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In bistable reaction–diffusion systems, transitions between stable states typically occur on timescales orders
of magnitude longer than the chemical equilibration time. Estimation of transition rates within explicit Brownian
dynamics simulations is computationally prohibitively costly. We present a method that exploits a single trajectory,
generated by a prior simulation of diffusive motions of molecules, to sample chemical kinetic processes on
timescales several orders of magnitude longer than the duration of the diffusive trajectory. In this approach, we
“loop” the diffusive trajectory by transferring chemical states of the molecules from the last to the first time step
of the trajectory. Trajectory looping can be applied to enhance sampling of rare events in biochemical systems in
which the number of reacting molecules is constant, as in cellular signal transduction pathways. As an example,
we consider a bistable system of autophosphorylating kinases, for which we calculate state-to-state transition
rates and traveling wave velocities. We provide an open-source implementation of the method.
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I. INTRODUCTION

Processes involving constituents that modify each other
upon contact and diffuse in space arise in a multitude of
fields as diverse as, e.g., geomorphology, population ecology,
developmental biology, and, most naturally, (bio)chemistry.
Such reaction–diffusion systems are often expressed and
analyzed in terms of partial differential equations (PDEs)
[1]. When molecular noise has a significant impact on the
process of interest, a deterministic description in terms of
PDEs becomes inappropriate and more fine-grained descrip-
tions are necessary, such as stochastic simulations with a
single-molecule resolution. However, molecular simulations
of spatially extended systems are computationally demanding.
When, in the chemical context, individual reacting molecules
perform Brownian random walk in continuous space, the
most compute-intensive part is finding and resolving their
collisions. If hydrodynamic interactions are additionally taken
into account, simulation of diffusive dynamics is particularly
expensive [2]. Since typically molecules perform multiple
random diffusive steps between collisions and only a frac-
tion of collisions result in chemical reactions, the numerical
cost of spatial stochastic simulations can be prohibitively
high.

Computational analysis of oscillatory or multistable
biochemical systems requires long simulation times to prop-
erly sample the phase space or collect multiple state-to-state
transitions. Simulations of multistable reaction systems are
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demanding even in the well-mixed limit, when the efficient
Gillespie algorithm [3] can be applied. To enhance sampling,
reweighting-based [4] and importance sampling-based [5]
approaches were developed in addition to metamethods, such
as transition path sampling [6] or forward flux sampling
[7], in which the Gillespie algorithm simulations can be
framed. Such auxiliary rare event sampling schemes often
turn out to be inevitable for the estimation of state-to-state
transition rates and, in this way, for determining the relative
stability of the steady states. Several approaches were devised
to speed up spatial stochastic simulations by splitting the
reaction and diffusion events, and treating the latter implicitly.
For example, in the next subvolume (NSV) method [8], the
reactor is decomposed into subreactors that are assumed to
be well mixed whereas diffusion is included in the form of
random transport of molecules between neighboring subreac-
tors. Another approach that circumvents explicit simulation of
Brownian motion, yet works at the single-molecule level, is the
event-driven Green’s function reaction dynamics (enhanced
GFRD, eGFRD) [9,10]. In this approach, the spatial propagator
displaces molecules directly to the locations where they react.
One may accommodate chemical reactions within the direct
simulation Monte Carlo method (DSMC), originally devel-
oped to simulate rarefied gases [11]. In DSMC it is assumed
that each simulated molecule may represent a large number
of actual molecules and that molecular motions (treated as
ballistic, modeled deterministically) and intermolecular colli-
sions (modeled stochastically) are uncoupled over small time
intervals. The framework can be extended to account for
disparate diffusivities of reacting molecules to study, e.g.,
formation of Turing patterns [12].

2470-0045/2018/98(2)/022401(10) 022401-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.022401&domain=pdf&date_stamp=2018-08-01
https://doi.org/10.1103/PhysRevE.98.022401
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Here we present “trajectory looping,” a method that speeds
up spatial stochastic simulations while still utilizing explicit
simulations of Brownian motion of individual molecules. In
the method we generate a trajectory of diffusive motions of
the molecules and use it multiple times for sampling chemical
processes on timescales that are several orders of magnitude
longer than the simulated time of the original trajectory. The
generated trajectory should be long enough to allow each
molecule to form contacts with molecules other than its initial
neighbors.

The proposed method is suitable for simulation of bio-
chemical reactions in which substrate molecules are reversibly
modified by enzymes, as often found in cellular signal trans-
duction systems [13,14]. Crucially for the method, we assume
that in the enzymatic reaction scheme: enzyme + substrate
↔ enzyme–substrate complex → enzyme + product, the
enzyme–substrate complexes are short-lived and thus the
substrate can be modified instantaneously when in contact
with the enzyme, according to the simplified reaction scheme:
enzyme + substrate → enzyme + product. In such systems,
the number of reacting molecules is constant.

