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In this paper we study the dynamics of a multiplex multilayer network, where each layer is composed of
identical Kuramoto-Sakaguchi phase oscillators with nonlocal coupling. We focus on a three-layer multiplex
network and observe a specific form of multiplex network behavior, the macroscopic chimeralike state. It is
decomposed by a splitting of the layers with initially close dynamics into subgroups. The first group consists of
two layers performing one type of dynamics, whereas the rest perform the other type, after the introduction of
interlayer coupling. Based on an intensive computational analysis, we show that areas of macroscopic chimeralike
states are observed close to the critical transition points of intralayer (microscopic) states in the parameter space.
We find that this macroscopic chimeralike state is excited at weak and medium interlayer coupling strength,
wherein the interlayer phase lag here plays an important role, since this is a network parameter which controls
macroscopic dynamics and transforms boundaries between intralayer states. The obtained numerical results are
validated analytically by considering the multiplex network dynamics using the Ott-Antonsen reduction of the
governing network equations.
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I. INTRODUCTION

The chimera state discovered by Kuramoto and Battogtokh
[1] and proven theoretically by Abrams and Strogatz [2] is
a specific form of a nonlinear oscillator ensemble behavior
which manifests as a network symmetry breaking and split
into coexisting populations of synchronous and desynchro-
nized elements. Since that time the phenomenon of chimera
behavior has excited significant interest and has given rise to
numerous theoretical and experimental works (see the review
on chimera states by Panaggio and Abrams [3]). In this
framework, chimera patterns have been observed in various
systems, e.g., laser networks [4,5], neural ensembles [6–9], and
coupled chemical [10–12], mechanical [13–17], and electronic
oscillators [18–20]. Despite the significant progress made on
the way to understanding the nature of chimera states and
its possible applications in science and technology plenty of
challenging tasks still remain poorly studied.

Typically, when studying properties of chimera states, com-
plex networks are studied whose nodes contain single nonlinear
oscillators coupled according to different link topologies.
However, we suppose that it could also be interesting to
analyze similar effects in networks whose nodes themselves
are complex subnetworks. Such a network topology could be
a relevant model to describe many real-life systems, which
exhibit complex organization and hierarchical structure, e.g.,
transportation networks [21], population networks [22], social
networks [23], and functional network of brain cortex [24].
In this framework, the interaction between subnetworks re-
flects macroscopic properties of the whole network, while the

processes of self-organization and structure formation taking
place inside each subnetwork are considered as microscopic
properties of the whole network [25]. Thus, the issue related to
macrolevel pattern formation analysis essentially follows from
the nature of such networks and has been poorly studied so far.
Previously, Martens [26] studied chimera states in a triangular
network, which is the simplest network topology that demon-
strates chainlike and ringlike properties and consists of three
subpopulations. It has been shown that along with all-coherent
and all-incoherent group behavior such a system demonstrates
two stable chimera attractors, which are associated with the
coexistence of coherent and incoherent groups and are born
through a saddle-node bifurcation.

Another interesting concept of complex network topol-
ogy when subnetworks are interconnected and interact with
each other is multilayer multiplex networks [27–29]. In the
framework of this approach to complex network construction,
subnetworks are represented as isolated layers, where an
individual node takes part in several layers simultaneously.
Such network topology reflects properties of many real-life and
complexly organized systems, for example, the neural network
of the brain cortex, where each layer represents network dy-
namics corresponding to different brain rhythms [30]. Recent
studies of chimera pattern interactions formed at different
levels of a two-layer multiplex network [31,32] have shown
that, depending on the value of interlayer coupling, chimera
patterns could be either excited or suppressed. In these works
authors analyzed mostly microlevel network dynamics, taking
into account only chimera pattern properties individually on
each layer of the multiplex network.
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The discovered effects raise important questions. Namely,
is it possible to observe a chimera state on the macroscopic
level of the multilayer multiplex network? In other words,
does multiplex topology allow for a macroscopic chimera or
chimeralike state in a similar way as observed by Martens in
the case of a triangular network? Finding such regimes of
multiplex network behavior characterized by a macroscopic
level symmetry breaking, when the subnetworks located at
different layers split into different spatiotemporal patterns,
would widen the view on the phenomenon of the chimera
state, which was originally discovered for a single group of
interacting nonlinear oscillators. In this context we call this
phenomenon a macroscopic chimera.

