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Model of osmosis in a single-file pore
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Single-file transport of water and other small molecules through narrow pores in osmosis has drawn considerable
attention in recent years due to its extensive application in biology and industry. In this work, we propose a discrete
model to describe nonideal osmosis through single-file pores. Every site is assumed to be occupied by a molecule
according to experiments and simulations. Hence, a dense chain can always be found, and collective hopping is
the only movement method enabling the molecular chain to move. The roles of solute in osmosis are clarified in
this model. Those molecules reflected at the pore entrance produce osmotic pressure, and those inside the pore
contribute to the flow resistance of the molecular chain. The solute molecules that can enter the pore but cannot
penetrate it may significantly reduce the osmotic flux, although they are all rejected by the pore. This conclusion
can help to clarify the emerging debate about whether the reflection coefficient of the fully rejected solute can be
less than 1. The design of highly efficient membrane pores may also benefit from this study.
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I. INTRODUCTION

Single-file transport has been observed in many natural and
man-made nanopores, including ion channels [1], aquaporins
(AQPs) [2], carbon nanotubes (CNTs) [3], and other synthetic
materials [4]. A key feature of such transport is that molecules
inside the pore cannot pass each other. As a pervasive transport
phenomenon, osmotic flow plays an important role in many
fields of biology [5,6] and industry [7]. Many important
properties of osmotic flow through single-file pores are thought
to be attributed to this feature, including the sieving effect [8].
Therefore, it is not surprising that the single-file transport of
osmosis has been widely investigated [3]. However, the role of
solutes in single-file osmosis and the coupled flow of solvent
and solute have not been thoroughly elucidated to date [6,9].

A phenomenological model proposed by Kedem and
Katchalsky (K-K equations) [10] has been widely used in
various membrane systems, including cell membranes. In
this model, the first reflection coefficient, which quantifies
the achieved osmotic flux compared with the ideal flux, is
assumed to be 1 for the completely rejected solute. However,
several experiments involving single-file pores [11,12] suggest
an inconsistency with this basic assumption. The reflection
coefficients for several solutes were found to be less than 1
despite not being able to pass through the pore at all. The
geometries of the solute and the pore entrance were suspected
to be responsible for this abnormal phenomenon. Therefore,
limitations may exist for the K-K equations in single-file
osmosis. However, the phenomenon has not received much
interest, and an improved and quantified explanation is still
lacking [9], which may have influenced the understanding of
other single-file transport processes.

To clarify the problem, the details of molecular movement
should be considered in the single-file pore. Finkenstein [6]
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predicted the presence of single-file transport across protein
pores on a cell membrane and expanded the awareness of such
a transport process. Tom Chou [13–15] analyzed the osmosis
through a single-file pore based on the exclusion process. In his
analysis, the pore was divided into several discrete sites, with a
particle able only to hop to a neighboring empty site. Osmotic
flow was induced by different concentrations of solvent across
the membrane. The influence of the particle-pore interaction
on the flow was also discussed. His work opened a new field
of transport through a single-file pore and has influenced many
subsequent studies [3,16].

After the discovery of the atomic structures of aquaporin-1
(AQP1) [2] and other narrow pores [1], more details of single-
file transport were discovered by simulation [17–19]. For
example, an end-to-end chain of water with random hopping
can always be found in a narrow CNT [20]. Berezhkovskii
et al. [3] introduced the continuum time random walk (CTRW)
model to describe this type of movement. A good correlation
was found between the predicted diffusion coefficient and
simulation results obtained from molecular dynamics (MD)
[3]. Based on the CTRW model and nonequilibrium ther-
modynamics, the flux of solvent in ideal osmosis could be
predicted using concise and elegant methods [17,21]. This
model described the situation of a continuum limit for water
molecules across single-file pores without considering the
presence of solute molecules in the pores. The authors claimed
that there was a complementary relationship between their
model and Chou’s [14]. Although the CTRW model fits well
with ideal osmosis [17,21], it fails to consider the condition that
solute molecules can enter the pore, which is very common
in biological transport. Therefore, reliable treatment of the
nonideal solute is important in the modeling of single-file
osmosis. Such treatment may also enable one to understand the
inconsistency between the K-K equations and the experiments
for the single-file osmosis [11,12].