We explain the algorithm, explore limitations, and test the
accuracy of this approach applied to two systems of cou-
pled biochemical reactions: a monostable phosphorylation–
dephosphorylation cycle and a bistable reaction system of
autophosphorylating kinases. We show for the latter system
that the method enables estimation of the state-to-state transi-
tion rates as well as the speed of traveling wave propagation.
Analysis of these processes requires simulations that last much
longer than the reactor-scale Brownian time. These results are
compared to results obtained with other methods.

II. RESULTS

A. Algorithm

A generic simulation workflow in which trajectory looping
is embedded is presented in Fig. 1.

FIG. 1. Workflow for performing a chemical kinetic simulation
of an arbitrary length by means of trajectory looping. An exemplary
assignment is depicted in Fig. 2.

a. Base mechanical trajectory. Initially, one has to obtain
a trajectory of N molecules represented by identical spheres
of radius a, recorded at M equidistant time points separated
by �t . This trajectory, referred to as the base mechanical
trajectory, should be obtained according to a scheme that
generates molecule positions in a Markovian manner (that is,
in a manner that is devoid of inertial effects). It is required
that in each simulation step the positions of molecules are
accordant with the equilibrium spatial distribution, guarantee-
ing that the neighborhoods of all molecules are statistically
indistinguishable. For reasons that are explained further, the
simulated system is expected to be translationally invariant
which is achieved by imposing periodic boundary conditions
in at least one spatial dimension.

The molecule-scale Brownian time τB that sets a natural
time scale for the base mechanical trajectory is defined as
the expected time required for a molecule to diffuse over its
diameter τB = (2a)2/D0, where D0 is the diffusion coefficient
of a molecule (in the absence of other molecules). All base
mechanical trajectories subjected to looping and analyzed in
this article were generated by performing standard Brownian
dynamics simulations at a given volume fraction φ, as de-
scribed in the Methods section.

b. Base contacts sequence. The only information contained
in the base mechanical trajectory that is relevant to chem-
istry is that about molecule contacts. Two molecules are in
contact when their center-to-center distance is smaller than
the sum of their reaction radii. If reaction radii are identical
for all molecules, being all equal a + δ/2, then a significant
simplification may be introduced: for each time step of the
base mechanical trajectory a list of molecules of pairwise
center-to-center distances smaller than the sum of reaction
radii, dij < 2a + δ, can be derived. Such a list of pairs of
molecule indices, termed the base contacts sequence, is used as
an input to the stochastic simulation of chemical events instead
of the base mechanical trajectory.

c. Assignments. The base mechanical trajectory of duration
θ = (M − 1) × �t is used to create a mechanical trajectory of
length � > θ by means of a (recursively applied) procedure
that consists in joining the end of the base mechanical trajectory
with its beginning and a subsequent molecule indices reassign-
ment. To perform a join, one has to find an assignment in the
form of a complete molecule-to-molecule index map that is
used to transfer molecule identities (associated with chemical
states) between molecules in the last time step and molecules in
the first time step of the base mechanical trajectory. An optimal
assignment that minimizes mean square displacements in pairs
of corresponding molecules can be found in polynomial time,
O(N3), according to the Kuhn–Munkres algorithm [15,16]
(also known as the Hungarian algorithm; in this article, we
use an implementation from DLIB [17]). When performing
consecutive joins, to prevent finding identical molecule-to-
molecule assignments, one can make use of the translational
invariance of the simulated system and, prior to finding pairs
of corresponding molecules, apply a common random shift to
all molecule coordinates along the direction(s) in which the
system has periodic boundary conditions. For an exemplary
assignment see Fig. 2.

d. Looped contacts sequence. Consecutive assignments are
applied recursively to the base contacts sequence, yielding
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FIG. 2. An example assignment performed to join the end and
the beginning of the base mechanical trajectory. Top: In the base
mechanical trajectory, molecules (filled circles) depart from their
initial positions (dashed circles) due to Brownian motion. The 2D
simulation box has periodic boundary conditions in both directions.
Bottom: To join the end and the beginning of the base mechanical
trajectory, the initial time frame is randomly shifted in space (since
periodic images of the final time frame are used, the initial time frame
covers the total volume of the final time frame). Next, each molecule in
the final time frame is uniquely mapped to a molecule in the initial time
frame—in a manner that minimizes the sum of all square distances of
molecules in such pairs—and then, according to the obtained index
map, chemical identities of molecules in the final time frame of the
base mechanical trajectory are transferred to corresponding molecules
in the initial time frame.

the looped contacts sequence. The looped contacts sequence
contains replicas of the base contacts sequence with molecules
reindexed at each join. In this way, computationally expensive
search of molecule contacts is performed once (for the base
mechanical trajectory).

e. Chemical initial condition. Chemical states are assigned
to every molecule in the first time step of the simulation;
this assignment is called the chemical initial condition. It
is assumed that all molecules have the same diffusivity and
that their chemical state have no influence on their diffusion
properties.

f. Looped chemical trajectory. In the course of the simula-
tion, chemical states of molecules can be altered as a result
of chemical reactions that are either unimolecular (i.e., first

order) or bimolecular (i.e., second order). A unimolecular
reaction may occur independently of the molecule neigh-
borhood, whereas a bimolecular reaction may occur only
when two molecules are in contact, i.e., when their center-
to-center distance is smaller than the reaction distance, dij <

2a + δ. No reaction is allowed to change the number of
molecules in the system, N . In every time step within the
looped contacts sequence, a complete list of possible reaction
events is created. Time to a next reaction is drawn at random
from exponential distribution with the expected value of the
inverse of the sum of chemical rates of all events; reaction
events are selected randomly from the complete list with
probabilities that are proportional to respective rates. After a
substrate is modified, new reaction events that are possible
between the modified substrate and other molecules within
reaction distance are added to the list. Stochastic simulation
of reaction kinetics in a given time step of the looped con-
tacts sequence proceeds as long as times to a next event lie
within �t .

