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Biological systems are typically highly open, nonequilibrium systems that are very challenging to understand
from a statistical mechanics perspective. While statistical treatments of evolutionary biological systems have a
long and rich history, examination of the time-dependent nonequilibrium dynamics has been less studied. In this
paper we first derive a generalized master equation in the genotype space for diploid organisms incorporating
the processes of selection, mutation, recombination, and reproduction. The master equation is defined in terms
of continuous time and can handle an arbitrary number of gene loci and alleles and can be defined in terms of an
absolute population or probabilities. We examine and analytically solve several prototypical cases which illustrate
the interplay of the various processes and discuss the timescales of their evolution. The entropy production during
the evolution towards steady state is calculated and we find that it agrees with predictions from nonequilibrium
statistical mechanics where it is large when the population distribution evolves towards a more viable genotype.
The stability of the nonequilibrium steady state is confirmed using the Glansdorff-Prigogine criterion.
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I. INTRODUCTION

The stochastic nature of biological processes can be ob-
served at many levels, for example, cell growth [1], gene ex-
pression [2,3], synaptic plasticity [4], and aging [5]. The close
analogies between statistical mechanics, thermodynamics, and
biological systems has yielded many successful studies where
ideas from physics can be applied to biological systems [6–10].

*tim.byrnes@nyu.edu

In the context of evolutionary biology, there is long history of
applying statistics in the field of population genetics [11–14].
For example, the Hardy-Weinberg principle [15–19] predicts
the equilibrium population distribution for reproduction of
diploid and polyploid organisms. Stochastic processes such
as genetic drift have been analyzed using a Wright-Fisher
model [12,20–22] and the neutral theory of molecular evolution
[13,23]. Following from these pioneering works, numerous
studies involving various aspects of genetic evolution have
been performed [14,22,24].
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Recently there has been a renewed interest in relating
ideas from nonequilibrium statistical mechanics to biological
systems. The interest from this point of view has been founded
by the seminal results of Jarzynski [25] and Crooks [26,27]
where new quantitative statements could be made relating
various quantities to far-from-equilibrium situations. Studies
along this line of research have focused on a variety of
processes including those at the molecular level [28–32] to
the evolutionary level [7,33,34]. Ideas from nonequilibrium
statistical mechanics have shown that they may even help
to provide new ways to describe adaptation, self-replication,
and other biological processes [35–37]. Even for the well-
established statistical approaches to evolutionary processes, a
further understanding of the time dynamics of these processes
is an ongoing area of research [38,39]. In light of the progress
that has been made in nonequilibrium statistical mechanics
over the past few decades [32], a more quantitative approach
to understanding nonequilibrium aspects of biological systems
continues to be an important topic.

In this paper, we first derive a master equation in the
genotype space which models the evolutionary process tak-
ing into account of selection, mutation, recombination, and
reproduction. While these have been analyzed in past works
involving one or more of these processes, it is desirable
to have a compact equation that allows for a generalized
analysis [14]. In particular, our equation can handle an arbitrary
number of alleles and gene loci and is written in a continuous
differential form with no ordering of the individual processes.
This is more realistic biologically and is more convenient
from a mathematical perspective. This allows one to handle
nonequilibrium situations and track the time dynamics of
evolutionary processes in the genotype space. Other funda-
mental effects such as gene flow and genetic drift are then
natural consequences of the model that takes into account the
basic process of selection, mutation, and reproduction. The
Hardy-Weinberg principle is usually defined under a set of
restrictions such as completely random sexual reproduction,
no selection, no mutation, and no genetic drift [40]. But in
our work we relax these restrictions and explicitly include the
effect of these evolutionary influences. Thus our work extends
the Hardy-Weinberg principle to a more general context.

Our formulation can be considered as a preliminary step
to analyze such population genetics using a nonequilibrium
statistical framework. From the master equation one can
calculate the entropy of the distribution, as well as the total
entropy production including its environment. We show that
the entropy production is consistent with the principles pre-
dicted according to recent results in nonequilibrium statistical
mechanics, where migration to a more viable population
distribution is accompanied by entropy production [36]. We
show that the Glansdorff-Prigogine criterion for the stability of
nonequilibrium systems is obeyed, proving that the probability
distribution achieves a nonequilibrium steady state.

This paper is structured as follows. In Sec. II A we introduce
the model and our notation for keeping track of the M-loci, N -
allele genotypes. We then review the fundamental discrete evo-
lutionary processes in Sec. II B Based on this we derive the mas-
ter equation in terms of populations of genotypes in Sec. II C
and in terms of relative probabilities in Sec. II D. In Sec. II E
we connect the discrete and continuous formulations in terms
of the parameters of the model. In Sec. III we show numerical

tests of our master equation where we verify that it reproduces
known results such as the Hardy-Weinberg statistics, selection
effects, and mutation. Here we consider a prototypical viability
landscape where there are two highly viable genotypes, discuss
the timescale that is required to reach the most viable genotype,
and show that interesting dynamics can occur even for such a
simplified model. In Sec. IV we discuss the entropy production
and stability of the system during the evolution process. Finally,
in Sec. V we summarize our findings.

