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Opinion modeling on social media and marketing aspects
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We introduce and discuss kinetic models of opinion formation on social networks in which the distribution
function depends on both the opinion and the connectivity of the agents. The opinion formation model is
subsequently coupled with a kinetic model describing the spreading of popularity of a product on the Web
through a social network. Numerical experiments on the underlying kinetic models show a good qualitative
agreement with some measured trends of hashtags on social media websites and illustrate how companies can
take advantage of the network structure to obtain at best the advertisement of their products.
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I. INTRODUCTION

Social media are nowadays an important transmission
vehicle of information. In the last 20 years we are witnessing
an explosion of Internet-based messages transmitted through
these media. They have become a major factor in influencing
various aspects of consumer behavior including awareness, in-
formation acquisition, opinions, attitudes, purchase behavior,
to name a few [1–6]. Therefore, more and more companies
started to make use of social media in promotional efforts. On
the other hand, maybe due to the recent development of these
commercial strategies, even though social media is magnifying
the impact that consumer-to-consumer conversations have
in the marketplace, consolidated methods for increasing the
impact of products through social networks have not yet been
articulated.

Kinetic models of opinion formation in a multiagent system
of individuals characterized also by further parameters have
been addressed in various papers. Among others, the modeling
of the first part of this article has points of contact with a
recent work by Düring et al. [7] (cf. also [8]). There, the
opinion variable is coupled with a further parameter denot-
ing the assertiveness of the agents (with high assertiveness
corresponding to leadership). Also the dynamics of opinion
formation in a society with a marked presence of zealot or
stubborn individuals, i.e., agents who tend to maintain their
strong opinions after interacting with other agents, have been
dealt with in a number of papers. The effect of conviction was
studied mainly in discrete models of opinion dynamics related
to consensus formation, voting dynamics, game theory models,
and diffusion of innovations among other applications [9–17].
In these works it is shown, mainly through simulations, how
agents with a certain stubbornness can affect the process of
consensus formation, especially as far as the kind of expected
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equilibria that could arise due to their influence and the time
needed for convergence are concerned. Last, to stress the
importance of understanding opinion dynamics in modern
societies, we quote the recent attempts to investigate the
process of opinion formation in the presence of uncertain
interactions between agents [18] and to act on it by means
of suitable control strategies [19,20].

In recent years, the empirical study of social networks and
of their role in the formation and spreading of opinions gained
a lot of momentum thanks to the extraordinarily large amount
of data coming from online platforms. In particular, large-
scale aggregate statistical descriptions showed patterns and
periodic structures in the connectivity of real-world networks
[21–23]. In this article, resorting to the powerful methodology
of statistical physics [24,25], we will try to explore some of the
aforementioned issues about the popularity dynamics on social
media by introducing mathematical models of kinetic type able
to follow the marketing of products on social networks. Recent
research on the marketing aspects of social media [2] revealed
that social media are considered an important component of
the promotional strategy, and therefore are incorporated as an
integral part of the marketing strategy. Mangold and Faulds [2]
describe social media as a hybrid element of promotion mix
for its dual marketing functions. First, social media can be
utilized as a traditional integrated marketing communications
tool (e.g., direct marketing), where companies control the
content, timing, and frequency of information being shared
with consumers. Secondly, social media enables consumers
to communicate with each other within their social networks,
which creates a further attracting effect for companies. This
hybrid marketing tool brings a new challenge to marketers,
because they need to learn how to effectively spread infor-
mation on a product over the largest audience of their target
consumers. While discussing possible strategies, Kaplan and
Haenlein [1] suggested to deeply investigate social processes
to better understand social networks behavior. Accordingly, it
seems appropriate in a first step to study opinion formation on
social networks.
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Unlike classical modeling of opinion formation in a mul-
tiagent society [26–31], where agents are considered indistin-
guishable, here we will take into account a further parameter,
the network range, or connectivity, of the agents, which
can be reasonably measured in terms of followers. Highly
connected agents are identified as influencers, because, thanks
to their large number of followers, their opinions can reach
and influence many other users of social media [32]. As a
matter of fact, however, influencers obey the same mechanism
of opinion sharing as any other agent. In particular, they are
not necessarily recognized as leaders and typically do not
operate in a coordinated manner. The key point is simply
the assumption that the opinion of the agents with a high
connectivity, i.e., a large number of followers, results more
convincing than that of the agents with a low number of
followers. As a main difference with [33,34], where the authors
consider dynamic networks, here we structure the population
of the agents by means of a fixed background network with
realistic connectivity distribution.