The described event scheduling scheme constitutes an
exact stochastic simulation method that for a sufficiently fast
diffusion is consistent with the Gillespie algorithm [3] in
which possible reactants are limited to molecules within the
reaction distance. Since configurations of molecules in the
base mechanical trajectory are in equilibrium, one can use
the radial distribution function g(σ |φ), determined from the
analytical solution of the Percus–Yevick integral equation for
hard spheres [18], to count the expected number of molecules
within the reaction distance:

χ = N

V
×

∫ 2a+δ

2a

[g(σ |φ) × 4π σ 2]dσ .

To compare kinetics of our simulations with those obtained in
the Gillespie simulations, bimolecular reaction rate constants
for the latter method are multiplied by χ/N .

After K joins, a simulated record of chemical states of N

molecules in (K + 1) × M time steps will be referred to as the
looped chemical trajectory. Trajectory looping performed mul-
tiple times enables recurrent trajectory reuse and simulation of
chemical processes on timescales several orders of magnitude
longer than the original diffusion trajectory.

Simulations of stochastic chemical kinetics within trajec-
tory looping can be performed in our open-source software
tool, LOOPER [19].

B. Limitations

Looped trajectories are distorted due to (i) displacements of
molecules in end-to-begin joins and (ii) limited repertoire of
single-molecule trajectories contained in the base mechanical
trajectory.

a. Displacements of molecules in end-to-begin joins. In
every end-to-begin join, each source molecule in the last time
step of the base mechanical trajectory is assigned uniquely
to a target molecule in the initial time step. A subsequent
transfer of the “identity” of a source molecule to a target
molecule causes an instantaneous molecule movement from
the source to the target location [see kinks that appear every
n θ = n 10τB in Fig. 3(a)]. The mean-square displacement
(MSD) that results from such a join is 〈r2〉join(k)

φ = ∑N
i=1
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FIG. 3. Limitations of the trajectory looping method. (a) Mean-square displacement (MSD), denoted 〈r2(t )〉φ , of molecules in trajectories
subjected to looping, in the units of molecule diameter squared. Three independent trajectories are shown for each of three volume fractions,
φ. Trajectories are joined every θ = 10τB. Sudden increase of MSD occurs upon joining. (b) Distribution ν of simulation times in which new
molecule–molecule encounters are registered for two cases: the case of a single trajectory of duration 20τB, labeled “1×20,” and for the case
of a first half of that trajectory joined at t = 10τB, labeled “2×10.” Each distribution results from averaging the new encounter times obtained
from five independent mechanical trajectories. Contact distance was set to 1.1×2a. (c) Number of new molecule–molecule encounters w


calculated per τB in time range [10τB, 20τB] in the trajectory with one end-to-begin join (w
 = w2×10, open triangles) and in the nonjoined
trajectory (w
 = w1×20, filled triangles), and an excess of the new encounters in the trajectory with one end-to-begin join over new encounters
in the nonjoined trajectory (diamonds). All w were calculated based on histograms obtained from five independent mechanical trajectories. (d)
Faster than linear increase of MSD in time during K = 103 joins of the base mechanical trajectory of θ = 10τB for two different system sizes
N . For each N , MSD of three independent trajectories is shown. The displacement of the center of the mass (COM) in the base mechanical
trajectory accumulates consistently upon looping, giving rise to the observed drift (solid lines). The COM drift is on average smaller for larger
systems (orange vs. gray solid lines). When a trajectory-specific COM-related contribution to MSD is removed, such corrected MSD is linear
(dashed lines) and agrees well with the expected linear long-time MSD (thick pale green line). In all panels, ε = 0.05 (see Methods); in panels
(a)–(c), N = 1000.

| �Rσ (k,i)(0) − �Rσ (k−1,i)(θ )|2/N , where σ (k, i) denotes an index
of an ith molecule in the base mechanical trajectory after k end-
to-begin joins (initially σ (0, i) := i). Although the Hungarian
algorithm is applied to minimize 〈r2〉join(k)

φ , these displace-
ments are still usually larger than the Brownian molecule
displacements in �t . The impact of distortions introduced by
end-to-begin joins on the looped mechanical trajectory can
be made relatively small when 〈r2〉join