II. MASTER EQUATION FOR GENETIC EVOLUTION

A. The model

In this section we set up a model which describes the pop-
ulation and probabilities of a genotype of an M-loci, N -allele
diploid organism [41]. The generalization to polyploidy can be
performed straightforwardly, but we consider the diploid case
for simplicity. Figure 1 shows the global view of our model.
A genotype is specified by the configuration of alleles on two
homologous chromosomes according to [see Fig. 1(b)]

i = (i1,i2, . . . ,iM ) j = (j1,j2, . . . ,jM ), (1)

where i represents all the alleles of the different genes on
either the maternal or paternal chromosome of one homologous
pair, and j encompasses the alleles for its homolog. The
variables in,jn contain the particular allele for the nth gene
locus. Denoting the alleles on the nth locus by A

(n)
i A

(n)
j , with

i,j ∈ 1, . . . ,Nn, the complete genotype is specified by [14]

AiA j ≡ A
(1)
i1

A
(1)
j1

A
(2)
i2

A
(2)
j2

· · ·A(M)
iM

A
(M)
jM

. (2)

The population of the genotype AiA j at a given time is
denoted

Pi j ≡ Pi1...iMj1...jM
, (3)

which can take any non-negative number and is not necessarily
an integer. To give a specific example, this can be the concen-
tration of individuals per unit volume of a sample. We may
normalize the population distribution to define the probability
of a genotype AiA j occurring according to

pi j ≡ pi1...iMj1...jM
= Pi j

Ptot
, (4)

where Ptot ≡ ∑
i j Pi j is the total population. One then has a

normalized probability distribution∑
i j

pi j ≡
∑

i1,...,iM

∑
j1,...,jM

pi1...iMj1...jM
= 1 (5)

and summation runs over in,jn ∈ 1, . . . ,Nn. We assume that
the alleles (and their frequencies) of a specific gene are sym-
metrical by disregarding whether an allele falls on a maternal
or paternal chromosome [14,15,42,43]. In other words, AiA j

is equivalent to A jAi and pi j = p j i . The genes analyzed are
thus all autosomal.

The marginal probabilities on the nth locus is given by
summing over the probabilities of the other loci:

pinjn
=

∑
i �=in j �=in

pi j

≡
∑

i1,...,in−1,in+1,...,iM

∑
j1,...,jn−1,jn+1,...,jM

pi1...iMj1...jM
. (6)
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FIG. 1. Summary of the genetic evolutionary processes considered in this paper. (a) Processes captured by our master equation (19). Initially
various genotypes exist within a fitness landscape, shown here as the negative viability −ωij (equivalent to the death rate). The population
distribution tends to converge towards the fittest genotype, where steady state is reached. While approaching equilibrium, the processes of
selection, mutation, recombination, gene flow, and genetic drift take place. Selection is driven by genotypes with lower viabilities having a
higher death rate. The genotype depicted by the rightmost individual spontaneously appears in the population due to gene flow during the
transition state and then drifts off at steady state. (b) Labeling convention given in this paper depicted on two homologous chromosomes (left),
their constituent sister chromatids (center), and after undergoing recombination (right). The allele configuration on the two chromosomes of a
diploid organism is given by (1). Each chromosome has M loci, with the genotype of the nth locus being labeled by in,jn. The variables take
the values in,jn ∈ 1, . . . ,Nn, which correspond to the alleles A

(n)
in

A
(n)
jn

.

Thus the probability of a homozygous individual on the
nth locus is pinjn

, while heterozygous individuals have a
probability pinjn

+ pjnin .

B. Discrete evolution

In this section we review the basic evolutionary processes
of selection, mutation, and reproduction including recombi-
nation. These will be used in the following sections to infer
a master equation that captures the evolutionary process in
continuous time.

For selection, the probability of the genotypes between
generations changes according to [14,44]

ps
i j = ωi j

ω̄
pi j , (7)

where ps
i j is the probability of the next generation after

selection and ωi j is the viability, which is the probability of
survival of the individual for genotype AiA j . The quantity

ω̄ =
∑

i j

pi jωi j (8)

is the mean fitness of the population. We note that the viability
can be arbitrarily defined by an overall multiplicative constant,
and hence we typically take it to lie in the range 0 � ωi j � 1.

For mutation, the set of alleles Ai randomly mutates to
Ai ′ with probability ui i ′ [14,44]. Typically the mutations
can be point mutations, frame-shift mutations, chromosomal
inversions, or translocations as long as they lead to a change in
gene expression and are thus not silent. They are also assumed
to occur independently on each locus, in which case we may
write ui i ′ = ∏

n uini ′n . This results in the loss of population from
genotype AiA j and a gain in the population of Ai ′A j . The

former may equally occur for the A j allele, and hence one
obtains

pm
i j = pi j −

∑
k

(u j k + ui k)pi j +
∑

k

(uk jpi k + ukipk j ),

(9)

where pm
i j is the new genotype frequency after mutation. The

mutation probabilities must be assumed to be sufficiently small
such that the coefficient of pi j in (9) is positive, without which
we obtain unphysical negative probabilities.

When modeling the reproduction process, we assume that
an offspring in the new generation with genotype AiA j occurs
with the product of the probabilities of alleles Ai and A j in the
previous generation [14,44]. This is

pr
i j = 1

4

∑
k

(
pc

i k + pc
ki

) ∑
l

(
pc

j l + pc
l j

)
, (10)

where pr
i j is the new allele frequency after reproduction. This

is the same principle that leads to Hardy-Weinberg statistics,
which we verify in Sec. III.