Starting from these assumptions, in Sec. II we will introduce
a kinetic equation modeling opinion formation in the presence
of the connectivity parameter. Then, in Sec. III we will couple
to such kinetic model a further kinetic equation describing the
time evolution of the popularity of a certain product. Finally, in
Sec. IV we will perform numerical experiments based on the
previous model equations, trying to ascertain the better strategy
that a company can find to best promote its products.

The analysis performed in the present work shows that
the role of an underlying social network is of paramount
importance in the formation of opinion patterns among the
agents, such as, e.g., consensus or dissent. Moreover, it clearly
demonstrates that highly connected agents are fundamental
to increase in time the popularity of a product, thereby
allowing it to be sold at best. The mechanism described by the
coupling of the opinion formation model with the popularity
spreading model is such that it gives, in some cases, apparently
counterintuitive but finally realistic answers. Indeed, it can
happen that the natural choice to spread out the message on a
large number of agents with low connectivity, while giving an
immediate increase in popularity, does not actually guarantee
the persistence of the popularity in time. On the other hand,
by addressing few people with high connectivity the initial
decay of the popularity turns out to be only a local effect that
connectivity will subsequently remedy.

II. KINETIC MODELING OF OPINION DYNAMICS OVER
NETWORKS

A. Microscopic binary model

In the sociophysics community, a customary procedure for
modeling the formation of opinions in a population of agents
consists in representing the opinion of an individual, with
respect to a certain subject, by a real number. This number
can vary in some discrete set or in a fixed interval, say
[−1, 1], where ±1 denote the extremal opinions. Individual
changes of opinion are assumed to be a result of random
binary interactions between pairs of agents. Specifically, the
preinteraction opinions w and w∗ of two agents will turn into
the new postinteraction opinions w′ and w′

∗ as a consequence

of the discussion opened by the two agents, of the influence
of external factors such as media or propaganda, and of the
spontaneous self-thinking [25,31].

As briefly discussed in the Introduction, modeling opinion
dynamics over a social network naturally requires one to
couple the opinion variable with further parameters able to
characterize the range of the agents in the social network.
Consequently, we assume that the microscopic state of each
agent is given by the pair (w, c), where w ∈ [−1, 1] is the
opinion of the agent and c ∈ R+ is his or her connectivity in the
social network, represented, e.g., by the number of followers.

The connectivity parameter c is a measure of the credibility
of an agent. The higher c, the higher the credibility conferred to
that agent by the users of the social network and, consequently,
the higher his or her influence on the other agents. Agents
with high credibility are called influencers: they are able to
influence the opinion of other agents while being in turn
virtually unaffected by the latter. Unlike [33], in the present
work we take the statistical distribution of the connectivity of
the agents constant in time. This corresponds to assuming that
the connectivity distribution possibly evolves over a timescale
by far much slower than that of the opinion changes, so that it
can be considered an almost stationary background.

