurs on a much longer timescale than that of the cell motion.
This assumption means that the nutrient Eq. (33) decouples
from Eqs. (31) and (32), so that in what follows, stability of
a uniform state is predominantly governed by cell density and
the cell-cell interaction process.
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TABLE III. Model parameters and their units. Values marked with
asterisk (*) are estimates from Secs. IIIV and III B.

Symbol Typical value Unit Source

ρ1(r, t ) 3×105∗ cm−2 Estimated
ρ2(r, t ) 3×105∗ cm−2 Estimated
n(r, t ) 3∗ mg/L Estimated
V11(r ) ε11 Joule Estimated
V12(r ) ε12 Joule Estimated
V22(r ) ε22 Joule Estimated
R11 0.001 cm [61]
R22 0.0009 cm [61]
λm1 0.00015∗ L min−1mg−1 Estimated
λm2 0.000015∗ L min−1mg−1 Estimated
λd1 0.00005∗ min−1 Estimated
λd2 0.000005∗ min−1 Estimated
λn1 3∗ min−1 Estimated
λn2 3∗ min−1 Estimated
Dc 1.3×10−9∗ cm2 min−1 Estimated
Dh 1.1×10−9∗ cm2 min−1 Estimated
Dn 0.0012 cm2min−1 [9]
�1 3×1010 min g−1 Sec. IIIA
�2 2.5×1010 min g−1 Sec. IIIA
T 310 K [61]
kB 1.38×10−23 Joule/K [62]
ε11 1kBT Joule Estimated
ε12 1.5kBT Joule Estimated
ε22 1kBT Joule Estimated
ρ0 3×105 cm−2 Table I
L2 6×10−4 cm2 Table I
Sn 433∗ mg L−1min−1cm−2 Estimated

We assume the cell density perturbations are of the form

ρ1(r, t ) = ρb
1 + δρ(r, t )

= ρb
1 + ξei(k·r)+ωt , (34)

and

ρ2(r, t ) = ρb
2 + χδρ(r, t )

= ρb
2 + χξei(k·r)+ωt , (35)

TABLE IV. Dimensionless parameter values of the model. γ (r)
is given in Eq. (23).

Nondimensional p Dimensional form Value Used value

ρ∗
1 ρ1/ρ̂1 1 6 + γ (r)∗

ρ∗
2 ρ2/ρ̂2 1 6 + γ (r)∗

n∗ n/n̂ 3 3
c1 R2

11λd1/Dc 0.038 0.5, 0.6
c2 R2

11λm2λd1/Dcλm1 0.0038 0.5, 0.6
α λd2λm1/λd1λm2 1 2
D̃2 Dh/Dc 1.1 1
D̃n Dn/Dc 106 1
S̃n R2

11Snλm1/λd1Dc 106 8, 9
λ̃n1 λn1/Dc 106 1
λ̃n2 λn2/Dc 106 1
ε11Ṽ11(r∗) V11(r/R11) See Eq. (7) –
ε12Ṽ12(r∗) V12(r/R11) See Eq. (7) –
ε22Ṽ22(r∗) V22(r/R11) See Eq. (7) –

where 0 < ξ � 1, k is the wave number, χ is the ratio between
the amplitude of the modulation in the two components, and the
growth or decay rate is determined by the dispersion relation
ω = ω(k), where k = |k|. Substituting Eqs. (34) and (35) into
Eqs. (31) and (32), on linearizing in ξ we obtain [60]

ω(k)

(
1
χ

)
= M

(
1
χ

)
, (36)

where the matrix

M = −k2

(
1 + ρb

1βε11V̂11(k) ρb
2βε12V̂12(k)

ρb
1βε21V̂21(k) 1 + ρb

2βε22V̂22(k)

)
. (37)

We can rewrite the matrix M as a product of two matrices
M = N · E, where

N =
(−ρb

1k2 0

0 −ρb
2k2

)
, (38)

and

E =
([

1
ρb

1
+ βε11V̂11(k)

]
βε12V̂12(k)