The pc
i k on the right-hand side of (10) takes into account

the effects of recombination that can potentially occur during
meiosis thereby increasing the genetic diversity in a population
over time by allowing for Mendelian independent assortment
of genes [45]. However, if the loci of two or more genes fall very
close to one another, they are said to be linked and Mendelian
independent assortment no longer applies. When modeling
recombination, we take into account both independent assort-
ment and gene linkage by considering a chromosome segment
between the nth and mth locus interchanging

AiA j → AInm
AJnm

, (11)
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where the recombinant functions are

Inm ≡ (i1, . . . ,in−1,jn, . . . ,jm,im+1, . . . ,iM )

Jnm ≡ (j1, . . . ,jn−1,in, . . . ,im,jm+1, . . . ,jM ) (12)

as also illustrated in Fig. 1(b). The probability evolves in a
similar way to mutation and takes the form

pc
i j = pi j −

M∑
n,m=1

cnmpi j +
M∑

n,m=1

cnmpInm Jnm
, (13)

where cnm is the probability that the recombination occurs
between the nth and mth loci. We consider recombination only
within (10) since it only contributes to genetic diversity during
the process of meiosis.

In the discrete approach, one cycle of selection, mutation,
and reproduction including recombination is then calculated
by setting the output of (7) as the input of (9) and then in turn
setting this as the input of (10). This process can be repeated
until a steady-state probability distribution is reached.

C. Continuous time: Population master equation

We now deduce a continuous time form of (7), (9), and (10)
to obtain a master equation which describes the selection, mu-
tation, and the reproductive process including recombination.
A continuous time form is more realistic because all these
processes occur simultaneously in a biological system and
not in discrete steps as implied by the above equations. More
importantly, this form makes analysis using the techniques of
nonequilibrium statistical mechanics easier and the behavior
of the model more apparent.

By examining (7), (9), and (10) we deduce that the popula-
tion distribution should evolve as

dPi j

dt
= − γi jPi j − γ ′PtotPi j

−
∑

k

(v j k + vi k)Pi j +
∑

k

(vk jPi k + vkiPk j )

+ r

4Ptot

∑
k

(
P c

i k + P c
ki

)∑
l

(
P c

j l + P c
l j

)
. (14)

Hereγi j is the death rate of genotypeAiA j , and we show below
an equivalent way of writing the selection process (7). There is
no factor of ω̄ as in (7), as there is no need to normalize a popu-
lation distribution. The recombinant populations are given by

P c
i j = Pi j −

M∑
n,m=1

cnmPi j +
M∑

n,m=1

cnmPInm Jnm
. (15)

The terms in the second line of (14) are the equivalent of (9),
except that the vi k are mutation rates—the rates at which new
mutations appear in a population. The last line of (14) has the
same form as (10), except that we add a reproduction rate r .
Finally, the extra term γ ′ is the additional death rate per total
population which sets an upper limit to the population growth.
Without this term the population either grows exponentially
without bound or decays to zero. In realistic systems there
is such a decay term as there is a limit to the resources that
sustain a population (i.e., overpopulation effects).

The population master equation (14) is potentially useful
in situations where one would like to deal in terms of actual

numbers of individuals, rather than probabilities. At steady
state, we have dPi j

dt
= 0, and we can sum over all i, j in (14)

to obtain

Ptot = r − γ̄

γ ′ , (16)

where γ̄ ≡ ∑
i j γi jpi j is the average death rate. As the total

population must be positive, we have r > γ̄ , which states that
the reproductive rate must be larger than the average death rate.
If this is not satisfied, then the total population converges to
Ptot = 0 (i.e., extinction).

We note that the meaning of (14) is in terms of an average
over many stochastic instances during the time dynamics. For
example, exponential growth of a finite number of individuals
in a single run of the experiment increases in a stochastic
fashion, only giving the smooth exponential behavior after
averaging over many runs. Put another way, (14) does not
contain any fluctuations in the population numbers but does
take into account of fluctuations in the genotype. To recover
the dynamics dictated by (14) from experimental data, one
must average over many stochastic instances under the same
parameters and compare the distribution at each point in time.
This is equally true of the probabilitistic master equation that
will be derived below.

D. Continuous time: Probabilistic master equation

We now require an equivalent equation to (14) for the
probability pi j . The main requirement is that unlike the popu-
lation master equation, the probability equation must preserve
normalization

∑
i j pi j = 1 throughout the time evolution.

For mutation, since for each loss there is a corresponding
gain, detailed balance is obeyed and probability is conserved.
However, the death and reproduction terms do not and thus
detailed balance is not obeyed. This can be remedied by
adding normalization terms. According to the definition pij =
Pij /Ptot, we have

dpij

dt
= 1

Ptot

dPij

dt
− pij

Ptot

dPtot

dt
(17)

since both Pij and Ptot change with time. To obtain dPtot
dt

, we
take a sum of (14) over i,j to obtain

dPtot

dt
= −γ̄ Ptot − γ ′P 2

tot + rPtot, (18)

where all the mutation terms cancel due to detailed balance.
Substitution of (14) and (18) into (17) gives the probabilistic
master equation

dpi j

dt
= − γi jpi j + γ̄ pi j

−
∑

k

(v j k + vi k)pi j +
∑

k

(vk jpi k + vkipk j )

+ r

4

∑
k

(
pc

i k + pc
ki

)∑
l

(
pc

j l + pc
l j

) − rpi j , (19)

where the recombinant probabilities are given by (13).
The main difference of the above to (14) is the presence

of two extra terms proportional to r and γ̄ which play the
role of keeping the probability distribution pi j normalized.
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We also note that the nonlinear death rate γ ′ plays no role in
the probability equation as it is canceled by the normalizing
terms. The master equation (19) is evolved until a steady state
is reached. While in principle it is possible that the form of
the master equation (19) does not have a steady state, for
biologically relevant parameters where mutation rates are less
than the reproduction and death rates, we find that steady state
is attained for sufficiently long propagation times.