Similarly to [31], individual changes of opinion result from
random binary interactions between the agents, where now,
in addition to the classical rules of change, the connectivity
(viz., credibility) enters to modify the postinteraction opinions.
In a microscopic binary interaction between two agents with
states (w, c) and (w∗, c∗) the opinion variables update now
according to

w′ = w + γ κ (c, c∗)(w∗ − w) + Dop(w, c)η,

w′
∗ = w∗ + γ κ (c∗, c)(w − w∗) + Dop(w∗, c∗)η∗. (1)

In (1), γ > 0 is a proportionality parameter. The function κ ,
expressing the rate of relaxation of either opinion toward that
of the other agent (the compromise), is here depending on
the connectivities of the agents. From the previous discussion
about the role of connectivity, it is natural to require that κ

satisfies the assumptions:

κ (c, c∗) → 1 for
c

c∗
→ 0,

κ (c, c∗) → 0 for
c

c∗
→ +∞,

which heuristically mean that the postinteraction opinion w′
is greatly influenced by w∗ if c∗ � c while it is virtually
unaffected by w∗ if, conversely, c∗ � c. Possible examples
of functions with these characteristics are

κ (c, c∗) = c∗
c + c∗

= 1

1 + c/c∗
,

κ (c, c∗) = e−c/c∗ (1 − e−c∗/c ). (2)

Note that both functions in (2) satisfy the further property 0 �
κ (c, c∗) � 1 for all c, c∗ ∈ R+.

The terms Dop(w, c)η and Dop(w∗, c∗)η∗ measure the rate
of change of opinion due to the self-thinking of the individuals,
namely, the possibility that agents change randomly (and
independently of each other) their opinion. Following [31],
we assume that η and η∗ are independent and identically
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distributed random variables with zero mean and variance
σ 2 > 0, while the coefficient Dop(w, c) = Dop(|w|, c) is non-
negative for all (w, c) ∈ [−1, 1] × R+, nonincreasing in |w|,
and vanishing for |w| → 1.

B. Analysis of the microscopic interactions

It is clear that, in order to have a physically acceptable
model, the postinteraction opinions cannot cross the extremal
values ±1. For this reason, it is important to verify that
the binary interactions (1) preserve the bounds, i.e., that
w′, w′

∗ ∈ [−1, 1] if w,w∗ ∈ [−1, 1]. Since |w∗| � 1, we de-
duce from (1) the bound

|w′| = |[1 − γ κ (c, c∗)]w + γ κ (c, c∗)w∗ + Dop(w, c)η|
� |[1 − γ κ (c, c∗)]w| + γ κ (c, c∗) + Dop(w, c)|η|.

If we further assume 0 � γ, κ (c, c∗) � 1,

|w′| � [1 − γ κ (c, c∗)]|w| + γ κ (c, c∗) + Dop(w, c)|η|.
Thus |w′| � 1 if Dop(w, c)|η| � [1 − γ κ (c, c∗)](1 − |w|),
which is satisfied if there exists a constant α > 0 such
that

|η| � α[1 − γ κ (c, c∗)], αDop(w, c) � 1 − |w|.
The first condition can be enforced by requiring |η| � α(1 −
γ ), which gives a bound on the random variable η independent
of the connectivity distribution in the network. The sec-
ond condition implies Dop(±1, c) = 0 for all c ∈ R+, which
characterizes the stubbornness of the agents with extremal
opinions.

Next, denoting by 〈·〉 the average with respect to the
distributions of the random variables η, η∗, we observe
that

〈w′ + w′
∗〉 = w + w∗ + γ [κ (c, c∗) − κ (c∗, c)](w∗ − w).

Hence the mean opinion remains unchanged in a binary
interaction only if the two agents have the same connectivity
(c = c∗), or if the function κ is symmetric, so that κ (c, c∗) =
κ (c∗, c).

Likewise, for γ small we compute

〈(w′)2 + (w′
∗)2〉 = − 2γ [κ (c∗, c)w∗ − κ (c, c∗)w](w∗ − w)

+ σ 2[D2
op(w, c) + D2

op(w∗, c∗)
] + o(γ ).

We remark that, unlike the case of classical opinion dynamics
(without social network) [31], the second moment (the energy)
is not necessarily dissipated in a binary interaction, not even
in the absence of self-thinking (i.e., for σ 2 = 0), unless again
κ is symmetric in its arguments.