In this work, we adopt a discrete-sites method to analyze
the osmotic flow across a single-file pore. It is assumed that

2470-0045/2018/98(2)/022406(9) 022406-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.022406&domain=pdf&date_stamp=2018-08-13
https://doi.org/10.1103/PhysRevE.98.022406


XIAOKANG LIU, LIANGSUO SHU, AND SHIPING JIN PHYSICAL REVIEW E 98, 022406 (2018)

every site in the pore is occupied by one molecule. Therefore,
an end-to-end chain can always be found. Similar to the CTRW
model, the collective hopping is the only movement behavior
in the pore; this behavior is somewhat similar to the MD
simulation results [20,21]. The mobility of solute between
two neighboring sites is obtained according to the overall free
energy change due to the presence of the solute in the pore.
The roles of solute in osmosis are clarified based on the flux
of the solvent and solute. This model may help to explain the
inconsistency between experiments and the classical theory in
the nonideal osmosis through single-file pores.

The paper is organized as follows. In Sec. II we list a classic
description of the osmosis. Then we establish a simple model to
explain the dynamics of particles inside the single-file pore in
Sec. III. Their results are presented and compared to the theory
in Sec. IV. Finally, we present our conclusions in Sec. V.

II. CLASSIC DESCRIPTION OF OSMOSIS

A. Osmotic permeability and diffusion permeability

If two reservoirs containing a dilute solution with different
solute concentrations are separated by an ideal semipermeable
membrane, then water flows from the lower concentration
reservoir to the other reservoir. For a single pore, the water
flux is proportional to the concentration difference of the solute
�Cs :

jw = pf �Cs, (1)

where pf (m3/s) is called the osmotic permeability of the pore.
Water molecules can also diffuse across the membrane. To

quantify the ability for water diffusion, a fraction of water
can be labeled, i.e., isotope labeling, to ensure that they can
be traced during experiments. These molecules are usually
regarded as “tracers” and are believed to have almost the same
properties as those of normal water molecules. Therefore,
tracers can freely diffuse across the membrane, which is
different from osmosis with volume flux. The diffusion rate
of tracers across a single pore is also proportional to its
concentration difference �Ctr :

jtr = pd�Ctr , (2)

where pd (m3/s) is called the diffusion permeability of the
pore.

For a single-file pore with an average number of n solvent
molecules inside, the CTRW model predicts that the two
coefficients can be related by pf /pd = n + 1 [21].

B. General situations

For general situations, the osmotic pressure difference and
the hydrostatic pressure difference across the membrane are
coupled. Kedem and Katchalsky [10] proposed the following
equations based on nonequilibrium thermodynamics:

Jv = Lvv �P + LvD ��, (3)

JD = LDv �P + LDD ��, (4)

where Jv [m3/(m2 s)] is the volume flux across the membrane,
JD [m3/(m2 s)] is the relative flow of the solute versus water

and is a measure of the exchange flow, Lp is the hydraulic con-
ductivity, LpD is the osmotic permeability of the membrane,
LDp is called the ultrafiltration coefficient, and �P and ��

are the differences in the hydrostatic pressure and the osmotic
pressure, respectively. Jv and JD are defined as

Jv = Jw Vw + Js Vs, (5)

JD = Js

Cs

− Jw Vw, (6)

where Jw [mol/(m2 s)] and Js [mol/(m2 s)] are the molar
fluxes of solvent and solute, respectively, Vw and Vs are the
molar volumes of solvent and solute, respectively, and Cs is
the average solute concentration in the membrane. To make
Eqs. (3) and (4) more convenient to use, the model was
simplified to

Jv = Lp(�P − σo ��), (7)

Js = Cs (1 − σs )Jv + ω ��, (8)

where σo and σs are collectively known as the reflection
coefficients, ω is the mobility of the solute, �Cs is the
concentration difference of the solute. It is assumed that σo

and σs have the same value via the Onsager relations [10]. It
was this assumption that was found to be inconsistent with the
experiments [11,12].