E. Matching discrete evolution to continuous evolution

The master equation (19) has a different set of parameters
to those in the discrete versions (7), (9), and (10). In this
section we show the relationship between these. We examine
the selection, mutation, and recombination formulas by con-
sidering the relevant terms in (19) separately. Taking the time
between generations in the discrete formulation as �t , the new
probability distribution under selection is

ps
ij ≈ pij + �t

dpij

dt
= (1 − �tγij + �tγ̄ )pij

≈ (1 − �tγij )pij

1 − �tγ̄
, (20)

where in the last line a Taylor expansion is performed on
the denominator, assuming that �tγ̄ � 1. Comparing this to
(7), we obtain ωij = 1 − �tγij . This equation indicates that
the survival probability ωij is equal to one minus the death
probability γij�t .

Similarly, for mutation, we have

pm
ij ≈ pij + �t

dpij

dt

= pij − �t

N∑
k=1

(vjk + vik)pij + �t

N∑
k=1

(vkjpik + vkipkj ).

(21)

On comparison with (9) we have uij = vij�t .
For recombination, we have

pr
ij ≈ pij + �t

dpij

dt

= (1 − r�t)pij + r�t

4

N∑
k=1

(pik + pki)
N∑

k=1

(pjk + pkj ).

(22)

In the discrete case (10), it is assumed that the new generation
entirely replaces the previous generation, which occurs at
r�t = 1. We can also view this as the timescale of the discrete
evolution being set by the reproductive rate.

In summary, the parameters in the discrete and continuous
evolution can be related by

ωi j = 1 − γi j�t, (23)

ui j = vi j�t (24)

r�t = 1, (25)

where �t is the time between generations. We note that
the discrete and continuous evolution will in general give

different time dynamics. They will only coincide under certain
assumptions as outlined above, and therefore the equivalence
(25) is only in this context. The effect of each of these
parameters are summarized in Fig. 1(a).

III. TIME EVOLUTION

A. Hardy-Weinberg statistics

We now show some basic properties of the master equation
(19). We first examine the effect of the reproduction and
recombination terms under Hardy-Weinberg assumptions of no
selection (γij = 0), mutation (vik = 0), gene flow, or genetic
drift. We will examine a two-locus example (M = 2). In
this case the allele labels involve two variables and we have
i = (i1,i2), j = (j1,j2). To verify Hardy-Weinberg statistics,
we evolve an initially completely heterozygous distribution
with all the population in the genotype A

(1)
1 A

(1)
3 A

(2)
1 A

(2)
3 with

no recombination. Figures 2(a) and 2(b) show the evolution
towards equilibrium, which eventually converges towards
Hardy-Weinberg statistics of

p(1,1)(1,1) = p(1,3)(1,3) = p(3,1)(3,1) = p(3,3)(3,3) = 1/4, (26)

corresponding to an equal population of

A
(1)
1 A

(1)
1 A

(2)
1 A

(2)
1 ,A

(1)
1 A

(1)
3 A

(2)
1 A

(2)
3 ,

A
(1)
3 A

(1)
1 A

(2)
3 A

(2)
1 ,A

(1)
3 A

(1)
3 A

(2)
3 A

(2)
3 . (27)

FIG. 2. Time evolution of the master equation for evolution
of M = 2 gene loci under various conditions. [(a), (b), and (c)]
Evolution under random mating (r = 1) with no selection or mutation
(γij = vij = 0) for two loci M = 2 and three allele variations N = 3
with a linear viability function. (a) The initial condition where the
entire population has the genotype A

(1)
1 A

(1)
3 A

(2)
1 A

(2)
3 . (b) Steady-state

probability (t = 20) with no recombination cnm = 0. (c) Steady-state
probability (t = 200) with recombination c11 = 1, otherwise cnm = 0.
(d) Steady-state probability (t = 100) with recombination c11 = 1
and selection (γij = 1) for two loci M = 2 and three allele variations
N = 3 with the same viability function defined in (29) and parameters
a = −0.5, b = 0.1, c = 0.7.

022403-5



HAMID-REZA RASTEGAR-SEDEHI et al. PHYSICAL REVIEW E 98, 022403 (2018)

More generally, we find the effect of the reproductive term is
to evolve the probability towards

pi j (t → ∞) = ρi (t = 0)ρi (t = 0), (28)

where ρi (t) = 1
2

∑
j [pi j (t) + p j i (t)] is the probability of

allele Ai . The substitution of (28) into the reproductive terms
of (19) shows that these terms cancel, giving dpi j

dt
= 0. This

indicates that the reproductive terms comply with the Hardy-
Weinberg principle.

Including recombination creates more diversity as illus-
trated in Fig. 2(c). Starting from the same initial condition
as Fig. 2(a) gives a steady-state distribution where each allele
on each locus can be either A1 or A3 thereby giving equal
probabilities for all 42 = 16 combinations of A

(1)
1,3A

(1)
1,3A

(2)
1,3A

(2)
1,3.

As expected, recombination thus results in an increase of
genetic diversity, in agreement with past studies on related
models [46–48].

B. Selection between competing genotypes

Now let us turn to how the master equation behaves under
selection. For the remainder of this section we consider the
single-locus M = 1 case for simplicity. Our allele indices
therefore single variables i = i, j = j . A prototypical form
of the viability is assumed,

ωij = a(sm + sf )2 + b(sm + sf ) + c, (29)

where a,b,c are constants and

sm ≡ 2i − N − 1

N − 1

sf ≡ 2j − N − 1

N − 1
(30)

are variables that we define for convenience that identify the
allele types within a range sm,f ∈ [−1,1]. For the example
shown in Fig. 3(a), the form of the viability (29) is taken such
that there are two genotypes of high viability, i.e., low death
rates for A1A1 and ANAN .