C. Boltzmann-type description

Let us denote by p = p(t, w, c) the proportion of agents
in the population with opinion w and connectivity c at time
t � 0. It is then possible to describe the time evolution of p =
p(t, w, c) by resorting to a Boltzmann-type equation, whose
collision part reflects the dynamics of opinion changes because
of the interactions among the agents. Under the binary rules (1),

the Boltzmann-type equation reads

∂tp = Qop(p, p)

=
〈 ∫

R+

∫ 1

−1

(
1

′Jop
p(t, ′w, c)p(t, ′w∗, c∗)

−p(t, w, c)p(t, w∗, c∗)

)
dw∗dc∗

〉
, (3)

where Qop is the collisional operator that takes into account
opinion variations due to interactions, and the average 〈·〉 is
taken with respect to the distribution of the random variables
η, η∗. In (3), ′w, ′w∗ denote the preinteraction opinions which
generate the postinteraction opinions w,w∗ and ′Jop is the
Jacobian of the transformation (1) as a function of the variables
′w, ′w∗. The weak form of this equation, which avoids the
explicit computation of the Jacobian, writes

d

dt

∫
R+

∫ 1

−1
φ(w, c)p(t, w, c)dw dc

=
〈 ∫

R+

∫ 1

−1

∫
R+

∫ 1

−1
[φ(w′, c) − φ(w, c)]

× p(t, w, c)p(t, w∗, c∗)dw dc dw∗dc∗

〉
, (4)

where φ : [−1, 1] × R+ → R is a test function, namely, any
observable quantity which can be expressed as a function of the
microscopic state (w, c), and w′ is the postinteraction opinion
directly given by (1).

In order to simplify the kinetic description delivered by (4),
and to make it more amenable to mathematical analysis, we
introduce the following argument. When randomly picking an
agent of the system, we may assume that his or her opinion
w and connectivity c are two independent variables. In other
words, we assume that a generic microscopic state (w, c) can
be built by sampling independently the opinion w from the
statistical distribution of the opinions and the connectivity c

from the statistical distribution of the connectivity. In fact, at
the aggregate level there might be no a priori reason to believe
that a certain opinion is expressed only by individuals with
a certain connectivity, nor that a given connectivity level is
possessed only by individuals expressing a certain opinion.
Hence we postulate

p(t, w, c) = f (t, w)g(c), (5)

where f (t, w) is the probability density function of the opinion
at time t and g(c) is the probability density function of the
connectivity. We anticipate that we will deal with a more
general case later in Sec. II E.

Plugging (5) into (4) and choosing the test function of the
form φ(w, c) = ϕ(w)ψ (c) gives(∫

R+
ψ (c)g(c)dc

)
d

dt

∫ 1

−1
ϕ(w)f (t, w)dw

=
〈∫

R+

∫
R+

ψ (c)

(∫ 1

−1

∫ 1

−1
[ϕ(w′) − ϕ(w)]f (t, w)

× f (t, w∗)dw dw∗

)
g(c)g(c∗)dc dc∗

〉
.
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In particular, for ψ (c) ≡ 1 we end up with

d

dt

∫ 1

−1
ϕ(w)f (t, w)dw

=
〈∫

R+

∫
R+

(∫ 1

−1

∫ 1

−1
[ϕ(w′) − ϕ(w)]

×f (t, w)f (t, w∗)dw dw∗

)
g(c)g(c∗)dc dc∗

〉
. (6)

Now we can take advantage of (6) to investigate the
aggregate trend of the mean opinion and of the energy of the
agent’s system.

Let m(t ) := ∫ 1
−1 wf (t, w)dw be the mean opinion at time

t . Choosing ϕ(w) = w in (6) we get

dm

dt
= γ

∫
R+

∫
R+

κ (c, c∗)

×
(∫ 1

−1

∫ 1

−1
(w∗ − w)f (t, w)f (t, w∗)dw dw∗

)
× g(c)g(c∗)dc dc∗ = 0,

therefore m is conserved in time in spite of the fact that, as seen
in Sec. II B, at the level of a single binary interaction it is not.