III. MODEL DESCRIPTION

In this study, we consider the transport process across a
single-file pore connecting two reservoirs. The mole fractions
of solvent and solute molecules in the left (right) reservoir are
represented as XL,0 and XL,1 (XR,0 and XR,1, respectively).
According to MD simulations, a dense chain of molecules can
be found in many single-file pores, including the CNT [20,22]
and AQP1 [21]. The CTRW model assumes that the pore can be
divided into n discrete sites based on the average n molecules
in the pore [3]. Numbers from 1 to n can be used to represent
the corresponding sites. The movement of the molecular chain
is achieved by collective hopping. This phenomenon means
every site inside the pore is assumed to be occupied by one
molecule. In a hopping event, all the molecules collectively
hop to the left or the right. For example, a molecule on the site
i may move to the site i − 1 or i + 1. The migration approach
is an extreme situation without considering the influence of the
molecule-pore interaction on the particle density. However, the
model is able to reflect some characteristics of the single-file
transport.

In this work, we also adopt a discrete model similar to
CTRW with the difference that solute molecules can also enter
the pore and interact with the solvent. If there are no solute
molecules in the two reservoirs, the solvent chain collectively
hops in both directions with the average rate k0. In other words,
k0 dt is the probability for the solvent chain to hop in one
direction per unit time dt . The collective hopping rate can be
described by Kramers’ theory [15,16,23]:

k0 = ω0 exp

(
−�G0

kBT

)
, (9)
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FIG. 1. Kinetic scheme of transport across the pore. Two reser-
voirs are separated by a membrane with several single-file pores. The
collective hopping is assumed to be the only effective means to move
inside the pore. Note the hopping rate ui (wi) represents the rate of
the chain with only one solute from site i (i + 1) to i + 1 (i), with the
other sites occupied by solvent particles in the process.

where ω0 is the prefractor or the attempt rate in Kramers’
theory, �G0 is the overall free energy barrier of the chain
during the hopping event, and kBT is the thermal fluctuation.

If solute molecules are present in the reservoir and they can
enter the pore, the collective hopping rates may be influenced.
Here we use the following method to define the solute based on
its migration properties. In general, the migration properties
of solute and solvent are always different. Let us consider a
situation where a solute molecule is located on site i (not the
first or the last site), with the remaining sites all filled with
solvent. Due to the presence of the solute particle, the free
energy barrier for the chain to hop to the right has changed
�Gi→i+1. Therefore, the collective hopping rate to the right
becomes

ω0 exp

(
−�G0 + �Gi→i+1

kBT

)
= k0ui, (10)

where ui = ω0 exp(−�Gi→i+1/kBT ) refers to the relative rate
of solute to solvent. Accordingly, if there is only one solute
molecule present inside the pore and it is located on site i, the
collective hopping rate of the chain can be specified as uik0

(hopping to right) or wik0 (hopping to left), as shown in Fig. 1.
In the model, the relationship u0 u1 · · · un = w0 w1 · · · wn

should be satisfied because of the rule that no net flux of solute
occurs without a concentration difference.

During the evolution of the chain’s arrangement, the pos-
sibilities of molecules entering and leaving the pore are
calculated as follows:

(1) A solute molecule enters the pore from the left (right),
and a solvent molecule leaves from the right (left). The
entrance rate of solute from a reservoir is proportional to its
concentration or the mole fraction in the reservoir [15,16,23]:

kL,1 = XL,1ω0 exp

(
−�G0 + �G0→1

kBT

)
= XL,1u0k0, (11)

where kL,1 is the hopping rate with a solute molecule entering
the pore from the left reservoir, and �G0→1 refers to the
additional free energy barrier between the left reservoir and
site 1 due to the solute molecule. Meanwhile, in the subscript
of the hopping rate, L or R indicates the original reservoir of
the newly entered particle, and 0 or 1 indicates the species of
the particle.