In Figs. 3(b)–3(d) we examine the effect of only selection
in (19) with two homozygous genotypes A1A1 (or sm = sf =
−1) and ANAN (or sm = sf = 1) having a high viability. As
one would expect the population becomes generally more
distributed to the more viable genotype and reaches steady
state for long evolution times. Figure 2(d) shows another
example where selection effects together with recombination.
In comparison with the case without selection Fig. 2(c), the
population distribution reaches equilibrium with a bias towards
the most viable genotypes.

The dynamics tend to evolve on a timescale τ ∝ 1/b. As
indicated in Fig. 3(a), b is the parameter that determines the dif-
ference in viability between the two dominant genotypes. Thus
we can deduce that one of the timescales of the evolutionary
process is determined by

τ ∼ 1

�γ
, (31)

where �γ is the difference in death rate between the two
dominant genotypes and in the case of Fig. 3(a) is equal
to �γ = γ11 − γNN . This is based on the assumption that

(c)
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FIG. 3. The effects of different parameters on a fitness landscape
of one gene locus with two genotypes with high viability. [(a) and
(b)] Evolution for pure selection for one locus M = 1 and five allele
variations N = 5. (a) Viability distribution for simulations in Fig. 3
with parameters a = 0.8, b = 0.1, and c = 0. (b) Time evolution
of the variable s = sm = sf from different initial conditions: (I)
pij (t = 0) = 1/N2; (II) pij (t = 0) = 0.9δi,1δj,1 + 0.1δi,N δj,N ; and
(III) pij (t = 0) = δi,1δj,1. Here δi,j is the Kronecker δ. [(c)–(h)]
Evolution for mutation for one locus M = 1 and five allele variations
N = 5. [(c) and (d)] Probability distribution at times (c) t = 60
and (d) t = 120 starting from an initial configuration pij (t = 0) =
0.4δi,1δj,1 + 0.2(δi,1δj,2 + δi,2δj,1 + δi,2δj,2). Identically, (d) is also
the landscape obtained at t = 20 for the time evolution under pure
selection (γij = 1 − ωij ) and no mutation or reproduction (vij = r =
0) with an initial condition pij (t = 0) = 1/N2. After a time t ∼ 10
the distribution becomes entirely dispersed at i = j = 1, until a time
t = tc ∼ 70 (where tc is the critical wait time), when the population
of the most viable genotype i = j = 5 starts to grow. After a time
tc, the most viable genotype becomes stable. The parameters used
are N = 5, a = 0.9, b = 0.1, c = 0, r = 0.01, vij = v(1 − δij ), and
v = 10−4. (e) The average value s = s̄m = s̄f for the same parameters
as above but with the mutation rates u as marked. Panel (f) is
the same as panel (e) but with the initial condition pij (t = 0) =
0.4δi,1δj,1 + 0.2(δi,1δj,2 + δi,2δj,1 + δi,5δj,5), illustrating gene flow.
Panel (g) shows the variances V (s) = V (sm) = V (sf) for the same
parameters as above but with the mutation rates u as marked. Panel
(h) is the same as panel (g) but with the initial condition given in
panel (f).

mutations leading to a higher viability in a specific subgroup
of a population will cause a decrease in their overall death
rate. However, depending on the initial conditions—such as
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those shown in Fig. 3(b)—this may not always be true. We
also repeat the time evolution for the case where the entire
population starts at A1A1, the less fit genotype of the two (case
III). In this case the population distribution is completely static.
It does not evolve towards the fitter ANAN genotype due to the
lack of genetic diversity in the original distribution.

The above behavior can be understood by obtaining an
equation for the dynamics of the sm,sf variables. Multiplying
(19) by sm and summing over i,j , we obtain an equation

ds̄m

dt
= a

4

[
C

(
s2
m,sm

) + C(smsf ,sm) + C
(
s2
f ,sm

)]
+ b

2
[V (sm) + C(sf ,sm)] (32)

≈ [b + a(s̄m + s̄f )]V (sm)/2, (33)

where s̄m is the average of sm, V (·) is the variance, and C(·,·)
is the covariance. A similar equation can be derived for sf .
In the second line we have made a mean-field expansion
(see Appendix A). We have also assumed an independent
distribution where pij = pipj for this case. This is consistent
with the Hardy-Weinberg equilibrium. For cases with zero
variance as the initial condition in (33), the time evolution
is static. However, any small but finite population with a
higher viability genotype (ANAN in this case) will eventually
dominate the population, occurring at a timescale (31). The
population in ANAN will overtake A1A1 in frequency due
to its higher viability. However, this needs some small seed
population to instigate the process.

C. Mutation and critical wait time

The effect of mutation is to randomly distribute the geno-
types. It is particularly relevant in the scenario with two
competing genotypes considered, where the entire population
is initially present in the less fit of the two [A1A1 in Fig. 3(a)].
Assuming a small mutation rate vij � γij , a proportion of the
population eventually always transitions to the genotype with
the higher viability. This is consistent with (31) where the time
required for this to occur is dependent on the difference in
mortality rate. Interestingly, we observe a critical wait time for
very small mutation rates before this transition starts to take
place, as can be observed from Figs. 3(c)–3(e).