In order to study the large time trend of the opinion
energy, which will provide insights into the convergence of
the system toward equilibria, it is convenient to apply to (6)
the quasi-invariant opinion limit introduced in [31], namely, an
asymptotic procedure reminiscent of the grazing collision limit
of the classical kinetic theory [35]. In practice, we consider
the regime of weak but frequent binary interactions, which
amounts to taking γ, σ 2 → 0+ in (1) while simultaneously
scaling the time as τ := γ t . Introducing the scaled distribution
function f̃ (τ,w) := f (τ/γ,w), we easily obtain from (6)

d

dτ

∫ 1

−1
ϕ(w)f̃ (τ,w)dw

= 1

γ

〈∫
R+

∫
R+

(∫ 1

−1

∫ 1

−1
[ϕ(w′) − ϕ(w)]

× f̃ (τ,w)f̃ (τ,w∗)dw dw∗

)
g(c)g(c∗)dc dc∗

〉
. (7)

Notice that for γ small t = τ/γ is large. Therefore, for every
fixed τ > 0 the limit γ → 0+ describes the large time trend
of f (t, w) and of its statistical moments. In parallel, since for
τ → +∞ it results t → +∞ as well, the asymptotic behavior
of f̃ (τ,w) and of its statistical moments approximates well
that of f (t, w) and of the corresponding statistical moments.
If we define the opinion energy as E(τ ) := ∫ 1

−1 w2f̃ (τ,w)dw

and choose ϕ(w) = w2 in (7), we get, in the quasi-invariant
opinion limit γ, σ 2 → 0+,

dE

dτ
= C(m2 − E)

+ lim
γ,σ 2→0+

σ 2

γ

∫
R+

∫ 1

−1
D2

op(w, c)f̃ (τ,w)g(c)dw dc,

(8)

where

C := 2
∫
R+

∫
R+

κ (c, c∗)g(c)g(c∗)dc dc∗. (9)

If σ 2/γ → 0, then from (8) we deduce

E(τ ) = (E0 − m2)e−Cτ + m2,

where E0 := E(0). Hence the energy converges exponentially
fast to the asymptotic valueE∞ = m2. The coefficientC, which
depends on the statistical properties of the connectivity of
the social network, gives the speed of convergence of E to
E∞. In other words, 1/C is proportional to the half-life of the
exponential decay of the energy. Moreover, it is straightforward
to see that

W2(f̃ (τ, ·), δm) =
√

E(τ ) − m2,

where W2 at the left-hand side denotes the 2-Wasserstein
distance in the space of the probability measures (cf. [36]) and
δm is the Dirac delta centered at the mean opinion m. Hence
we further get

W2(f̃ (τ, ·), δm) =
√

E0 − m2 e−(C/2)τ ,

indicating that f̃ (τ,w) converges asymptotically to δm (con-
sensus) with an exponential speed determined by the back-
ground network through C/2. Remarkably, in this case the
energy is globally dissipated although it is not necessarily so
in each binary interaction (cf. Sec. II B).

If instead σ 2/γ → λ > 0, then from (8) we have

dE

dτ
= C(m2 − E) + λ

∫
R+

∫ 1

−1
D2

op(w, c)f̃ (τ,w)g(c)dw dc.

Choosing, for instance,

Dop(w, c) = β(c)
√

1 − w2 (10)

with β(c) � 0 for all c ∈ R+, and setting

B :=
∫
R+

β2(c)g(c)dc, (11)

the equation of the energy becomes

dE

dτ
= C(m2 − E) + λB(1 − E),

whose solution reads

E(τ ) = E0e
−(C+λB)τ + Cm2 + λB

C + λB (1 − e−(C+λB)τ ).