(2) A solvent molecule enters the pore from the left (right),
and a solute molecule leaves from the right (left). Similarly, the
hopping rate can be written as

kL,0 = XL,0ω0 exp

(
−�G0 + �Gn→n+1

kBT

)
= XL,0unk0.

(12)

(3) A solute molecule enters the pore from the left (right),
and a solute molecule leaves from the right (left). The collective
rate will be influenced by their corresponding hopping rates.
It is assumed that the overall free energy barrier is the sum of
the barriers on the respective sites. Thus, the collective rate is

kL,1 = XL,1ω0 exp

(
−�G0 + �G0→1 + �Gn→n+1

kBT

)

= XL,1u0unk0. (13)

Because the solute concentration is much lower than that of
the solvent, the probability of finding a solute molecule in the
pore is relatively small, with the probability of finding two
solute molecules even smaller. Therefore, it is reliable that the
assumption should not influence the system’s evolution. We
also use this rule to address other situations with multibarriers
in a hopping event. We will show in Sec. IV B that this
assumption can be used to explain the experimental data.

(4) A solvent molecule enters the pore from the left (right),
and a solvent molecule leaves from the right (left). In this
process, the number of solvent molecules in the left reservoir
increases by 1, while the solvent number is reduced by one
in the other side. Therefore, the free energy change is the
chemical potential difference across the membrane. According
to the principle of detailed balance [24], the rates in the two
directions can be related by

kL,0

kR,0
= exp

(
−�μw

kBT

)
= XL,0

XR,0
, (14)

where �μw denotes the chemical potential difference of the
solvent across the membrane.

To quantify kL,0 and kR,0, we must introduce the influence
of the solute on the solvent. In the tracer diffusion experiment,
the tracer can be treated as a special “solute” with the same
properties as that of the solvent. The entrance rates of the
solvent and the tracer from the left (right) reservoir can
be written as kL,0 = k0XL,0 and kL,1 = k0XL,1, respectively
(kR,0 = k0XR,0 and kR,1 = k0XR,1, respectively). The sum of
the entrance rates of all the species is kL,0 + kL,1 + kR,0 +
kR,1 = 2k0. In ideal osmosis, the solutes cannot enter the pore,
namely, kL,1 = kR,1 = 0. Zhu et al. [21] and Hummers et al.
[17] assumed that the hopping rates of the solvent chain obeyed
the relationship kL,0 + kR,0 = 2k0. Therefore, the sum of the
entrance rates of all the species is also 2k0. These two special
situations suggest that an upper limit does exist for the sum
of the entrance rates of all species. This phenomenon can be
understood as follows. All molecules experience a random
force exerted by neighboring molecules so that their movement
is also random. The random motion is attributed to thermal
fluctuations, and its strength is reflected by the temperature. If
instantaneous fluctuations are sufficiently strong, a molecule
may overcome the barrier and enter the pore because of the
large force it experiences. In other words, a collective hopping

022406-3



XIAOKANG LIU, LIANGSUO SHU, AND SHIPING JIN PHYSICAL REVIEW E 98, 022406 (2018)

event occurs. If the temperature does not change, the thermal
fluctuations will not change. Therefore, it is reasonable that
there is an upper limit to the probability of the particles’
collective hopping. To match the previous results, we adopt
the hypothesis that the entrance rates of all species are related
by the following equation:

n∑
i=1

(kL,i + kR,i ) = 2k0, (15)

where n refers to the number of the species in the two
reservoirs. This formula introduces the influence of solute on
the entrance of the solvent in a simple and straightforward
method.