We now derive the time required before the change in
population starts to occur in the presence of mutation. Taking
the scenario in Figs. 3(c) and 3(d) where we have two dominant
genotypes with high viability, as shown in Fig. 3(a), we
approximate the probability distribution as arising from two
main contributions

dp11

dt
= − γ11p11 + (γ11p11 + γNNpNN )p11

− 2vp11 + v(p1N + pN1) + rp2
11 − rp11

dpNN

dt
= − γNNpNN + (γ11p11 + γNNpNN )pNN

− 2vpNN + v(p1N + pN1) + rp2
NN − rpNN . (34)

Due to the low viability of p1N and pN1, the population
that mutates into these genotypes does not survive, and is
redistributed equally to p11 and pNN . Thus we can set p1N =

pN1 = (p11 + pNN )/2. Defining the variable s = p11 − pNN ,
we have

ds

dt
= �γ (s2 − 1) − 2vs. (35)

This can be solved analytically with solutions

s = v

�γ
−

√
v2 + �γ 2

�γ
tanh[

√
v2 + �γ 2(t − tc)]. (36)

If the whole population is at p11 initially, then at t = 0, s = 1,
we have

tc =
tanh−1

(
�γ−v√
v2+�γ 2

)
√

v2 + �γ 2
≈ ln(�γ/v)

�γ
, (37)

where for large x we have approximated tanh(x) ≈ 1 − 2e−2x

and assumed that v � �γ . The critical wait time for the
parameters in Fig. 3(e) corresponds to tc = 23,46,69 for
v = 10−2,10−3,10−4 respectively. This agrees well with the
numerics. The region of the crossover can be identified by a
high genetic diversity in the population distribution [Fig. 3(g)].

Given that t = 0 precedes the appearance of a mutation,
the critical wait time tc can be attributed to the process and
likelihood of obtaining a viable transmittable mutation in an
individual being naturally small. However, once the critical
time (37) is exceeded, the population’s transition to the superior
genotype can occur quickly on a timescale of (31) due to the
propagation of the mutation through the reproductive process,
leading to a lower death rate as a result of an enhanced viability.
The logarithmic dependence of (37) also shows that even for
extremely small mutation rates (i.e., exponentially small) the
critical time occurs at a relatively short timescale.

D. Gene flow and genetic drift

In order to simulate gene flow, we consider the situation
where a small group of individuals with a genotype that has a
higher viability than the rest of the population is introduced.
We observe that the phenomenon of gene flow overcomes the
critical wait time. In Fig. 3(f) a small seed population in the
most viable ANAN genotype is introduced at t = 0. We see that
for all mutation rates the population immediately shifts towards
the more viable genotype. This is essentially independent of the
mutation rate since the critical population is already introduced
as the initial condition thereby overriding the process and
critical time required for a viable mutation to emerge in a
population. This shows that the effect of introducing mutation
is not strictly equivalent to introducing a seed population
since there is no critical wait time in the latter case. Another
interesting feature of the critical wait time is that it is robust
even under initial conditions that do not perfectly fall in the
less viable genotype. For our results in Figs. 3(c)–3(g) we
start with a distribution that mixes genotypes in the vicinity of
i = j = 1. The distribution initially relaxes completely into
i = j = 1 before making the transition to the more viable
genotype i = j = N .

In the above examples, we have not discussed explicitly how
genetic drift can occur within the framework. In a probabilistic
framework, opportunity for genetic drift occurs when the
variance of the distribution is large. A large variance means that

022403-7



HAMID-REZA RASTEGAR-SEDEHI et al. PHYSICAL REVIEW E 98, 022403 (2018)

genetic diversity is allowable, as shown in Figs. 3(g) and 3(h).
This amounts to the possibility of the dominant genotype not
being fixed and drifting in time. To see this explicitly one would
perform a stochastic simulation of (19) and observe the genetic
distribution. At times when the variance of the distribution is
small [such as the start and end points of Fig. 3(g)], little genetic
drift is possible because the dominant genotype is more widely
distributed.

IV. ENTROPY PRODUCTION AND STABILITY
OF THE SYSTEM

To this point, our analysis of the master equation (19)
has been using observables such as probabilities, expectation
values, and variances illustrating the changes in population dis-
tribution. This is the conventional approach taken in numerous
population genetics studies [14]. However, we may equally
take the point of view that it is a statistical system governed
by a master equation, which can analyzed using techniques
derived from statistical mechanics [49]. The time-dependent
evolution towards steady state that we have examined is then
a nonequilibrium problem, and hence we must use concepts
derived from nonequilibrium statistical mechanics. In this sec-
tion, we illustrate this point by studying the entropy production
and stability of the system.

A thermodynamic system which is not in equilibrium is
exposed to a set of external perturbations or driving forces.
These thermodynamic forces result in the establishment of
a set of fluxes which move the system from one state to
another. From the genotype probabilities pi j we can calculate
the entropy using the standard expression for the entropy,

S = −
∑

i j

pi j ln pi j . (38)

Here we would like to note that this is only the Shannon
(i.e., informational) entropy of the system. In a population
genetics context the thermodynamic entropy far outweighs the
contribution of the informational entropy due to the physical
manifestations of the organisms. But the informational entropy
can still give us a characterization of the distribution of the
population at any given time. For a completely homogeneous
population such us that given in Fig. 2(a), the entropy is S = 0,
while for a highly diverse population the entropy is large.