This work aims at studying regimes of macroscopic
chimeralike behavior under the interaction between identical
layers in a three-layer network coupled by multiplexing. In
particular, we have found long-living macroscopic chimera
attractors, which appear in the formation of different spatial
patterns on different network layers. Finding and examining
the macroscopic chimera regimes is relevant in the context of
a deeper understanding of complex systems described in the
framework of multiplex models. Along with the finding of such
chimeralike regimes in multiplex networks, we infer the rela-
tions between microscopic and macroscopic self-organization
processes.

This paper is organized as follows. We state the model
equations and describe its main properties in Sec. II A. Ad-
ditionally, a detailed description of the method for estimation
of layer coherence degree is outlined in Sec. II B. Next, in
Sec. III, we discuss the results of our numerical simulations
and describe the phenomenon of a macroscopic chimeralike
behavior, along with analyzing the emergence of macroscopic
chimera dependent on network control parameters. In Sec. IV
we validate the obtained numerical results on the macroscopic
chimera regime in the framework of the Ott-Antonsen reduc-
tion [33,34]. Finally, we summarize and discuss the results of
macroscopic chimera in Sec. V.

II. MATHEMATICAL MODEL AND METHODS

A. Multilayer network model

The multilayer multiplex networks under study consist of
L = 3 layers, each having N = 100 nodes, as schematically
represented in Fig. 1(a). One can notice that each node of the
multiplex network performs two types of coupling: intralayer
(solid lines) and interlayer (dashed lines). The dynamics
of the nodes is described by identical Kuramoto-Sakaguchi
(KS) equations, which are paradigmatic models allowing for
chimera patterns,

dφl
i

dt
= ω0 − λ1

2Rc

r=i+Rc∑
r=i−Rc

sin
(
φl

i − φl
r + α1

)

+ λ2

2

∑
k �=l

sin
(
φl

i − φk
i + α2

)
, (1)

where φ
j

i is the phase of the ith KS oscillator on the j th layer,
ω0 is the natural frequency, λ1 and λ2 are the strengths of intra-
and intercoupling, respectively, Rc is the radius of the nonlocal

intralayer coupling, and α1 and α2 are the coupling phase lag
corresponding to intra- and interlayer coupling, respectively.
Here the subscripts denote the number of KS oscillators and
superscripts denote the number of layers. It should be noted that
φ

j

−i = φ
j

N0−i . The second term on the right-hand side in Eq. (1)
stands for a nonlocal intralayer coupling and the third one
determines a multiplex all-to-all interlayer coupling. Without
loss of generality, we set ω0 = 0 throughout the study.

The initial phase distribution has been chosen in the form
of a cosine wave, which is slightly shifted on each layer with
respect to the others:

φl
i (0) = −π cos

(
2π

i − l

N

)
. (2)

This initial condition set allows for a microscopic chimera
pattern formation.

To reduce the number of network control parameters, let us
fix the coupling radius Rc = 35 and the coupling strength λ1 =
0.085, which determine the intralayer coupling properties. In
this case, the microscopic dynamics of each single layer is
controlled by only one parameter, the coupling phase lag α1.
As we will show below, an increase of α1 from 1.4 to 1.6
leads to the transition from a synchronous layer dynamics to
desynchronization of layer nodes through the birth of a partially
synchronized chimera state.

Based on the knowledge of microscopic KS layer properties
dependent on the control parameter α1, we return to the entire
network, which consists of three identical layers coupled by
multiplexing. It should be noted that the term “identical” means
that all the layers of the multiplex network are described in
terms of identical mathematical equations (1) with identical
control parameters but slightly mismatched initial phase dis-
tributions (2). Let us denote hereinafter the macroscopic states
of the network with three capital letters, each of which reflects
the type of microscopic state on each layer of the network,
e.g., SSS denotes the network state, where all layers perform
a synchronized behavior on the microscopic level.