βε21V̂21(k)
[

1
ρb

2
+ βε22V̂22(k)

]
)

. (39)

We can now determine the dispersion relation ω(k) by calcu-
lating the eigenvalues of N · E,

ω(k) = Tr(N · E)

2
±

√
Tr(N · E)2

4
− |N · E|, (40)

where |N · E| denotes the determinant of the matrix N · E [60].
When ω(k) < 0 for all wave numbers k, the system is linearly
stable. If, however, ω(k) > 0 for any wave number k, then the
uniform density state is linearly unstable. Since N is a (negative
definite) diagonal matrix its inverse N−1 exists for all nonzero
densities and temperatures, enabling us to write Eq. (36) as the
generalized eigenvalue problem

(E − N−1ω)χ̂ = 0, (41)

where χ̂ = (1, χ ). As E is a symmetric matrix, all eigenvalues
are real. It follows that the linear stability threshold is deter-
mined by |E| = 0, i.e., by the condition

D(k) ≡ [
1 + ρb

1βε11V̂11(k)
][

1 + ρb
2βε22V̂22(k)

]
−ρb

1ρb
2β2ε2

12V̂
2

12(k) = 0. (42)

In Fig. 6 we display the linear stability threshold for different
values of the concentration φ ≡ ρb

1/ρ, where ρ ≡ ρb
1 + ρb

2 is
the total density and ρb

1 , ρb
2 are the densities of cancer and

healthy cells, respectively. For state points above the linear
stability threshold lines in Fig. 6 the system forms peaks,
modeling the distribution of the cells. The instability line
is obtained by tracing the locus defined by D(kc ) = 0 and
D′(kc ) = 0, where D(k) is given in Eq. (42) and kc �= 0 is the
wave number at the minimum of D(k) [i.e., D(k = kc ) = 0].
Note that as the cell radii ratio R22/R11 is increased (or,
of course, decreased), the two wave numbers at which the
system can become linearly unstable, kc ≈ 2π/R11 or kc ≈
2π/R22, move apart leading to the linear stability threshold
developing a cusp, as shown by the “corners” in some of the
curves in the lower figure of Fig. 6. The cusp appears when
the two minima in D(k) both satisfy D(kc ) = 0 and can be
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FIG. 6. The linear stability threshold for the two species cells
[see Eqs. (31) and (32)] plotted in the total density ρ ≡ ρb

1 + ρb
2

versus concentration φ ≡ ρb
1 /ρ plane. The uniform density state is

linearly unstable above this line. The top plot shows the curves
for R11 = 1, R22 = 1.2, R12 = 1.1, βε11 = βε22 = 1 and for varying
βε12, as given in the key. The curves in the lower plot are for varying
R22 = 1, 1.5, 1.7, 1.73, 1.8, and 2. We set the cross-interaction radius
R12 = 1

2 (R11 + R22 ) and βε11 = βε12 = βε22 = 1.

determined by simultaneously solving the system of algebraic
equationsD(kc ) = D′(kc ) = D′′(kc ) = D′′′(kc ) = 0. We find
that on increasing R22/R11 the cusp appears at R22/R11 =
1.73, ρ = 8.26, and φ = 0.74 (red curve in the bottom plot)
and is present for R22/R11 > 1.73.

D. Numerical results

In this section we discuss some representative results
showing the competition between healthy and cancer cells,
obtained by solving numerically the system of integro-partial
differential Eqs. (31)–(33) using the numerical methods dis-
cussed in Sec. II E. We investigate the evolution of the cells
starting from various different initial arrangements and the
effect of the cross-species interaction range R12.