φ � 〈r2(τ =θ )〉φ , where

〈r2〉join
φ = ∑K

k=1 〈r2〉join(k)
φ /K , that is, for a sufficiently long

base mechanical trajectory.
Molecule displacements in an end-to-begin join can sig-

nificantly alter molecular neighborhoods. New molecule–
molecule contacts can be formed at the expense of breaking
existing contacts, which affects the looped contacts trajectory.
To quantify this effect, we calculated a distribution of new
encounter times in a trajectory of θ = 20τB (without looping)
and then a distribution of new encounter times after a first half
of this trajectory was looped once [see Fig. 3(b)]. Encounters
that are an artifact of looping are registered as an excess of the
new encounters that peaks just after 10τB. At the assumed θ ,
the excess of the new encounters appears to be lower than 10%
for volume fractions φ between 5% and 40% [see Fig. 3(c)].

b. Limited repertoire of single-molecule trajectories. If the
optimal assignments were used to loop the base mechan-
ical trajectory with explicit tracking of absolute positions

of molecules, then one would obtain a looped mechanical
trajectory. The base mechanical trajectory is just a single
stochastic realization of diffusion of a finite set of molecules.
A property that is specific to each base mechanical trajectory,
and affects the apparent long-time MSD of molecules in the
looped mechanical trajectory, is the displacement of the base
mechanical trajectory center of the mass (COM) �δCOM(θ ) =∑N

i=1[ �Ri (θ ) − �Ri (0)]/N . Generically, �δCOM is a nonzero vec-
tor that due to looping adds to diffusive displacements of all
molecules a contribution of direction and magnitude consistent
among all end-to-begin trajectory joins. The expected value
of |�δCOM(θ )|2 =: δ2

COM(θ ) is proportional to θ and inversely

proportional to N . If we define ˜〈r2(θ )〉φ as the MSD in the
base mechanical trajectory with COM displacement-corrected

end time coordinates, ˜〈r2(θ )〉φ = 〈r2(θ )〉φ − δ2
COM(θ ), then

the MSD in the looped mechanical trajectory can be
approximated as

〈r2(t )〉φ≈ t

θ
× ˜〈r2(θ )〉φ +

⌊
t

θ

⌋
×〈r2〉join

φ +
⌊

t

θ

⌋2

×δ2
COM(θ ).

After multiple joins, on timescales that are much longer
than the reactor-scale Brownian time, the influence of the
COM drift on MSD may be significant [see Fig. 3(d), solid
lines]. If from obtained MSDs one subtracts the respective
expected contribution of the COM drift (calculated separately
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for each base mechanical trajectory), a linear time dependence
is recovered [Fig. 3(d), dashed lines]. It should be emphasized
that a super-linear increase of MSD in not indicative of acceler-
ating diffusion of molecules; their diffusive properties remain
unchanged over time and the reaction kinetics, determined
fully by the looped contacts sequence (Fig. 1), is unaffected.

C. Reaction kinetics in a monostable system

We consider a simple phosphorylation–dephosphorylation
reaction cycle,

K + Su
k0−→ K + Sp, P + Sp

q0−→ P + Su, (1)

where K and P denote enzymes, kinase and phosphatase, and
Su, Sp denote dephosphorylated and phosphorylated substrate
molecules, respectively. This monostable reaction system has
been studied in, e.g., Ref. [20], where it is demonstrated
that the steady-state fraction of phosphorylated substrates can
increase or decrease with diffusivity depending on relative
concentrations of both enzymes. As in Ref. [20], we focus on
the case when K are more abundant than P (K = 10 P ) and K
are catalytically much less active than P (q0 = 100 k0). In this
case, the fraction of phosphorylated S markedly depends on
the diffusion coefficient: at low diffusivity, S remain mostly
in the phosphorylated state; at high diffusivity, S are mostly
dephosphorylated.

The diffusion coefficient in the base mechanical trajectory
cannot be changed; however, by scaling uniformly the rate
constants of all chemical reactions within trajectory looping
one can simulate the stochastic kinetics in either reaction-
controlled or diffusion-controlled regime. When the average
distance traveled by a phosphorylated substrate until dephos-
phorylation (Kuramoto correlation length),

√
D0/q0, is larger

than the diameter of the reactor, L, then the chemical reactor
shall be considered well mixed. Henceforth, we assume that
the dephosphorylation reaction rate q0 = λ/τB sets the time
scale of chemical processes, that is, all other chemical rates
are defined relative to q0. Since propensities of reactions are
proportional to λ, decreasing λ is equivalent to simultaneously
increasing diffusivity and lengthening the time scale.