The asymptotic value is now E∞ := Cm2+λB
C+λB and the exponen-

tial speed at which it is approached depends on the background
network through C + λB or, in other words, the half-life of
the exponential decay is proportional to 1/(C + λB). Since
λ,B � 0, this speed is in general higher than that of the case
without self-thinking.

For a more accurate characterization of the asymptotic
distribution reached in this case we refer the reader to Sec. II D.

Remark 1. Let us define

‖κ‖∞ := ess sup
(c,c∗ )∈R+×R+

κ (c, c∗).

Then, definition (9) implies that C � 2‖κ‖∞. In particular, if
κ (c, c∗) � 1 for all c, c∗ ∈ R+, then C � 2. Let us observe
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that, in absence of the social network, the binary interaction
rules are often of the form (1) with κ ≡ 1 (cf. [31]), which
obviously gives C = 2. Here “without social network” means
that in an opinion exchange there is no hierarchy among the
agents based on their connectivity, viz., their credibility. In
this case, convergence of the system toward the steady state
is the fastest possible one. In other words, the presence of the
network slows down this process.

D. Fokker-Planck asymptotic analysis with self-thinking

In order to gain more detailed insights into the asymptotic
opinion distribution reached by the system in the balanced
interactive-diffusive regime σ 2/γ → λ > 0 we perform the
quasi-invariant opinion limit in (7) with a generic test function
ϕ, which now we require to be smooth enough, say ϕ ∈
C3(−1, 1), and such that ϕ(±1) = ϕ′(±1) = 0.

Since γ, σ 2 are taken small, from (1) we have that w′ − w

is small as well and we can expand it in Taylor series to obtain

ϕ(w′) − ϕ(w) = ϕ′(w)(w′ − w) + 1
2ϕ′′(w)(w′ − w)2

+ 1
6ϕ′′′(w̄)(w′ − w)3

with w̄ ∈ (min{w,w′}, max{w,w′}). Plugging this expansion
into (7) and developing the computations yields

d

dt

∫ 1

−1
ϕ(w)f̃ (τ,w) dw

= C
2

∫ 1

−1

∫ 1

−1
ϕ′(w)(w∗ − w)f̃ (τ,w)f̃ (τ,w∗)dw dw∗

+ γ

2

(∫
R+

∫
R+

κ2(c, c∗)g(c)g(c∗)dc dc∗

)

×
∫ 1

−1

∫ 1

−1
ϕ′′(w)(w∗ − w)2f̃ (τ,w)f̃ (τ,w∗)dw dw∗

+ σ 2

2γ

∫
R+

∫ 1

−1
ϕ′′(w)D2

op(w, c)f̃ (τ,w)g(c)dw dc

+ R(ϕ),

where the coefficient C has been defined in (9) while the
remainder is

R(ϕ) := 1

6γ

〈∫
R+

∫
R+

∫ 1

−1

∫ 1

−1
ϕ′′′(w̄)[γ κ (w∗ − w) + Dopη]3

× f̃ (w)f̃ (w∗)g(c)g(c∗)dw dw∗dc dc∗

〉
.

If 〈|η|3〉 < +∞, then 〈|η|3〉 ∼ (σ 2)3/2; due to the further
boundedness of ϕ′′′, κ,Dop, it results |R(ϕ)| ∼ γ +

√
σ 2,

whence R(ϕ) → 0 for γ, σ 2 → 0+. On the whole, in the
quasi-invariant opinion limit the previous equation becomes

d

dt

∫ 1

−1
ϕ(w)f̃ (τ,w)dw

= C
2

∫ 1

−1

∫ 1

−1
ϕ′(w)(w∗ − w)f̃ (τ,w)f̃ (τ, w∗)dw dw∗

+ λ

2

∫
R+

∫ 1

−1
ϕ′′(w)D2

op(w, c)f̃ (τ,w)g(c)dw dc,

which, integrating back by parts at the right-hand side and
using the boundary conditions on ϕ, can be recognized as a
weak form of the Fokker-Planck equation

∂t f̃ = λ

2
∂2
w[Dop(w)f̃ ] + C

2
∂w[(w − m)f̃ ], (12)

where we have defined

Dop(w) :=
∫
R+

D2
op(w, c)g(c)dc.