B. Coherence measure

To describe the collective behavior of the multiplex net-
work, we introduce the coherence measure (CM) based on
the layer recurrence matrix construction, which shows the
coherence level individually for each layer. Generally, the
recurrence-based methods are used to analyze time-dependent
data and to find a time-series correlation in the time do-
main [35]. Inspired by the recurrence-based methods, we
propose an approach to measure the spatial correlation in the
network of interacting oscillators and classify intralayer states.
It should be noted that our approach is relative to the method for
classification of chimera states recently proposed by Kemeth
[36]. However, in our approach we use the recurrence matrix to
estimate local coherence in the subgroup of each layer element
and afterward calculate the total CM to characterize the whole
layer state. Thus, the CM represents a relative size of coherent
subpopulation within a single layer of the multiplex network.

Following [35], to determine the CM, we start with the
calculation of the network recurrence matrix

Rij = H (ε − |φi − φj |), (3)
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FIG. 1. (a) Schematic illustration of a three-layer multiplex network of Kuramoto-Sakaguchi oscillators with a nonlocal intralayer coupling
and a global interlayer coupling [Eq. (1)]. (b) Dependence of coherence measure σ [Eq. (5)] on the controlling parameter α1 for a single network
layer with the following parameters: λ1 = 0.085 and Rc = 35. Bold vertical lines indicate single-layer critical transitions: the synchronized-
chimera transition at α1 = 1.45 and the chimera-desynchronized transition at α1 = π/2. Examples of different single-layer states corresponding
to different regimes: (c) synchronized as S (α1 = 1.42), (e) chimera as C (α1 = 1.52), and (d) desynchronized as D (α1 = 1.59).

where H is the Heaviside function and the matrix element
Rij is equal to 1 if the state of the j th node of a layer lies in
the ε neighborhood of the ith node. In Fig. 2(a) one can see
that in the coherent part of the network layer phases of the
KS oscillators are not precisely equal and form a curvature on
the presented snapshot. Taking this into account, we set the
threshold value ε = 0.2 to provide an appropriate calculation.
Based on the obtained matrix R, one can compute the local
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FIG. 2. (a) Typical pattern of the chimeric single-layer network
observed at α1 = 1.52, Rc = 35, and λ1 = 0.085. (b) Local coherence
measure σi of the KS ensemble corresponding to the considered
pattern shown in (a).

coherence measure of the ith node (σi) by summing over a
local neighborhood of the ith element

σi = 1

2�

i+�∑
j=i−�

Rij , (4)

where � is half the size of the ith local neighborhood. We have
found that an appropriate estimation of σi is given if the size
of the local neighborhood is a few percent of the size of the
entire layer. Since we have considered N = 100 nodes within
each layer, we set � = 3 to give an appropriate estimation of
the CM.

We demonstrate the process of CM estimation for the
example of a chimeric single-layer network presented in
Fig. 2(a). One can see in Fig. 2(b) that σi is close to 1.0 in
the area corresponding to the coherent subpopulation (chimera
state), but differs from 1.0 elsewhere.

Finally, one can determine the total coherence measure σ

by summing those σi exceeding the threshold value δ over the
ensemble

σ = 1

N

N∑
i=1

H (δ − σi ). (5)

According to the typical values which σi takes in coherent and
incoherent subpopulations as presented in Fig. 2(b), we set
δ = 0.7.

In the framework of the proposed recurrence-based ap-
proach, the CM provides the estimation of the size of the syn-
chronized part inside a single layer. Thus, σ = 0 corresponds
to a totally desynchronized behavior within the layer, σ = 1
corresponds to a totally synchronized layer dynamics, and
0 < σ < 1 indicates the formation of partially synchronous
or chimera patterns as shown in Figs. 1(b)–1(d). Let us denote
the microscopic states associated with synchronized, chimera,
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and desynchronized layer dynamics by single capital letters S,
C, and D, respectively. Indeed, one can see in Fig. 1(b) that the
single-layer dynamics undergoes two critical transitions under
variation of the phase lag α1. An increase of α1 leads to the
transition from a synchronous layer dynamics S [Fig. 1(c)] to
desynchronization of the layer nodes D [Fig. 1(e)] through the
birth of a partially synchronized chimera state C [Fig. 1(d)].
Namely, the transition from S to C is observed at α1 = 1.45
and the transition from C to D corresponds to α1 = π/2. In
this particular case, the coherent subpopulation of the network
layer includes 22 nodes and σ = 0.22. Thus, we can conclude
that calculation of the CM provides a good estimation of the
relative coherent group size of the network layer.