In Fig. 4(a) we demonstrate that the equilibration kinetics
of the monostable system, Eq. (1), simulated within trajectory
looping in the reaction-controlled regime (in the well-mixed
reactor) matches very well the equilibration kinetics simulated
according to the Gillespie algorithm with both bimolecular re-
action rates multiplied by χ/N . For parameter values assumed
in Fig. 4, the reactor becomes well mixed for λ of order of 10−2.
For this λ, to reach the end time of 300 q−1

0 in Fig. 4(a), the
base contacts sequence of duration θ = 3 τB had to be used 104

times (for θ = 10 τB, 3 × 103 times).
The intensity of reactions increases with λ and the system

exhibits a gradual transition from the reaction-limited to the
diffusion-limited regime, as demonstrated in Fig. 4(b). In the
fast-diffusion regime, the fraction tends to 1/11, whereas in
the slow-diffusion regime, the fraction tends to 10/11, in
agreement with the results of [20]. For intermediate λ = 10
and 102, the fraction of phosphorylated substrates in Fig. 4(b)
is slightly lower for θ = 3 τB than for θ = 10 τB, which results

FIG. 4. Fraction of phosphorylated substrates, Sp/(Su + Sp), in
the monostable reaction system Eq. (1). (a) Fraction of phosphorylated
substrates in time. Initially, Sp = S (Su = 0). Two methods are used
to simulate system equilibration: Gillespie algorithm with scaled
reaction rates (GillespieSRR) and trajectory looping (“TLoop”) with
λ = 10−2 applied to base mechanical trajectories of two different
lengths, θ . Each curve results from averaging over three stochastic
simulations. (b) Fraction of phosphorylated substrates in the steady
state as a function of λ for base mechanical trajectories of different
lengths, θ . In the fast-diffusion regime, the fraction tends to 1/11,
whereas in the slow-diffusion regime, the fraction tends to 10/11
(both limits are marked with dashed lines). In both panels: N = 3375,
K = 
0.3 N�, P =
0.03 N�, S =N − (K+P ), φ=0.2 (χ �0.855),
ε = 0.05, δ = 0.1, q0 = λ/τB, k0 = 0.01 q0.

from the fact that joins that are more frequent than for θ =
10 τB introduce additional mixing [as analyzed in Fig. 3(b)].

D. State-to-state transition rates in a bistable system

Trajectory looping can be applied to enhance sampling of
rare events in stochastic spatially extended systems. In this
subsection we analyze events of switching between metastable
states in a bistable reaction–diffusion system that has been
analyzed previously by means of on-lattice kinetic Monte Carlo
simulations in Ref. [21]. The system contains autophosphory-
lating bisphosphorylatable kinasesK and phosphatases P , that
react as follows:

Ku + Ku
2c1−→ Ku + Kp, Ku + Kp

c1−→ Ku + Kpp, (2a)

Kp + Ku
2c2−→ Kp + Kp, Kp + Kp

c2−→ Kp + Kpp, (2b)

Kpp + Ku
2c3−→ Kpp + Kp, Kpp + Kp

c3−→ Kpp + Kpp, (2c)

P + Kpp
2q0−→ P + Kp, P + Kp

q0−→ P + Ku. (2d)

Stochastic kinetics of the system exhibits fast fluctuations
in the vicinity of each of the metastable steady states and
relatively infrequent switches between basins of attraction of
these states, as shown in Fig. 5(a). Of note, the timescale
associated with switching can be much longer than θ or
the reactor-scale Brownian time. Trajectories of the system
simulated with trajectory looping with a sufficiently small
λ exhibit characteristic bimodal distribution of states, de-
picted in Fig. 5(b) (for λ = 10−1 the system is effectively
monostable). Stationary state distribution is sensitive to λ. For
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FIG. 5. State-to-state transitions in the bistable reaction system
(2). (a) Exemplary trajectory resulting from trajectory looping with
λ = 3×10−2. (b) Comparison of the stationary probability distribu-
tion resulting from simulations with trajectory looping (“TLoop”) for
five values of λ and simulations according to the Gillespie algorithm
with reaction rates scaled by the expected number of neighbors (su-
perscript “SRR”). (c) Mean residence times in both metastables states,
estimated based on 1000 transition events. Results from the Gillespie
algorithm-based simulations, in which phosphorylation reaction rates
are either decreased or increased by one per-mille, are denoted
with superscripts “SRR−0.1%” and “SRR+0.1%,” respectively. In
all panels: N = 500, ρK = 0.8, ρP = 0.2, K = ρK N , P = ρP N ,
φ = 0.2 (χ � 0.855), ε = 0.05, δ = 0.1, θ = 100 τB, q0 = λ/τB,
c1 = 0.025 q0, c2 = 0.0075 q0, c3 = q0.

λ = 1×10−3, when the system is well mixed, the distribution
matches perfectly the distribution obtained from the Gillespie
algorithm-based simulations with scaled reaction rates. The
residence times or, equivalently, the mean first-passage times
that correspond to distributions shown in Fig. 5(b), obtained
each from at least 1000 switches, are contained in Fig. 5(c).
Since in cellular biochemistry kinase phosphorylation is often
associated with its activation, the state of low (high) number
of Ku is referred to as the active (inactive) state. The ratio
τactive/(τactive + τinactive) is the same as the probability mass
contained in the first peak of a respective bimodal distribution
in Fig. 5(b). When in the Gillespie algorithm-based simulations
the phosphorylation rates (c1, c2, and c3) are either decreased
or increased by just one per-mille (0.1%), τactive and τinactive are
noticeably different [Fig. 5(c)]. This, in addition to the match of
probability distributions shown in Fig. 5(b), indicates that the
well-mixed limit parameters can be reproduced by trajectory
looping to a very high accuracy.