The asymptotic solution f̃ ∞(w) := limτ→+∞ f̃ (τ,w) to this
equation, which is obtained by equating the right-hand side
of (12) to zero, reads

f̃ ∞(w) = K

Dop(w)
exp

(C
λ

∫
m − w

Dop(w)
dw

)
,

where K > 0 is a normalization constant to be chosen in
such a way that

∫ 1
−1 f̃ ∞(w)dw = 1. With Dop(w, c) given

in particular by (10) we get Dop(w) = B(1 − w2), where the
coefficient B has been defined in (11), and explicitly

f̃ ∞(w) = (1 + w)[C(1+m)/2λB]−1(1 − w)[C(1−m)/2λB]−1

2(C/λB)−1 B
( C(1+m)

2λB , C(1−m)
2λB

) , (13)

where B(x, y) := ∫ 1
0 tx−1(1 − t )y−1dt is the beta function.

The function in (13) is a beta probability density function on
the interval [−1, 1] parametrized by the constants m ∈ [−1, 1],
λ > 0, C

B > 0. Its mean is m and its variance is 1−m2

C
λB +1

. It is

interesting to discuss the different trends of f̃ ∞ depending on
the parameter C

B , which summarizes the statistical connectivity
properties of the social network. By inspecting the exponents
of the expression (13) we conclude in particular that

(i) if C
B � max{ 2λ

1+m
, 2λ

1−m
}, then opinions mostly distribute

around the mean m. This can be interpreted as a tendency to a
mild consensus (cf. the dashed black curve in Figure 1);

(ii) if min{ 2λ
1−m

, 2λ
1+m

} � C
B < max{ 2λ

1−m
, 2λ

1+m
}, then opin-

ions tend to concentrate in w = −1 if m < 0 or in w = 1 if

FIG. 1. The asymptotic distribution (13) with m = 1
4 , λ = 1, and

different values of C
B representative of the three cases discussed in the

text.
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m > 0, which indicates a tendency to a radicalized consensus
(cf. the solid blue curve in Fig. 1);

(iii) if C
B < min{ 2λ

1−m
, 2λ

1+m
}, then opinions tend to radicalize

at the two extreme values w = ±1 with a substantial splitting
of the population between them (cf. the dot-dashed red curve
in Fig. 1).

We remark that by replacing
√

1 − w2 in (10) with a few
different functions of w, such as 1 − w2 or 1 − |w|, different
families of asymptotic distributions f̃ ∞ can be obtained
analytically (cf. [31]), which are still parametrized by the
coefficient C

B . Then a similar analysis of the influence of
the social network on the steady opinion distribution can be
performed also in those cases. Here we stick to the choice (10)
because it gives rise to an explicit closed form of relevant
statistical moments of f̃ ∞.

E. A more general case

As mentioned in Sec. II C, in this section we will investigate
the more general case in which we do not make the assumption
of statistical independence of the variables w and c, leading
to (5). To this purpose, and to avoid inessential difficulties,
we slightly modify the interaction rules (1) by assuming that
the function κ would depend only on the connectivity of the
individual who is changing opinion, hence

w′ = w + γ κ (c)(w∗ − w) + Dop(w, c)η,

w′
∗ = w∗ + γ κ (c∗)(w − w∗) + Dop(w∗, c∗)η∗. (14)

This simplification, which maintains most of the properties of
the postinteraction opinions, allows us to explore this case with
enough analytical detail. To this extent, we have to require that
κ be non-negative and bounded. Moreover,

lim
c→0+

κ (c) = 1, lim
c→+∞ κ (c) = 0.

This translates the idea that users of the social network with
low connectivity, viz., with scarce credibility, may be more
influenceable by possibly different opinions while those with
high connectivity may tend to stick to their guns (sometimes
they may need to do that in order to maintain the consensus).