The entropy S can either increase or decrease depending
on the particular dynamics of the master equation. This can be
seen from Figs. 4(a) and 4(b), which shows the entropy (38)
in Figs. 2(b) and 2(d) and then 3(e) and 3(g), respectively. In
the case of Fig. 4(a), the dynamics only consists of an ini-
tially homogenous population (with a heterozygous genotype)
evolving into a more diverse population. This is accompanied
by a consistent increase in the Shannon entropy in the system,
as expected. Meanwhile, Fig. 4(b) shows a more complex
behavior, where the entropy initially decreases, is followed
by a time period with large entropy, and then settling down
again to a lower steady-state entropy. This can be understood
according to the gene flow dynamics as described earlier. The
initial decrease of entropy occurs due to the initial state being
distributed in the region of the second-most viable genotype
i = 1, j = 1 becoming more concentrated in this corner, as
also evident from Fig. 3(e). Depending on the mutation rate v,

FIG. 4. Entropy and entropy production during the evolutionary
process. (a) The entropy (38) for the processes in Figs. 2(b) and
2(d). Lines are marked according to the figure numbers. (b) The
entropy (38) for the processes in Figs. 3(e) and 3(g). Lines are marked
according to the mutation rate. (c) The total entropy production (41)
for the process in Figs. 3(e) and 3(g). (d) The Glansdorff-Prigogine
stability of the steady state (42) is shown using a graph of the second
variation of the entropy production as a function of time for different
viabilities. The steady-state probabilities are approximated by the
probabilities at the end of the time evolution p̄i j ≈ pi j (tmax). The
curves for v = 0.001 and v = 0.0001 have been multiplied by the
factors as labeled to fit in the plots.

gene flow then occurs at a later time, which is accompanied by
a period of high entropy. This is consistent with the variances
as shown in Fig. 3(g).

A nonequilibrium system is generally accompanied by a
production of entropy as a result of its dynamics and coupling
to a reservoir [49]. The entropy production is not merely the
contribution due to the increase of entropy dS

dt
but also has a

contribution due to an external set of thermodynamic forces
from the reservoir. We follow the methods of Ref. [49] to
estimate the macroscopic entropy production for our system.
The thermodynamic forces can be defined by first identifying
the thermodynamic flux, which is its conjugate quantity. We
first write the master equation in its general form,

dpi j

dt
=

∑
kl

Ji j ;kl =
∑

kl

[J+
i j ;kl − J−

i j ;kl ], (39)

where the J±
i j ;kl are the positive and the negative probability

currents that contribute to the gain or loss of the probability pi j .
The explicit expressions for the master equation (19) is given
in Appendix B. The associated thermodynamic force is then

Fi j ;kl = ln
J+

i j ;kl

J−
i j ;kl

. (40)

From the above expressions, we can write the bilinear
expression which gives the entropy production in the system
[49]. Thus the entropy production in the system is

PS =
∑
i j kl

(J+
i j ;kl − J−

i j ;kl ) ln
J+

i j ;kl

J−
i j ;kl

. (41)

This is a positive quantity and thus guarantees that the
entropy production is always positive, i.e., the second law
of thermodynamics is not violated. This is in contrast to the
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entropy change dS
dt

which can be negative, as can be observed
from Fig. 4(b).

Figure 4(c) show the macroscopic entropy production for
the same process as that given in Fig. 3(e). We see that the
entropy production is large during times where there is a
population migration in the system. Initially, the there is a
population migration as can be observed from Fig. 3(e) since
the initial state has broadening around the second-most viable
state. Another peak is observed during the gene flow stage
when the population transitions to the most viable genotype.
The positions of the peaks correspond to the times when the
transitions occur, as can be seen in Fig. 3(e). This is consistent
with the findings in Refs. [35,36], where periods of entropy
production in the bath and drift towards a more likely outcome
are different aspects of the same fundamental process.

The stability of a nonequilibrium steady state can be evalu-
ated from the Glansdorff-Prigogine stability criterion [50,51].
In terms of the probabilities this relation can be expressed as:

δ2PS = d

dt

⎡
⎣−

∑
i j

1

p̄i j
(pi j − p̄i j )

2

⎤
⎦ � 0, (42)

where p̄i j is the steady-state probability of the system. The
above criterion can be understood to be a manifestation of the
Lyapunov stability criterion. In our model

δ2L = −
∑

i j

1

p̄i j
(pi j − p̄i j )

2 (43)

is the corresponding Lyapunov function. In Fig. 4(d) we show
the stability function (42) which should be positive for stability.
We see that in the vicinity of the steady state the criterion is
always positive, indicating stability. The initial negative values
arise because of the particular dynamics that are present in the
gene flow. Due to the broadened population distribution chosen
initially, the population initially migrates to the second-most
viable genotype as discussed above. This corresponds to a
movement in the opposite direction to the eventual steady-state
genotype in the opposite corner of Fig. 3(a). Stability is defined
generally only in the vicinity of steady state, and hence this
initial transient behavior has no reflection on the stability of
the system. While the above is only one example of the stability
in the system, we expect that the dynamics should always give
stable behavior for any choice of static parameters. Investiga-
tions for a driven system (i.e., time varying parameters) may, on
the other hand, possibly show a different pattern of emergence
of the stability.

V. SUMMARY AND CONCLUSIONS

We have derived an explicit probabilistic master equation
(19) in the genotype space that incorporates selection, muta-
tion, mating, and recombination for the evolutionary process.
Phenomena such as gene flow are consequences of the model
and are well observed even for the simple case studies that
we examine. While we only considered some simple toy
models to illustrate the pertinent aspects of the model, we see
no reason why this could not be extended to more realistic,
sophisticated systems. We have shown that despite the rather
simple models examined, the interplay of the various processes

can produce interesting effects. Using a prototypical fitness
function model of one and two loci with N possible allele
variations existing in the population, an analytic formula for
the time required to reach steady state can be predicted. For
the case including mutation, we find that there is a critical wait
time before the genotype with the highest viability is found.
While we have only considered the diploid case in this paper, it
is straightforward to generalize this to the polyploid case [52].