1. Spread from a few cancer cells within healthy tissue

To model the growth and spread of a tumor within healthy
tissue we consider a case where we first initiate the system
with one half containing predominantly healthy tissue, the
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FIG. 7. Top four panels: plots of (ρ1 − ρ2), the density pro-
file of the cancer cells minus the density of the healthy cells, at
times t = 0.1, 16, 26, and 34.2. The nutrient uptake rates λ̃n1=1
and λ̃n2=1, the population growth constants c1 = c2 = 0.5, and
the threshold nutrient concentration for healthy cells α = 2. The
nutrient source is homogeneous, with f (r) = 1 and S̃n = 9. The
area of the domain is 25.6×25.6 and �x = �y = 0.1. The cell-
cell pair interaction potential parameters are βε11=1, βε12=1.5,
βε11=1, R11 = R22 = 1, and R12 = 0.9. Bottom: the corresponding
average cell density [see Eq. (10)] and the average nutrient density
[see Eq. (11)].

other half containing cancerous tissue (with uniform densities
in each half), and a uniform nutrient density. As the system
evolves, peaks form in the two cell density profiles and over
time the cancer cells displace the healthy cells till the total
average density of healthy cells is small. We then stop the
simulation and swap the labels on the two density profiles,
so that the (more realistic) initial condition for the following
simulation consists of an array of peaks (cells) in the healthy
cell density profile and a low density of cancer cells; i.e., for
the initial conditions we define ρ1(r, t = 0) = ρ

‡
2(r, t = 20)

and ρ2(r, t = 0) = ρ
‡
1(r, t = 20), where ρ

‡
1(r, t = 20) and

ρ
‡
2(r, t = 20) are the final profiles at time t = 20 from the

preliminary simulation.
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Snapshots from the subsequent evolution are displayed in
Fig. 7. These results are for the population growth constants
c1 = c2 = 0.5 and the threshold nutrient concentration for
healthy cells α = 2. We fix the various cell-cell interaction
parameters to be βε11 = βε22 = 1, βε12 = 1.5 (so that
density peaks of the two different cell types do not overlap),
R11 = R22 = 1 and R12 = 0.9. The nutrient uptake rate for
cancer cells λ̃n1 = 1 and for healthy cells λ̃n2 = 1. The area
of the domain in which the model is solved is 25.6×25.6 and
the nutrient source is uniform, with f (r) = 1 and S̃n = 9.
The diffusion coefficients for both cell species are equal,
D̃c = D̃h = 1.

In Fig. 7 we plot the difference between the density profiles
(ρ1 − ρ2). Positive values in this quantity correspond to regions
where the cancer cells are present (where the peaks are
purple-red, with yellow maxima) and negative values where the
healthy cells are present (where the peaks are green). In regions
that are gray, both densities are low. The Fig. 7 profiles are snap-
shots at the times t=12.2, 16, 26, and 34.2. At t=12.2 the first
cancer cell becomes visible. As time increases, the cancer cells
proliferate to form a vertical strip of cancerous tissue, shown in
the top right pannel. The fact that it is a vertical strip is due to the
original initial conditions. By the time t = 26 the cancer cells
have invaded two thirds of the healthy area and by t = 34.2 they
cover the entire domain, having displaced all the healthy cells.

In the bottom panel of Fig. 7, we plot the average densities
of the two species of cells and also of the nutrients, calculated
using the two component generalisation of Eqs. (10) and (11),
respectively. We see that over time the average nutrient density
is roughly constant, but the density of the healthy cells de-
creases over time, while the average density of the cancer cells
increases. Interestingly, the average density of the healthy cells
does not decrease monotonically; there are instances where
there are brief increases, where healthy cells momentarily
find gaps around the evolving cancer into which they try and
grow. However, the overall trend is for the healthy cells to be
displaced and die out.

2. Growth of a cancer that is initially small and circular

Figures 8–12 display results for the evolution over time
starting from the initial condition

ρ1(r, 0) =
{

6 + γ (r) (x − 12.8)2 + (y − 12.8)2 � 62

0 (x − 12.8)2 + (y − 12.8)2 > 62 ,

(43)

ρ2(r, 0) =
{

0 (x − 12.8)2 + (y − 12.8)2 � 62

6 + γ (r) (x − 12.8)2 + (y − 12.8)2 > 62 ,

(44)

and n(r, 0) = 0.5, where γ (r) is a random variable drawn
from a uniform distribution on the interval (0,1). This initial
condition corresponds to a small circular cancer of radius 6 in
the middle of the healthy cells. Figures 8–10 show simulations
with R12 = 0.9, 1, 1.1, respectively, with all other parameters
fixed as in Fig. 7, noting that R11 = R22 = 1. In the case
of R12 = 0.9, the two cell types can tolerate being closer to
each other thereby promoting mixing behavior; this despite
the repulsive strength across types, βε12 = 1.5, being stronger
than that between them βε11 = βε22 = 1. For R12 = 1.1, we
expect more demixing type behavior.