Based on the above descriptions, we can quantify all of the
possibilities of the next hopping event based on the current
arrangement of molecules in the pore. The analytical solution
for osmosis through a one-site pore is provided in the following
section, whereas it becomes too complicated to solve for a pore
with more sites. Thus, we turn to computer simulation to study
the evolution of the system from the random initial state with
the Gillespie algorithm (kinetic Monte Carlo) [25]. With the
stochastic method, we can simulate the arrangement evolution
for a long procedure. The fluxes of all species are obtained
by counting the molecules that translocate from one reservoir
to the other. The standard error bars were averaged by nine
independent simulations.

IV. RESULTS AND DISCUSSION

A. Two species in a one-site pore

For a two-species osmotic system connected by a single-file
pore, two filled states exist: solute-filled (P1) and solvent-filled
(P2), as shown in Fig. 2. We can write the following equations
regarding the transition rates:

k1 = k0XL,1u0u1,

k2 = k0XR,1w0w1,

k3 = k0XL,1u0,

k4 = k0XR,1w0,

k5 = k0XL,0u1,

k6 = k0XR,0w1.

Obviously, the filling situation only converts between two
states: solvent occupied and solute occupied. Based on the
principle of the Markov chain [24], the probabilities of the two
states are related by

P1

P2
= k5 + k6

k3 + k4
. (16)

The probabilities of the solvent and solute coming
from the left are (P1k5 + P2k7)/(P1k5 + P2k7 + P1k6 +
P2k8) and (P1k1 + P2k3)/(P1k1 + P2k3 + P1k2 + P2k4), re-
spectively. For simplicity, we use x and y to represent the
two intermediate variables. Thus, the fluxes of the solvent and
solute can be expressed as

J1 = P1x(k1 + k5) − P1(1 − x)(k2 + k6)

= k3k5 − k4k6 + (k5 + k6)(k7 − k8)

k3 + k4 + k5 + k6
, (17)

J2 = P2y(k3 + k7) − P2(1 − y)(k4 + k8)

= (k1 − k2)(k3 + k4) + k3k5 − k4k6

k3 + k4 + k5 + k6
. (18)

Accordingly, the two reflection coefficients in Eqs. (7) and (8)
can be obtained:

σo = J1V1 + J2V2

J1,idealV1
, (19)

σs = J1

J1V1 + J2V2
, (20)

where V1 and V2 are the partial molar volumes, and J1,ideal is
the solvent flux for ideal osmosis. We can find a shared item
in the numerator of the flux expressions in Eqs. (17) and (18).
This indicates the mutual effects on flux of the two components
after solute molecules entering the pore. This property can be
elucidated by the reflection coefficients. On the other hand,
the calculation of the reflection coefficients requires the molar
volume of solute and solvent, unless the flux of one species is
zero. Since the flux of solute is generally much smaller than
that of solvent, the flux of the two species can also be used to
approximately analyze the magnitude of σo and σs .

B. Comparison with previous works

Now we compare our model with the CTRW model for
two situations: the tracer diffusion and ideal osmosis. Figure 3
shows the diffusion flux of the tracer and osmotic flux of the
solvent when XL,1 increases from 0 to 0.05, for pores with
different lengths. The right reservoir contains pure solvent.
All the fluxes in this work are expressed using k0 as a unit.

Clearly, both the diffusive and osmotic flux increase linearly
with the difference in solute concentration. This finding agrees
well with the basic rules of diffusion and osmosis for the dilute
solution. The number of sites in the pore has a different effect
in the two situations. Shorter pores are favorable for tracer
diffusion. The osmotic flux in ideal osmosis, in contrast, is
independent of the site number because every hopping event
indicates that a water molecule has been conducted. From this
figure, it is clear that the current model can well represent the
fundamental prediction of the CTRW model.