E. Traveling waves in a bistable system

In spatially extended domains, the stochastic bistable
reaction–diffusion system, Eq. (2), admits traveling wave so-
lutions. In the mean-field limit, the evolution of the normalized
kinase species concentrations ku, kp, and kpp (where ku+
kp+kpp =1) is governed by the system of partial differential
equations (PDEs):

∂ku

∂t
= D∇2ku + Q0kp − 2(C1ku + C2kp + C3kpp)ku, (3a)

∂kp

∂t
= D∇2kp + 2(C1ku + C2kp + C3kpp)ku + 2Q0kpp

− (C1ku + C2kp + C3kpp)kp − Q0kp, (3b)

∂kpp

∂t
= D∇2kpp + (C1ku + C2kp + C3kpp)kp − 2Q0kpp,

(3c)

where the diffusion coefficient D is equal to that of the
spatial stochastic system for the appropriate volume fraction.
Reaction rate coefficients Ci and Q0 are related to the original
coefficients ci and q0 as follows: Ci = (K/N )χci and Q0 =
(P/N )χq0, where N is the total number of molecules, K is the
number of kinases, and P is the number of phosphatases. To
obtain traveling wave solutions to Eqs. (3), we assume that the
functions ku, kp, and kpp depend only on time and one spatial
variable z, and start from initial condition in which for z < 0
the system assumes one of two stable states, whereas for z � 0
it assumes the other.

We performed simulations of the spatial stochastic model
within trajectory looping using the base mechanical trajectory
of length θ = 10 τB in an elongated domain that contained
N = 5000 molecules at the volume fraction φ = 0.2. The
simulations started from the initial condition [Fig. 6(a)] in
which the whole domain is in the inactive stationary state
(high fraction of Ku) except for a stretch of length of 10%
of the domain, which is in the active state (low fraction of Ku).
Propagation of (stochastic) activating traveling wave implies
that the area occupied by the active state increases (approxi-
mately) linearly with time as 2ν×t , where ν is the propagation
velocity; coefficient 2 arises from the fact that the traveling
wave propagates in both directions. As a result, the fraction of
Ku averaged over the whole domain, fu(t ), decreases linearly
with time [Fig. 6(b)]:dfu/dt = 2ν(f active

u − f inactive
u )/�, where

f active
u and f inactive

u denote the value of fu in the active state
and in the inactive state, respectively, and � is the length of
the domain. Based on the above formula we can calculate the
traveling wave velocity as

ν = dfu

dt

�

2
(
f active

u − f inactive
u

) . (4)

To estimate ν(λ) numerically, for each λ we performed 20
simulations and based on the profiles of f inactive

u (t ) we esti-
mated dfu/dt . In Fig. 6(c) we show that these estimates are in
agreement with the values obtained from numerical solutions
of Eqs. (3) in Matlab (The MathWorks, Inc., USA).
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FIG. 6. Stochastic traveling wave in the bistable system (2). (a) Five snapshots from the trajectory of a propagating wavefront. Simulation
parameters for the base mechanical trajectory are: N = 5000, φ = 0.2, θ = 10τB, and ε = 0.1. Simulation was performed in the box of the
dimensions ratio 1:1:78 and length � = 860a with periodic boundary conditions in three directions. Simulation parameters for chemical reactions
are: q0 = λ/τB, c1 = 0.005 q0, c2 = 0.038 q0, c3 = q0, K = 0.8 N , P = 0.2 N , λ = 0.05. (b) Fractions of kinase species in time. (c) Wavefront
propagation velocity as a function of λ. Insert shows results of 20 simulations (all for λ = 0.05) used to estimate dfu/dt . The error bars represent
the standard error of the mean.

III. DISCUSSION

Systems of coupled biochemical reactions which underlie
cellular regulatory processes often have two or more steady
states associated with cell physiological outcomes [22–24].
Noise—inherent in biochemical systems—allows for transi-
tions between these states [25,26]. The transitions can however
be notoriously rare: biochemically implemented genetic switch
in phage λ requires millions of generations to switch on
the lytic pathway [27]. Since transition times are typically
much longer than relaxation times of monostable biochemical
systems, sampling of transition events in spatially extended
systems by means of direct simulations is computationally very
demanding.

Chemical kinetics in spatially extended stochastic systems
strongly depends on the diffusivity of substrates. While in
well-mixed systems time to a stochastic transition grows
exponentially with the size of the system [28], spatially
extended systems at a small diffusivity have their transition
rates very different from those of the corresponding systems
in the well-mixed limit. This is because for slow diffusion the
state-to-state transitions can be achieved by means of a local
transition that initiates a traveling wave [1] which then drives
the whole reactor towards the “more stable” steady state [29].
Even though the expected time for nucleation of the wave
is much shorter than the time necessary for a simultaneous
switch of the whole domain, both timescales may be orders of
magnitude longer than time required by a molecule to cover a
distance comparable to the reactor diameter.