FIG. 8. Snapshots of (ρ1 − ρ2), the density profile of the cancer
cells minus that of the healthy cells, at the times t = 0.1, 6.5, 10, and
20 evolving from the initial conditions defined in Eqs. (43) and (44).
The system parameters are λ̃n1 = λ̃n2 = 1, D̃c = D̃2 = 1, c1 = c2 =
0.5, and α = 2. The nutrient source is homogeneous with f (r) =
1 and S̃n = 9. The area of the domain is 25.6×25.6 and �x =
�y = 0.1. The parameters in the pair interaction potentials between
the cells are βε11 = 1, βε12 = 1.5, βε11 = 1, R11 = R22 = 1, and
R12 = 0.9. In the bottom left panel are plotted the corresponding
average cell densities [see Eq. (10)] and the average nutrient density
[see Eq. (11)]. In the bottom right panel we plot the trajectory of
the time evolution in the (ρ, φ) plane. Note that the points on this
trajectory correspond to the integer times t = 0, 1, 2, . . . . We also
plot the linear stability threshold for this system. When the trajectory
dips below this line, the system temporarily “melts.”

We see in Fig. 8 that although within the domains where the
different cell species are initiated—see Eqs. (43) and (44)—the
densities are uniform, i.e., liquidlike, rather than a “crystalline”
state with density peaks, the peaks corresponding to the
locations of the cells rapidly form and are already present by
the time t = 0.1. However, this sudden initial growth leads
to a drop in the nutrient level, as can be seen at t ≈ 5 in
Fig. 8. The drop in nutrient level then leads to a drop in the
overall number of healthy cells, which leads to the “crystal”
melting temporarily, which corresponds to the cells being dis-
tributed in disordered liquid-like configurations; biologically,
this melting phenomenon can be viewed as a temporary state
of flux, whereby cells are moving around relatively rapidly
and the densities shown are the average density distribution
of the cell centres. The nutrient level then recovers and the
system “refreezes” and over time the cancer cells penetrate
the healthy tissue and eventually the healthy cells all die out.
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FIG. 9. Snapshots of (ρ1 − ρ2) at the times t = 1.1, 6.5, 8.5, and
20. All the parameters here are the same as those in Fig. 8, except
here the cross interaction pair potential radius is R12 = 1, which is
slightly larger.

The temporary “melting” can be understood if one plots the
trajectory of the system in the total density versus concentration
(ρ, φ) plane, in addition to plotting the threshold for the system
to be linearly unstable, given by Eq. (42). This is displayed in
the bottom right panel of Fig. 8. Recall that above the stability
line the system is linearly unstable and forms peaks. We see
that when the trajectory dips below this line is when the system
temporarily “melts.”

In the Fig. 9 we plot results for the case when all the
model parameters are the same as those in the previous case
(that displayed in Fig. 8), except now the radius in the cross
interaction pair potential R12 = 1, which is slightly larger (for
the results in Fig. 8 we have R12 = 0.9). In Fig. 9 we plot
(ρ1 − ρ2) at the times t=0.1, 5.5, 9, and 20. As before, we
see that the total density of the cancer cells increase with the
time and the healthy cells retreat from the center and finally
all the healthy cells die by the time t = 20. The consequence
of the increased value of R12 is that there is now a tendency
for the cancer cells to penetrate into layers beyond the initial
interfacial layer of healthy cells, and so form alternating layers
of healthy and cancerous cells—see, e.g., the plot for the time
t = 7.5. The averages densities over time are shown in the
bottom left panel of the Fig. 9 and in the bottom right is the
trajectory in the (ρ, φ) plane and also the corresponding linear
stability threshold line.