III. NUMERICAL RESULTS

To perform an accurate analysis of the considered three-
layer multiplex network and solve the system of ordinary
differential equations (1) numerically, we have used the fourth-
order Runge-Kutta method. The calculations have been carried
out by taking the integration time step as dt = 0.01.

Let us start the analysis from the case of weak interlayer
coupling. In this situation, one can expect that the weak
coupling between the layers, which exhibit close dynamical
regimes, will contribute to either synchronization or desyn-
chronization of interacting network layers with conservation
of the dynamical properties within each layer. However, such
regimes are rather trivial and understandable. In our study
we focus on finding conditions which allow for a symmetry
breaking on the macroscopic level of the considered three-layer
network, i.e., when a group of two layers of the multiplex
network exhibit similar dynamics, whereas for the rest one
performs the other type of behavior. In this sense, we call such
regimes macroscopic chimeralike regimes. We suppose that
such chimeralike regimes can be observed in the neighborhood
of microscopic critical transitions shown in Fig. 1(b). Figure 3
illustrates the transitions between different types of macro-
scopic behavior of the considered multiplex network under
the variation of α1 in the case of weak interlayer coupling
λ2 = 0.005 and a small value of interlayer phase lag α2 = 0.5.
We see that the previously described expectations are justified
and network macroscopic states, which are characterized by
the establishment of similar microscopic states at all the
layers, are represented in a wide range of α1. In particular,
the SSS state with σ1 = σ2 = σ3 = 1 lies in the range α1 �
1.44, the DDD state in the range α1 � 1.56, and the CCC

state corresponds to α1 ∈ [1.4575, 1.5575]. These ranges are
characterized by a long-living (at least during a few thousand
time units) macroscopic state. At the same time, one can
see the excitation of macroscopic chimeralike states in two
rather narrow areas: (i) at the boundary between SSS and
CCC (α1 ∈ [1.4425, 1.455]) and (ii) at the boundary between
CCC and DDD (α1 ∈ [1.5525, 1.5575]). We note that in the
first region chimeralike states consist of coexisting chimeric
and synchronized layers (CSS and CCS states), whereas
the second one is composed of one chimera layer and two
desynchronized layers (the CDD state). Surprisingly, we have
not observed CCD states in the considered multiplex system;
CCD states, initiated after switching the interlayer coupling,
typically collapsed into either CDD or DDD states.
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FIG. 3. Dependences of the coherence measure σ calculated for
each layer of the multiplex network on intralayer phase lag α1 under
weak interlayer coupling λ2 = 0.005 in the case of a low value of
interlayer phase lag α2 = 0.5. The snapshots of the phase φi and
mean phase velocity 〈θ〉i of the multilayer network are taken at 7000
time units after introduction of interlayer coupling.

It is important to note that these chimeralike states are
also long living. Based on this observation, one can conclude
that these chimeralike states, CSS, CCS, and CDD, appear
as some intermediate states at the boundary between the
completely symmetric macroscopic states. In these narrow
areas the chimeralike behavior on the macroscopic level of
the network is excited due to the overlapping of regions of
neighboring microscopic states under an interlayer interaction.
The latter causes multistability of microscopic states, namely,
the coexistence of two types of microscopic states: S and C in
the case of CSS and CCS states and C and D in the case of the
CDD state. The described chimera states become suppressed
under the increase of the interlayer phase lag α2 in the case of
a weak interlayer coupling (Fig. 4). It can be clearly seen that
the macroscopic chimera areas vanish at α2 = 2.2. Moreover,
the SSS and DDD states perform an interlayer coherence
at high values of α2. We determine interlayer coherence as
equality of node phase and mean phase velocity on each layer
(φ1

i = φ2
i = φ3

i and θ1
i = θ2

i = θ3
i ).