Trajectory looping is capable of reaching simulated times
orders of magnitude longer than the simulated length of base
mechanical trajectory, significantly enhancing the sampling of
rare events. Assuming that τB of a protein molecule in a signal-
ing system is of order of 10−6 s of real time (as can be estimated
based on, e.g., Ref. [30]), simulated time required to estimate

transition times in the analyzed bistable system for λ = 10−2

should be of order of an hour. The trajectory looping algorithm
is thus suitable for simulating reaction–diffusion systems on
the physiologically relevant timescales at the single-molecule
resolution. The method is independent of the numerical scheme
used to obtain the underlying base mechanical trajectory; it
can be applied equally well to mechanical trajectories with or
without hydrodynamic interactions.

We verified the accuracy of the proposed method in three
cases: (i) in the limits of fast and slow diffusion, by comparing
simulated steady state values of monostable system with an
analytical prediction; (ii) in the limit of fast diffusion, by
comparing trajectory looping simulations with those obtained
using Gillespie algorithm; (iii) in the elongated domains, we
reproduced traveling wave solutions, and showed that the
wavefronts propagate with the average velocity consistent with
that predicted by numerical solutions of the corresponding
system of PDEs. Since the trajectory looping algorithm ben-
efits from reusing multiple times the same base mechanical
trajectory, the number of molecules in the simulated system
cannot change. Such systems are common in models of cellular
signal transduction pathways that are based on reversible
covalent substrate modifications, such as phosphorylation,
ubiquitination, or acetylation.

In addition to the problems analyzed in this article, we
expect that trajectory looping can be applicable to capture and
characterize other behaviors and properties that can be hardly
observable in spatial stochastic simulations such as the range of
a homoclinic traveling wave, time to extinction of an oscillating
system, or synchronization of oscillators (both in systems with
a limit cycle). Exemplary bimolecular reaction systems that are
extensions of system Eq. (2) and allow for either a homoclinic
traveling wave or a limit-cycle oscillations are provided in the
Appendix.
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TABLE I. Computational cost associated with key procedures used to perform simulations with and without looping. Computational
complexity of obtaining the base mechanical trajectory depends on the underlying method and may vary from O(N ) for cell list-based
approaches to O(N3) in the case of simulations that include, e.g., hydrodynamic interactions. The last column contains single-core processor
times and the number of calls to a given procedure in the case of a trajectory looping-based simulation.

Number of calls

Procedure without looping with looping Complexity CPU time for Fig. 5 (λ = 10−2)

Base mechanical trajectory (of length θ ) K 1 O(N ) to O(N3) 3 h (×1)
Base contacts sequence K 1 O(N2) 1 min (×1)
Assignment (Hungarian algorithm) 0 K O(N3) 10−2 s (×K)
Chemical trajectory (within θ ) K K O(N ) 1 s (×K)

IV. METHODS

A. Brownian dynamics simulation

The algorithm of trajectory looping is described in detail in
the first subsection of the Results section. The base mechanical
trajectory, which is an input to trajectory looping, is obtained
independently. Below we describe the method for obtaining
the base mechanical trajectories used in simulations reported
in this article.

Base mechanical trajectories were generated using standard
Brownian dynamics simulations of N identical molecules.
The volume V of the simulation box was set to match the
required volume fraction φ = N × v/V , where v = (4/3)πa3

is the single-molecule volume. In both cubic and elongated
cuboidal boxes, periodic boundary conditions were assumed
at all boundaries. Average distance traveled by a molecule in
a single simulation time step �t is of order of

√
�t × D0.

To set the time step we compare this distance with charac-
teristic surface-to-surface distance between molecules, dss =
(V/N )1/3 − 2a, which is the distance between surfaces of
neighboring molecules arranged in a cubic lattice at a given
φ. To this end, we introduce parameter ε and set �t =
(ε × dss )2/D0. In all simulations ε × dss < δ, which makes
the probability of omitting a reaction event low.

Molecules interact with a hard-sphere potential ensuring
perfectly elastic collisions [31,32]. In every time step, potential
random displacements of all molecules are calculated with
zero mean and the variance equal 〈r2(τ =�t )〉0 = 6D0 × �t .
Based on initial molecule positions and velocities calculated
from the displacements, a list of collisions is created. If
there are no collisions, molecules are moved directly to
their target locations. If the list of colliding molecules is
nonempty, molecules are moved with constant velocities until
a first collision. Upon a collision, positions and velocities
of the colliding molecules and the list of all further colli-
sions are updated. Due to the presence of other molecules
in the simulation box, the mean square displacement of
a molecule in the base mechanical trajectory of duration
θ , 〈r2(τ =θ )〉φ = ∑N

i=1 | �Ri (θ ) − �Ri (0)|2/N , is smaller than
〈r2(τ =θ )〉0 = (M − 1) × 〈r2(τ =�t )〉0.