In Fig. 10 we present results for an even larger value of the
cross interaction radius, R12 = 1.1. Comparing with Figs. 8

FIG. 10. Snapshots of (ρ1 − ρ2) at the times t = 1.1, 5.5, 8.5, and
20. All the parameters here are the same as those in Figs. 8 and 9,
except here the cross interaction pair potential radius is even larger,
R12 = 1.1.

and 9, we see that the effect of this increase is to further increase
the tendency of the cancer cells to penetrate into the healthy
tissue (metastasis) and in this case forming roughly circular
clumps of cancer cells ahead of the main tumor, rather than
layers.

The dynamics shown in each of Figs. 8–10 reflects metas-
tasis. Smaller cross species interaction range, R12, lead to a
disordered infiltration of healthy tissue by individual tumor
cells, which is more ordered for R12 = 1. For the larger R12,
tumor cells appears to infiltrate healthy tissue as small clusters.
In each case, much of the initial mixing of cell types occurs
during the transient melting phase, the timescale for which
decreases on increasing R12 (as can be seen from linear stability
threshold diagrams for each of the plots); we note, however,
the central core structure of tumor cells is maintained during
the melting phase. The different manner of infiltration is an
interesting consequence of the modeling assumptions, but it
would be experimentally challenging to discern which of these
patterns, if any, are relevant biologically.

3. The effect of varying βε12

Guided by the results in Fig. 6, we now investigate the
effect on the cancer development of varying the cross-species
repulsion strength, βε12. In Fig. 11 we display results for three
different values, βε12 = 1, 1.75, and 2. We see that the speed of
the cancer cells to penetrate the healthy tissue increases as we
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FIG. 11. Snapshots of (ρ1 − ρ2), for various βε12 = 1 (left), βε12 = 1.75 (middle), and βε12 = 2 (right) and various different times, with
time increasing from top to bottom, as indicated above. The other pair potential parameters are βε11 = βε22 = 1, R11 = R22 = 1, and R12 = 0.9.
The other model parameters are λ̃n1 = λ̃n2 = 1, c1 = c2 = 0.5, α = 2, and S̃n = 9 with f (r) = 1. The area of the domain is 25.6×25.6 and
�x = �y = 0.1.

increase the value βε12. For the results in the left hand column,
which are for βε12 = 1, there is no penetration of cancer cells
into the healthy tissue. For βε12 = 1.75 (middle column) the
penetration starts at t ≈ 5.5 whereas it begins at t ≈ 4.5 for
βε12 = 2 (right hand column).

In Fig. 12 we plot the average densities of the cells and
the nutrient as a function of time and also the trajectory of
the system in the (ρ, φ) plane, corresponding to the results
displayed in Fig. 11. This allows to see that the increased degree
of “melting” at times t ∼ O(1) for smaller βε12 (particularly in
the case with βε12 = 1), is due to the fact that the linear stability
threshold line is at higher total densities and is closer to the
initial state. This means that the system spends a greater amount
of time below the linear stability threshold line as it evolves

along its trajectory in the (ρ, φ) plane. We also see from the
plots of the average cell densities over time that the fluctuations
over time in the density of the healthy cells increases with
increasing βε12. In the (ρ, φ) plane, these fluctuations manifest
as a meandering trajectory with zigzaglike portions.

Repeating the simulations corresponding to the results
in Figs. 11 and 12, but using R12 = 1.1, such that R12 >
1
2 (R11 + R22), and also R12 = 1, such that R12 = 1

2 (R11 + R22),
(results not displayed), we find that the results are qualita-
tively similar, but the melting phenomenon for βε12 = 1 is
prolonged for the smaller value of R12 and shortened for the
larger value of R12. Also, the time at which the cancer cells
penetrating into the healthy tissue first appear is earlier for
larger R12.
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FIG. 12. On the left are plots of the average cell densities [see
Eq. (10)] and the average nutrient density [see Eq. (11)] and on the
right plots of the trajectory in the (ρ, φ) plane with the corresponding
linear stability threshold line, corresponding to the results in Fig. 11.
These are for varying βε12 = 1 (top), βε12 = 1.75 (middle), and
βε12 = 2 (bottom).