An increase of the interlayer coupling strength λ2 signif-
icantly changes the multiplex network dynamics. Figure 5
shows the transitions between the macroscopic states of the
network under variation of α1 for increasing λ2 = 0.02. In
particular, one can see from Fig. 3 that at low values of α2 =
0.5, the increase of λ2 suppresses the macroscopic chimera
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FIG. 4. Dependences of the coherence measure σ calculated for
each layer of the multiplex network on the intralayer phase lag α1

under weak interlayer coupling λ2 = 0.005 in the case of a high
value of interlayer phase lag α2 = 2.2. The insets illustrate various
states emerging in the multilayer network in different ranges of control
parameters. The snapshots of the phase φi and mean phase velocity
〈θ〉i of the multilayer network are taken at 7000 time units after
introduction of interlayer coupling.

state in the multiplex network and considerably widens the
area of the DDD state. Here the boundary between the CCC

and DDD states shifts to α1 ≈ 1.5 instead of π/2 in the
uncoupled case. At the same time, the macroscopic chimeralike
state of the multiplex network appears at higher values of α2

[Fig. 5(b)], where α2 = 1.4. It can be clearly seen that in this
case only the CDD-type chimeralike state with coexisting
chimeric and desynchronized layers survives in the network.
One can also see that the parameter range associated with
excitation of macroscopic chimera behavior at λ2 = 0.02 is
significantly expanded in relation to the previously considered
weak coupling case.

The introduction of strong interlayer coupling totally sup-
presses the formation of chimeralike behavior in the multiplex
network. Figure 6 illustrates the transitions between macro-
scopic states for a strong interlayer coupling λ2 = 0.1. In this
case, we find an abrupt transition from the SSS state directly
to the DDD state at α2 < π/2. In addition, at α2 � π/2 all the
layers of the multiplex network perform interlayer coherence,
where each element is synchronized with the same elements
in the other layers under the influence of strong interlayer
coupling. Note that the boundaries between macroscopic states
in the case of strong interlayer coupling and high values of
α2 correlate well with boundaries between microscopic states
obtained for a single layer. Taking the latter into account,
one can conclude that interlayer synchronization forces the
multiplex network to induce dynamical properties, which are
close to the single-layer behavior.

Finally, we analyze the network behavior and evolution
of the boundaries between different macroscopic states in a
wide range of control parameters in more detail via the map

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.4  1.45  1.5  1.55

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.4  1.45  1.5  1.55

σ

σ

α1

(a)

(b)

α1

Layer 1
Layer 2
Layer 3SSS CCC DDD

SSS CCC DDD
macroscopic
chimera

π/2

π/2

α2=0.5

α2=1.4

FIG. 5. Dependences of the coherence measure σ calculated for
each layer of the multiplex network on intralayer phase lag α1 under
interlayer coupling strength λ2 = 0.02 in the cases of (a) a low value
of interlayer phase lag α2 = 0.5 and (b) a higher value of interlayer
phase lag α2 = 1.4.

of dynamical regimes on the plane (α1, α2) under increasing
interlayer coupling λ2 (Fig. 7). We uncover that weak in-
terlayer coupling [Fig. 7(b)] does not significantly transform
the boundaries compared to the uncoupled case [Fig. 7(a)]. It
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value of interlayer phase lag α2 = 0.5 and (b) a higher value of
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in the framework of Ott-Antonsen reduction, which is illustrated in Fig. 8.

only allows for the occurrence of narrow macroscopic chimera
areas in the neighborhood of the boundaries. We note that the
macroscopic chimera region with coexisting C and S states
is divided into CSS and CCS areas. It is essential that the
CSS area is located close to the SSS region and CCS in turn
is close to CCC. In the case of weak coupling, the boundary
of the DDD state becomes slightly twisted with respect to
the same boundary in the uncoupled case. The increase of
the interlayer coupling strength, as shown in Fig, 7(c), makes
the twisting of the boundaries more pronounced. The twisting
of the DDD boundary overlaps the CCC region in the area
of low α2 and twisting of the SSS boundary overlaps the
CCC area at high values of α2. The area of the macroscopic
chimeralike behavior of the network moves to the area of
higher values of α2 and vanishes at the boundary between
SSS and CCC states. It can be clearly seen that an interlayer
coupling increase contributes to the growth of the macroscopic
chimera area. It should be noted that at λ2 = 0.02 the region
of interlayer coherence expands on a larger area in the plane
(α1, α2) compared to the previously considered case of weak
coupling. In the case of strong interlayer coupling at λ2 = 0.1
[Fig. 7(d)], the boundaries become extremely twisted, so the
DDD area almost totally overlaps the CCC area. At the
same time the boundary of the interlayer coherence regime
converges to the horizontal line, namely, α2 ≈ π/2. Moreover,
macroscopic chimeralike behavior is suppressed under a strong
interlayer coupling.