The single-file transport of the tracer has been investigated
for a long time [26]. Previous studies [27,28] have found
that the density of the particles inside the pore can greatly
influence the tracer diffusion. For a lone particle in an infinitely
long single-file pore with discrete sites, the particle can freely
hop to neighboring empty sites. The particle’s movement is
“memoryless,” and the diffusion is a “normal” diffusion with
the mean square displacement in proportion to the observed
time. However, if several particles coexist in the pore, the
correlations between the vacancies cannot be ignored and may
influence the particles’ movement. When a particle hops in a
certain direction, a vacancy is left at the initial site, and the next
site in the same direction may become occupied by another
particle. Therefore, the next hopping is more likely to occur in
the reverse direction. The mean square displacement will be
proportional to

√
t instead of t , and subdiffusion of the particles

can be observed [27]. For a single-file pore with a finite number
of molecules, rapid exchange of molecules may occur between
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FIG. 2. Transition between two states (solute and solvent) in the one-site model. Every hopping event denotes another particle replacing
the former.

the pore and the two reservoirs. The formation of vacancies
inside the pore is unlikely to occur and can be neglected
for relatively short chains considered. Accordingly, the main
mechanism leading to the

√
t dependence in the single-file

diffusion is absent. And the collective hopping method is
applicable for a short single-file pore, as shown in MD studies
of AQPs [21] or CNTs [20]. In the following section, we will
show that our model can complement previous models [3,15]
in several aspects.

In MD simulations, it is observed that the solvent-pore
interaction strength can affect the number of water molecules
and their distribution for single-file transport [20,29–31]. As
the interaction strength increased, the average number of water
molecules inside the pore increased until the pore was filled.
The diffusion rate also reached a maximum around this critical
interaction. Further increasing the water-pore interaction could
result in a decrease in the diffusion rate. For biological pores,
the water-pore interaction is more complicated, whereas sev-
eral clues have been identified. Horner et al. [32] summarized
the diffusion permeability of a series of pores containing a
single-file part. These researchers determined a logarithmic
relationship between the diffusive mobility and the number of
hydrogen bonds between water and the residues in the pore.
Here we aim to discuss the diffusion of the chain of solvent
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FIG. 3. The flux of the tracer in the simulation of diffusion and
the flux of the solvent in ideal osmosis. The dashed and the solid lines
represent the flux predicted by the CTRW model.

based on this model. In the equilibrium state, the collective
hopping rate can be expressed based on Eq. (9). If an end-to-end
chain has formed inside the pore, then stronger attraction
between the chain and the pore will reduce the chain’s mobility.
It is reliable to believe that the free energy barrier increases in
this process. If there are m binding sites between the chain
with the pore and the contribution of one binding site is �E,
the energy barrier during hopping can be roughly expressed
as �G0 + m �E. Then the new hopping rate will change to
k0 = ω0 exp[−(�G0 + m �E0)/kBT ].

According to Zhu [21], there is a simple relationship
between the diffusion permeability of a single-file pore pf

and the collective hopping rate, pf = vwk0, where vw is the
volume of one water molecule. In a single-file pore, pf can
be roughly related to the diffusion coefficient of solvent across
the pore Dw, Dw = 3npf /πr [6,33], where n and r refer to
the average number of water molecules inside the pore and the
pore radius, respectively. In experiments, Dw is relatively easy
to obtain and is often used to characterize the mobility of water
molecules.

With the above equations, we can obtain the dependence
of the diffusion coefficient on the number of hydrogen bonds
between the water chain and the pore:

ln (Dw ) = ln

(
3nvw

πr

)
− �G0

kBT
− m�E0

kBT
. (21)

For a series of protein pores with similar lengths and an average
number of water molecules, a logarithmic relationship can be
found between Dw and m, which is consistent with Horner’s
experiments [32]. Compared with Horner’s work, we find the
contribution of one binding site to the overall energy barrier is
approximately 0.155 kBT , which fits well with the conclusion
that the binding energy is as low as a few kBT [34]. Although
this value is small, multiple hydrogen bonds can reduce the
diffusion coefficient by two orders of magnitude.

C. Influence of the entrance and exit rates of the solute

For a nonideal solute molecule, the penetration process
across the pore involves entering, translocating, and leaving.
Therefore, it is important to analyze the interaction between
the solute molecules and the entrance or internal sites.