IV. CONCLUSIONS

In this paper we have incorporated DDFT to describe
microscopic cell-cell interactions within a simple model of
nutrient driven tissue growth. The theory was applied for a
single cells type (Sec. II) and for two cell types (Sec. III),
the latter representing, for example, the interaction between
healthy and tumor cells; this approach can easily be generalised
to describe more cell types. The resulting models consist of
coupled integro-partial differential equations with nonlinear
source terms describing nutrient driven growth. This level of
description is common in discrete models, but their analysis
is limited mainly to numerical simulation; one of the main
advantages of the DDFT approach is that the model is amenable
to mathematical analysis, providing greater insights into the
nature of the numerical results. For instance, the linear stability
analysis of Secs. II D and III C identify parameter regimes
for which stable peaks arise, representing the locations of
cell centres, as demonstrated in the simulations in Secs. II E
and III D. While some parameters can be estimated readily
from the experimental literature, this analysis also goes some
way to estimate the DDFT associated parameters that are
difficult to determine from direct measurements (e.g., the
effective cell-cell cross interaction radius R12). A further
outcome of our linear stability analysis in the competition
case, is the observation that as the cell radii ratio R22/R11
is increased, the two wave numbers at which the system can
become linearly unstable move apart leading to the linear
stability threshold to develop a cusp. If the radii ratio is
sufficiently large (a regime not explored in detail here) then

the system can be linearly unstable at two quite different wave
numbers and the interaction between these can produce a wide
range of different structures [59,60,67], which are interesting
from the pattern-formation perspective, and may also have
some biological relevance.

There is still much required in the development of the
basic theory before it can be applied directly to experimental
results. However, the numerical results reflect qualitatively the
expected results based on observation, despite the use of simple
growth kinetics and interaction potentials. For example, the
mean densities (a proxy for total number of cells) in Figs. 2
and 4 qualitatively resemble Gompertzian or logistic type
growth curves often reported in tumor growth models [68]. A
further noteworthy aspect of the model is the splitting events
shown in Fig. 5, reflecting mitosis. We note also that for a
uniform nutrient distribution, such events are not observed at
very large times as the arrangement of the cells settles to a
fixed configuration; such results are reflective of the cellular
rest states observed in mature liver and muscle tissues.

In the simulations of Sec. III, the parameter values for the
kinetics guarantee that the tumor cells will overrun the healthy
cells. However, it is interesting that the manner by which this
is done depends on the value of the interaction parameters
Rij and εij and in particular the cross-interaction radius R12

and energy ε12. Although the critical values for R12 suggested
here are not strictly defined, it was found that (i) if R12 <
1
2 (R11 + R22), i.e., the cross-species interaction range is less
than mean of the two same-species interaction ranges, then
tumor cells tended to penetrate the healthy regions, while (ii)
if R12 > 1

2 (R11 + R22) the tumor cells tend to displace the the
healthy cells at the tumor edge, in accordance with the insight
gained from studies of mixtures of soft particles [52–54,69,70].
Situation (i) is reminiscent of metastasis, while (ii) reflects a
benign tumor state. Of course, some caution should be applied
to such interpretations on the basis of the current analysis,
but it is noteworthy that the DDFT approach does identify
a potential behavioral property of the cells that can govern
benign and virulent tumors. The present work also shows that
the overall collective behavior is sensitive to the details of the
pair interactions between cells.

The complex dynamics that the system can exhibit is rather
striking. For instance, the drop in the nutrient level observed,
e.g., in Figs. 8–10 that then leads to a drop in the overall
number of healthy cells, which results in the “crystal” melting
temporarily, which corresponds to the cells being distributed
in disordered liquidlike configurations. The nutrient level then
recovers and the system “refreezes” and subsequently over
time the cancer cells penetrate the healthy tissue and eventually
the healthy cells all die out.