Based on the observation of dynamical regime evolution
in the (α1, α2) plane, we conclude that the formation of
macroscopic chimeralike patterns in multilayer multiplex net-
works, as a specific state of networks with coexisting types of
different microscopic states on different layers of the network,
requires the overlapping of neighboring dynamical areas near
the boundary between them. Such overlapping takes place
due to the introduction of an interlayer phase lag at weak
and medium interlayer coupling. Strong coupling leads to

an extreme twisting of the boundaries and an almost total
overlapping, which suppresses the formation of chimeralike
regimes.

In addition, in the considered system a long-living combi-
nation of all three microscopic states within the network (for
example, the SCD state) is impossible since the points of mi-
croscopic critical transitions and corresponding macroscopic
boundaries are widely spaced in the α1 range. Therefore, even
introduction of the interlayer phase lag α2 does not contribute
to the intersection of all three microscopic states in some area
of the (α1, α2) parameter plane.

IV. OTT-ANTONSEN REDUCTION

To prove the results of our numerical study and expand them
to the case of an infinitely large number of oscillators on each
layer, we turn to a description of the multiplex network in the
form of the Ott-Antonsen (OA) ansatz [33,34]. We derive the
equations in the form of the OA ansatz following [31]. Taking
into account Euler’s formula eix = cos (x) + i sin (x), one can
rewrite the governing equations of the three-layer multiplex
network (1) in the form

dφl
i

dt
= ω0 + Im

[
Zl

i (t )e−iφl
i

]
, (6)

where the mean field Zl
i is

Zl
i (t ) = λ1

2Rc

r=i+Rc∑
k=i−Rc

eiφl
r e−iα1 − λ2

2

∑
k �=l

eiφk
i e−iα2 . (7)

As we consider the limiting case of an infinitely large number of
oscillators on each layer N → ∞, the dynamics of the lth layer
is described by the probability density function f l (x, φ, t ),
which conforms to the continuity equation

∂f l (x, φ, t )

∂t
+ ∂

∂φ
(f l (x, φ, t )vl (x, φ, t )) = 0, (8)
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where

vl (x, φ, t ) = dφ

dt
= ω0 + Im[Zl (x, t )e−iφ]. (9)

It should be noted that Zl in (9) is a mean field, rewritten in
the continuous form

Zl (x, t ) =
∫ 1

0
λ1G(x − y)

∫ 2π

0
f (x, φ, t )eiφe−iα1dφ dy

−λ2

2

∑
k �=l

∫ 2π

0
f (x, φ, t )eiφe−iα2dφ. (10)

Here G(�) = H (cos(2π�) − cos(rc2π )) is a nonlocal cou-
pling kernel with coupling the radius rc = 0.35 and H (·) is
the Heaviside step function. We are looking for a solution of
(8)–(10) in the form of a Fourier series, taking into account the
OA ansatz

f l (x, φ, t ) = 1

2π

[
1 +

∞∑
n=1

an
l (x, t )einφ + c.c.

]
. (11)

Substituting (11) into (8)–(10) and introducing the replace-
ment ∫ 2π

0
f l (x, φ, t )eiφdφ = ul (x, t ), (12)

we finally obtain the governing equation to describe the dy-
namics of the considered multiplex network in the framework
of the OA reduction

dul

dt
= −iω0u

l (x, t ) + 1

2

[
Zl (x, t ) − u2

l (x, t )Z
l
(x, t )

]
,

(13)
where Zl (x, t ) is rewritten in the form

Zl (x, t ) = λ1e
−iα1

∫ 1

0
G(x − y)ul (y, t )dy

− λ2

2
e−iα2

∑
k �=l

uk (x, t ). (14)

The complex function ul (x, t ) provides information about the
local order parameter and the local phase as the modulus
|ul (x, t )| and the argument ψ (x, t ) = arg[ul (x, t )], respec-
tively.