B. Simulation times

A detailed digest of computational cost of the procedures
used to generate the key data structures present in Fig. 1
is provided in Table I. Generation of the base mechanical

trajectory that was used to estimate probability density dis-
tribution in the bistable reaction system, Eq. (2), presented in
Fig. 5(b), required about 3 h of a single-core processor. At
λ = 10−2, simulation time of the base mechanical trajectory is
θ = 1 [q−1

0 ], whereas simulation time to observe 1000 switches
that were used to estimate both τactive and τinactive [Fig. 5(c)]
is 1000 × (8.5 + 7.4)×103 � 1.6×107 [q−1

0 ], which means
that within trajectory looping the base mechanical trajectory
was reused K = 1.6×107 times. Single-core processor time
to obtain the looped chemical trajectory (see Table I for
processor times of individual procedures) was 3 h + 1 min +
K × (10−2 s + 0.5 s) � 3 months (in practice, the simulations
were performed in parallel on a computer cluster, so this is
an aggregate real time). In a direct, naive approach without
trajectory looping, in which diffusive steps are interleaved with
simulation of chemical reactions, single-core processor time to
obtain equally long chemical trajectory could be estimated (see
Table I) as K×(3 h + 1 min + 0.5 s), which amounts to more
than 5000 years.

We should notice that simulation of the trajectory used to
estimate probability density distribution for the same reaction
system Eq. (2) [dotted line in Fig. 5(b)], but without spatial res-
olution (i.e., under the assumption that the system is perfectly
mixed) using Gillespie algorithm takes only 5 min.
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APPENDIX: EXTENDED BIMOLECULAR
REACTION SYSTEM

When the system Eq. (2) is amended with an additional
mechanism of inactivation of kinases K, mediated by a K-
phosphorylatable inhibitor I that shares phosphatase P with
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kinases K:

Kpp + Iu
2c4−→ Kpp + Ip, (A1a)

Kpp + Ip
c4−→ Kpp + Ipp, (A1b)

Ipp + Kpp
2c5−→ Ipp + Kp, (A1c)

Ipp + Kp
c5−→ Ipp + Ku, (A1d)

then the corresponding system of PDEs:

∂ku

∂t
= D∇2ku + (Q0 + C5ipp)kp

− 2(C1ku + C2kp + C3kpp)ku, (A2a)

∂kp

∂t
= D∇2kp + 2(C1ku + C2kp + C3kpp)ku

+ 2(Q0 + C5ipp)kpp − (C1ku + C2kp + C3kpp)kp

− (Q0 + C5ipp)kp (A2b)

∂kpp

∂t
= D∇2kpp + (C1ku + C2kp + C3kpp)kp

− 2(Q0 + C5ipp)kpp, (A2c)

∂iu

∂t
= D∇2iu − 2C4kppiu + Q1ip, (A2d)

∂ip

∂t
= D∇2ip + 2C4kppiu + 2Q1ipp − (Q1 + C4kpp)ip,

(A2e)

∂ipp

∂t
= D∇2ipp − 2Q1ipp + K4kppip, (A2f)

exhibits excitable (traveling pulse) dynamics for parameter
values:

Q0 = 1,

C1 = 0.02,

C2 = 0.2,

C3 = 4,

C4 = 0.03,

C5 = 1,

Q1 = 0.003,

D = 0.1

and limit-cycle oscillations for parameter values:

Q0 = 1,

C1 = 3×0.02,

C2 = 3×0.2,

C3 = 3×4,

C4 = 10×0.03,

C5 = 10×1,

Q1 = 10×0.003,

D = 0.1.

[1] J. Keener and J. Sneyd, Mathematical Physiology (Springer,
New York, 1998).

[2] T. Ando and J. Skolnick, Crowding and hydrodynamic interac-
tions likely dominate in vivo macromolecular motion, Proc. Natl
Acad. Sci. USA 107, 18457 (2010).

[3] D. T. Gillespie, Exact stochastic simulation of coupled chemical
reactions, J. Phys. Chem. 81, 2340 (1977).

[4] R. M. Donovan, J.-J. Tapia, D. P. Sullivan, J. R. Faeder, R. F.
Murphy, M. Dittrich, and D. M. Zuckerman, Unbiased rare event
sampling in spatial stochastic systems biology models using
a weighted ensemble of trajectories, PLOS Comput. Biol. 12,
e1004611 (2016).

[5] H. Kuwahara and I. Mura, An efficient and exact stochastic sim-
ulation method to analyze rare events in biochemical systems,
J. Chem. Phys 129, 165101 (2008).

[6] C. Dellago, P. G. Bolhuis, F. S. Csajka, and D. Chandler,
Transition path sampling and the calculation of rate constants,
J. Chem. Phys. 108, 1964 (1998).

[7] R. J. Allen, P. B. Warren, and P. R. ten Wolde, Sampling Rare
Switching Events in Biochemical Networks, Phys. Rev. Lett. 94,
018104 (2005).

[8] J. Elf and M. Ehrenberg, Spontaneous separation of bi-stable
biochemical systems into spatial domains of opposite phases,
Syst. Biol. 1, 230 (2004).

[9] J. S. van Zon and P. R. ten Wolde, Simulating Biochemical
Networks at the Particle Level and in Time and Space: Green’s
Function Reaction Dynamics, Phys. Rev. Lett. 94, 128103
(2005).
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