The current work is the first to analyze a model using DDFT
to describe the growth of tissues and tumors. There is consid-
erable scope to extend the model to create a more realistic
description of tissue growth. For example, a simple model
of extra-cellular matrix (ECM) was proposed in Ref. [36],
whereby ECM gradients generates a haptotactic response of
cells, providing a further mechanism for cell movement and
arrangement. Another aspect where the present model could be
extended relates to the description of the cell-cell interactions.
In the models here, these are treated via soft purely repulsive
potentials. It would be interesting to compare results with those
from alternative soft potential models such as that proposed
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in Ref. [71]. However, in reality there is also attractions
(adhesion) between cells, which points to the possibility of
the analog of the gas-liquid or gas-solid phase transitions
in collections of cells. Incorporation of both attraction and
repulsion between particles in a DFT is straightforward [40–
42], but the theory becomes much more elaborate, which is
why we avoided such theories for this initial study. Despite the
current model being very simplistic in comparison to many
models of tumor growth, these initial results demonstrate that
DDFT has considerable potential as an effective modeling
approach to describe microscale cell-cell interactions that can
provide new insights into the dynamics of tissue and tumor
growth.
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APPENDIX: ESTIMATES FOR PARAMETERS VALUES

Here we discuss in further detail what are suitable values
to use for the parameters in our model. For the homogeneous
system with uniform density, from Eq. (9) we obtain

ρ(t ) = ρ0e
(λmn∗−λd )t , (A1)

where ρ0 is the initial density. For a given nutrient concentra-
tion n∗ and assuming a 12-h doubling time [72], then from this
we can deduce

(λmn∗ − λd ) = ln 2

12
h−1. (A2)

According to Ref. [73], a typical value for the concentration
of oxygen in fresh water [O2] = n∗ = 6.383 mg/L, so we
estimate that the critical level nd for [O2] is approximately
n∗
20 = 6.383

20 = 0.32 mg/L (equivalent to about 1% of atmo-

spheric levels). Hence, λmnd − λd = 0 leads to

λm = λd

0.32 mg/L
, (A3)

and on substitution into Eq. (A2) gives

λd = 0.00005 min−1,

hence

λm = 0.00015 Lmin−1mg−1. (A4)

The length scale R is the mean radius of the cells, so from
Table I we have R ≈ 10 μm = 0.001 cm and in two dimen-
sions the typical diffusion distance in time t , is estimated from
the two-dimensional average distance diffused squared over
time formulas, 〈r2〉 = 4Dct . Assuming the time taken to travel
a distance of order the diameter of the cell R is about 12 h, then

(2R)2 = 4Dc×12 h ⇒ R2 = 12Dc,

hence,

Dc = R2

12 h
= 0.0012

12×60 min
= 1.3×10−9 cm2/min.

The dimensionless population growth constant is c1 = R2λd

Dc
,

so we get c1 = 0.038. From the definition of D̃c = Dn

Dc
, and

Dn = 2×10−5 cm2/s (Dn = 1.2×10−3 cm2/min) [74,75], this
leads to

D̃ = 12×10−4

13×10−10
≈ 1×106. (A5)

The nutrient source term S̃n = R2Snλm

λdDc
is estimated to be O(106)

so that in Eq. (15) n̄ is in balance with the diffusion term. Hence,
3

13×104Sn ≈ (106) ⇒ Sn = 433. From Eq. (15) we also see
that the term involving λ̃n also must balance with diffusion,
hence from Eq. (13) we see λn must be O(10−4) to ensure that
λ̃n is of O(106). Recall that the number density is the number of
cells per unit area ρ = N

A
. Since R ≈ 10 μm = 0.001 cm, this

implies that the area covered by one circular cell = πR2 ≈
3×10−6 cm2. This then implies that a typical cell density is
ρ ≈ 1

3×106 cm−2, i.e., 3×105 cm−2.
We summarize the values of dimensional parameters in

Table I and dimensionless parameter values in Table II.
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