According to the principle of detailed balance [24], the
hopping rates between two sites are related by their relative
free energy. Therefore, the entrance and exit rates at one end
of the pore are not independent of each other. If a strong
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FIG. 4. The flux of solvent (a) and solute (b), as a function of the pore-solute interaction. The mole fractions of all the species in the two
reservoirs are maintained as a constant: XL,0 = 0.99, XL,1 = 0.01, XR,0 = 1.0, XR,1 = 0. The dotted line in (a) refers to the flux of solvent in
an ideal osmotic system.

attraction exists between the solute and the pore, then the solute
molecules are more likely to stay inside the pore rather than
leaving, i.e., the entrance rate is relatively larger, and the exit
rate is smaller. Kolomeisky [23] assumed that the hopping rates
between the two sites are related by

u0

w1
= u0(ε = 0)

w1(ε = 0)
exp

(
ε

kBT

)
(22)

if the interaction between the solute and latter site changes.
In this equation, u0and w1 refer to the forward and backward
hopping rates, respectively; ε is the change of the solute-site
interaction. In this equation, we also adopt a similar strategy.
Assuming the pore is uniform and symmetric, the original
hopping rates are as follows: u0 = u1 = · · · = un = w0 =
w1 = · · · = wn = 0.1. The interaction between the solute and
the ends of the pore varies so that u0 and w1 will change to u0t

and w1/t (t is an intermediate variable). The mole fractions
of solute in the two reservoirs remain 0.01 and 0, as used
previously.

Figure 4 shows the influence of the entrance and exit rates on
the fluxes of solvent and solute. It is observed that the higher en-
trance rate of solute simply reduces the flux of solvent, whereas
the solute flux exhibits a nonmonotonic behavior during the
increase of u0/w1. The trends of the solvent and solute flux
can be understood as follows. According to Eq. (15), the sum
of the entrance rates for all species is limited. Therefore, as the
entrance rate of solute increases and the exit rate decreases, the
overall entrance rate of solvent from the two reservoirs will be
reduced. Because the respective mole fractions of solvent in
the two reservoirs remain unchanged, the respective entrance
rate of solvent from the two reservoirs both decrease. As a
result, the difference of the migration probabilities of solvent
in the left and right directions also decreases. In other words,

the achieved flux of solvent decreases, as shown in Fig. 4(a).
Because the volume flux is mainly contributed by solvent,
the driving force in osmosis can be directly related to the
entrance rate of solute (or the rejection probability). On the
other hand, further increasing the attraction leads to an overly
low probability for the exit rate of the solute. The excessively
long residence time of the solute jeopardizes the flux of all
the species and even causes the pore to be blocked. This
phenomenon was also reported in MD simulations [35,36].
For example, urea molecules can fill the CNT and expel water
molecules via the strong C-C interaction [37]. Therefore, there
exists an optimized pore-solute interaction maximizing the
solute flux.

D. Influence of the translocation rates of the solute

Figure 5 shows the fluxes of the solvent and the solute as a
function of the translocation rate of the solute through a pore
with two sites. The influence of the entrance rate of the solute
is demonstrated by three situations. We can determine that the
increase in the translocation rates of solute is beneficial to the
flow of solute, whereas the effect on the solvent is reversed. For
the situation u0 = 0.1, as u1 increases from 0 to 0.512 k0, the
flux of solvent is reduced by only 10% and appears to reach
a saturation value. A similar increasing trend for the solute
flux can also be observed. This trend means that the entrance
and exit rates become the limiting factor for the penetration of
solute and solvent.

If u0 is relatively larger, then the decreasing trend of the
solvent flux becomes more obvious. No saturation values for
the solute flux are observed. Moreover, the flux of solute
significantly increases as the translocation rates increase. For
u0 = 0.5 or 1.0, the solvent and solute flux can even reach
the same order of magnitude with large translocation rates.
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FIG. 5. The flux of solvent (a) and solute (b) as a function of the translocation rates of the solute. The dashed line in (a) refers to the
flux of solvent in an ideal osmotic system. The components in the two reservoirs are the same as those described in the previous section. The
translocation rates, including u1, w1, vary simultaneously as shown on the x axis.