Using the derived equations (13) and (14), we have proved
the possibility of macroscopic chimeralike state excitation
in the multiplex network in the case of an infinitely large
number of oscillators, when each layer of the multiplex
network represents a continuous medium. We have chosen
points A and B on the parameter plane (α1, α2) under weak
coupling [Fig. 7(b)], which appear at different boundaries, to
illustrate the emergence of macroscopic chimeralike states in
the limiting case of an infinitely large number of oscillators.
In Fig. 8 we present the space-time evolution of the network
at points A and B much after the introduction of weak
interlayer coupling. We find that the OA model accurately
predicts the same type of multiplex network dynamics on
the macroscopic level, which was previously uncovered in
the framework of a purely numerical investigation. It should
be noted that the macroscopic chimeralike states considered
in the continuous limit, both CSS and CDD, are stable
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Layer 1

Layer 2

Layer 2

Layer 3

Layer 3 C

S

S

C

D

D

(a)

(b)

9.4 9.6 9.8

9.0 9.2 9.4 9.6 9.8

10.0×103

ψ(x,t)

0

π 

-π 

π/2 

-π/2 

time

10.0×103

time

FIG. 8. Spatiotemporal evolution of the phase ψ (x, t ) obtained
via numerical integration of Eqs. (13) and (14), which illustrates the
regimes of stable macroscopic chimeralike behavior in the multiplex
network. Here plots (a) and (b) correspond to points A and B in
Fig. 5(b), respectively, and represent different macroscopic chimera-
like patters. The control parameters are (a) α1 = 1.445, α2 = 0.5, and
λ2 = 0.005 and (b) α1 = 1.555, α2 = 0.5, and λ2 = 0.005.

in time. Thus, consideration of the multiplex network in
the framework of OA reduction proves the observation of
long-living macroscopic chimeralike states in a finite-size
network.

V. CONCLUSION

In this paper we have studied a phenomenon, the macro-
scopic chimeralike state, which emerges in multilayer multi-
plex networks. In particular, we have focused on consideration
of a three-layer multiplex network, where each layer is com-
posed of identical Kuramoto-Sakaguchi phase oscillators with
nonlocal coupling. We have uncovered that this phenomenon
consists in a split of the layers with initially close dynamics
into subgroups, where the group of two layers performs one
type of dynamics and the rest exhibit the other type, after the
introduction of interlayer coupling. Based on the provided
numerical analysis, we reveal conditions which allow for
macroscopic chimera state emergence. In particular, we have
observed that the macroscopic chimera state of the multiplex
network is excited at weak and medium interlayer coupling
strength. The interlayer phase lag plays here an important role
since this is a network parameter which controls macroscopic
behavior and transforms boundaries between intralayer states.
According to the transformation of the boundaries between
intralayer states, there appear areas of overlapping microscopic
states close to the intralayer critical points that conditions
the multistable macroscopic states of the multiplex network,
namely, macroscopic chimera behavior. In turn, the strong
interlayer coupling suppresses the macroscopic chimera due to
the extreme transformation of the boundaries and the absence
of regions of overlapping microscopic states in the control

022320-7



NIKITA S. FROLOV et al. PHYSICAL REVIEW E 98, 022320 (2018)

parameter space. The provided analysis leads to the following
conclusions. First, the macroscopic behavior of the multiplex
network is strongly related to its dynamics on the microscopic
level. Second, weak interlayer coupling with a small phase
lag between the layers crucially transforms the network dy-
namics. As a results, a macroscopic chimera emerges in the
neighborhood of boundaries between microscopic states, i.e.,
microscopic critical points. Additionally, we have proven the
observation of the macroscopic chimeralike states in the finite-
size multiplex network in the framework of Ott-Antonsen
reduction.

The conducted research reveals a number of important is-
sues. For instance, how does the heterogeneity of the multiplex
network nodes affect the macroscopic state of the network

and how does it influence the formation of macroscopic
chimera? In this sense, the macroscopic chimera could be a
relevant model for the description of multistable visual image
perception performed by the human brain neural network and
heterogeneity of the network elements could be associated with
brain cognitive noise [37].
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