The formulation as a master equation of standard form
allows for the application of this system to the tools of
nonequilibrium statistical mechanics. We have illustrated this
by calculating the Shannon entropy production for the larger
system including the bath. This was found to have a behavior
consistent with recent results which state that entropy pro-
duction is largest during periods of migration towards more
favorable states [36]. Finally, we evaluated the stability of the
system using the Glansdorff-Prigogine criterion and found that
the nonequilibrium steady state is stable. These examples are
merely illustrative of how results from nonequilibrium statis-
tical mechanics can be carried over to systems in evolutionary
biology. Calculation of the entropy and stability is convenient
from the point of view that these can be calculated using only
the probability distribution. However, it should be possible
to define and calculate other macroscopic thermodynamic
quantities characterizing the system. The entropy production
should also be relatable to Crook’s microscopic reversibility
relation [26]. Treating the model as a nonequilibrium statistical
model is interesting not only from the point of development
of new techniques to treat such systems but also in the
investigations of the foundations of life [35]. We note that
the entropy production that we discuss in this article is the
informational entropy and not the thermodynamic entropy,
since our master equation is in the genotype space. In this
paper we only take into account the genetic information during
evolution, but in fact in a real biological system, there will
be in addition the entropy contribution due to the biological
machinery. Nevertheless, this contributes to the total entropy
of the system and can be used as a characterization tool to
understand the evolutionary process.

The master equation we have introduced has interesting
parallels with other nonequilibrium systems in statistical me-
chanics. For instance, the situation as depicted in Fig. 1(a)
can be compared to spin-glass models where various spin
configurations have different energies. This is in agreement
with past works which have shown equivalences between
models of genetics and spin models [53–56]. Mutation in
this case is analogous to thermal noise in spin-glass systems.
However, unlike spin glasses, which are a closed system in
terms of the number of spins, here the system is open through
the reproduction and death processes. This adds another layer
of complexity to the dynamics. Another difference to spin
glasses is in the way that mutations can occur between various
genotypes. For this paper, we assumed a mutation matrix
vi j where any allele can mutate into any other allele. More
realistically, mutations are more likely to occur as a result of
a change in a single or a small number of nucleotides thus
leading to alleles with similar genetic sequences [57], giving
rise to a more complex mutation matrix. Similarly, certain
spin configurations can only mutate into a few other spin
configurations. As is well known, finding the ground state
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of a spin glass is equivalent to computational optimization
problems. An interesting question is then whether the open
nature of the evolutionary problem affects the complexity of
finding the most viable state. Such problems, also encountered
in the context of machine learning and quantum adiabatic
computing, are of fundamental interest for a variety of fields.
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APPENDIX A: MEAN-FIELD APPROXIMATION

On the right-hand side of (32), we have expectation values
of second and third powers of sm,f (moments), which in turn
require evolution equations of themselves. To obtain a closed
set of equations, we approximate such moments up to a fixed
order by performing a mean-field approximation. For example,
the covariance C(s2,s) = E(s3) − E(s2)E(s) involves a third
power expectation value of s, where E(s) = s̄. The mean-field
approximation is performed by first rewriting the random
variable as s = E(s) + [s − E(s)] and taking the term in the
brackets to be small. The third-order expectation value is then

E(s3) = E({E(s) + [s − E(s)]}2{E(s) + [s − E(s)]})
= E({E(s)2 + 2E(s)[s − E(s)] + [s − E(s)]2}

× {E(s) + [s − E(s)]})
≈ E(s)3 + 3E(s)E{[s − E(s)]2}
= 3E(s2)E(s) − 2E(s)3, (A1)

where in the second last line we dropped the term [s − E(s)]3.
The covariance can then be approximated,

C(s2,s) ≈ 2E(s)V (s), (A2)

which is accurate as long as the probability distribution
assumes a form that can be approximated to a Gaussian in
the variables sm,f . The mean-field approximation is most valid
in the limit where the number of alleles N is large.

APPENDIX B: TOTAL ENTROPY PRODUCTION

Starting with the master equation (19), we can introduce
factors of

∑
kl pkl = 1 and Kronecker δs to make explicit the

transitions between genotype AiA j and AkAl ,

dpi j

dt
=

∑
kl

[
−γi jpi jpkl + γklpklpi j

− (v j kδi l + vi kδ j l )pi j + (vk jδl ipl k + vkiδl jpkl )

+ r

4
δi l (pl k + pkl )

∑
k′ l ′

δ j l ′(pl ′k′ + pk′ l ′) − rpi jpkl

]
,

(B1)

where we have set the recombinant probability cnm = 0 for
simplicity. Noting that all coefficients are positive, we can
interpret positive terms as being gain terms from the AkAl

to AiA j and negative terms as loss terms due to transitions
between AiA j to AkAl . The master equation then can be
written as (39), where the positive and negative currents are

J+
i j ;kl =

[
γklpi j + vl jδki + vkiδl j

+ r

8
(δi k + δi l )

∑
k′

(p j k′ + pk′ j )

+ r

8
(δ j k + δ j l )

∑
k′

(pi k′ + pk′ i )

]
pkl (B2)

and

J−
i j ;kl = [γi jpkl + v j kδi l + vi kδ j l + rpkl ]pi j . (B3)
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