Since the entrance and exit rates are constant, the maximum
driving force of the solvent and solute also remains the
same. Accordingly, the translocation rates of solute become
important intermediate parameters of the penetration process.

The potential of narrow CNT arrays in osmosis has been
supported in both simulation [38] and experiment [39]. The
discussion indicates that the entrance rate of solute determines
the maximum separation efficiency of the single-file pore. To
increase the reflection coefficients of the membrane, surface
modifications at the entrance of the pore may be an effective
method to increase the energy barrier for the solute. This
approach has been applied in the previous investigations, with
a significant increase in salt rejection observed [38,40].

E. Applications in the actual osmotic process

An important assumption of the K-K equations is that the
two reflection coefficients are equal in value based on the
Onsager relation. Therefore, in experiments, if the osmotic
flux is less than the ideal value, it is believed that both values
of the two reflection coefficients are less than 1 and the solute
molecules are able to penetrate the pore. However, the spatial
structure of the protein, i.e., AQP1, indicates that the narrow
channel can hardly allow penetration of these solute molecules
[11]. This anomalous phenomenon has caused widespread
controversy. It is speculated that this may be related to the
hourglass entrance of the channel, as shown in Fig. 6. To study
the entrance effect, we check the performance of a single-file
pore with four sites and varying accessible depth.

Figures 6(b) and 6(c) shows a representative pore and
the osmotic flux in all situations. The x axis represents the
solute-entrance binding energy. We can see that as long as
the solute molecules can enter the pore, the flux is less than

the ideal value and σo is less than 1. As the binding energy
and the available depth increases, the probability of the solute
molecules entering the pore also increases. Since the solute
molecules cannot exit the pore from the other side, they still
must return to the reservoir from the left side. During this
period of time, the effective flux for all the species is zero.
Therefore, the longer the solute stays in the pore, the smaller
the osmotic flux observed. Meanwhile, σo in the K-K equations
is less than 1, while σs is always zero. In the extreme situation
where the attraction between the solute and the pore’s entrance
is sufficiently strong, the entrance can be “blocked” by the
solute. MD simulations [36] have shown that the CNT can be
blocked by cations via attraction between the ion and aromatic
rings.

This phenomenon does not indicate that the Onsager re-
lation is violated. In contrast, several limitations may be en-
countered when using the K-K equations, an empirical model,
for single-file osmosis. Therefore, the structure of the pore
entrance may play a crucial role in osmotic flow. The discussion
may help to understand the unequal values for the reflection
coefficients in the AQP1 experiments [11]. Moreover, the
discussion suggests that the asymmetric entrance region of the
pores can induce rectified osmosis under the same osmotic
pressure gradient [42].

V. CONCLUSION

In conclusion, the roles of the solute can be reflected in
two aspects. First, the imbalance in the solute entrance rates
in the opposite directions affects the entrance of the solvent.
Therefore, the driving force in osmosis is implemented by the
entrance or rejection of solute at the entrance of the pore. Sec-
ond, after entering the pore, the solute molecule must overcome
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FIG. 6. (a) The three-dimensional structure of AQP1 with a schematic transmembrane pore shown in green [41]. The pore is single-file
in the middle with hourglass entrances on both sides. (b) A simplified single-file pore with an accessible site for the solute. (c) The reflection
coefficients in Eq. (7) measured by the volume flux, as a function of the solute’s accessible depth and the solute-entrance attraction. In all
situations, XL,1 and XR,1 are 0.01 and 0, respectively.

the barrier between the present site and a neighboring site to
complete the next hopping event. Accordingly, the entrance
structure and the pore-solute interaction can greatly affect the
actual flux in osmosis. We hope the discussion in this work can
help clarify the debate regarding the observation of unequal
reflection coefficients in experiments.
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