The Boltzmann equation (4) with interaction rules (14) and
without assumption (5) is such that the mean opinion m(t ) :=∫
R+

∫ 1
−1 wp(t, w, c)dw dc is in general not conserved. In fact,

letting φ(w, c) = w in (4) yields

dm

dt
= γ

(∫
R+

∫ 1

−1
κ (c)p(t, w, c)dw dc

)
m

− γ

∫
R+

∫ 1

−1
κ (c)wp(t, w, c)dw dc. (15)

In particular, denoting by

p∞(w, c) := lim
t→+∞ p(t, w, c)

the steady distribution, it results that the stationary value m∞
of the mean opinion is formally given by

m∞ =
∫
R+

∫ 1
−1 wκ (c) p∞(w, c)dw dc∫

R+

∫ 1
−1 κ (c)p∞(w, c)dw dc

.

We can make this formula more expressive by writing
p(t, w, c) = fc(t, w)g(c), where fc(t, w) is the conditional
distribution of w given c, whereas g(c) is the same as in (5).
Notice that fc(t, w) is in general different from f (t, w) in (5),
equality holding if and only if w and c are taken independent.
Asymptotically p∞(w, c) = f ∞

c (w)g(c), which implies

m∞ =
∫
R+

κ (c)
[ ∫ 1

−1 wf ∞
c (w)dw

]
g(c) dc∫

R+
κ (c)g(c) dc

=
∫
R+

κ (c)m∞
c g(c)dc∫

R+
κ (c)g(c)dc

, (16)

m∞
c := ∫ 1

−1 wf ∞
c (w)dw being the mean of the conditional

distribution f ∞
c .

By applying the quasi-invariant opinion limit to (4) with
interaction rules (14), and proceeding like in Sec. II D, one
obtains the Fokker-Planck equation for the scaled distribution
function p̃(τ,w, c) := p(τ/γ,w, c) in the large timescale τ =
γ t , which is now given by

∂τ p̃ = λ

2
∂2
w

[
D2

op(w, c)p̃
] + ∂w{κ (c)[w − m(τ )]p̃}. (17)

In Eq. (17) the constant λ > 0 is, as before, the limit of the
ratio σ 2/γ when γ, σ 2 → 0+. Notice that, in spite of the fact
that p̃ depends on both w and c, this equation involves only w

derivatives (besides the time τ ) because the distribution of the
connectivity is constant by assumption. Setting p̃(τ,w, c) =
f̃c(τ,w)g(c), with f̃c(τ,w) = fc(τ/γ,w), (17) turns out to
be actually an equation for f̃c:

∂τ f̃c = λ

2
∂2
w

[
D2

op(w, c)f̃c

] + ∂w{κ (c)[w − m(τ )]f̃c},

whose stationary solution f̃ ∞
c (w) := limτ→+∞ f̃c(τ,w) satis-

fies the first-order differential equation

λ

2
∂2
w

[
D2

op(w, c)f̃ ∞
c

] + ∂w[κ (c)(w − m∞)f̃ ∞
c ] = 0.

Althoughm∞ is in general unknown, we can solve this equation
by regarding it as a constant which parametrizes the solution
f̃ ∞

c . We have

f̃ ∞
c (w) = K

D2
op(w, c)

exp

(
2κ (c)

λ

∫
m∞ − w

D2
op(w, c)

dw

)
,

where the two constants K > 0, m∞ ∈ [−1, 1] are determined
by imposing

∫ 1

−1
f̃ ∞

c (w)dw = 1
(
f̃ ∞

c is a probability density with respect to w for all c ∈ R+
)

∫
R+

∫ 1

−1
f̃ ∞

c (w)g(c)dw dc = m∞ [
m∞ is the mean of p̃∞(w, c) = f̃ ∞

c (w)g(c)
]
. (18)

The second condition may be equivalently replaced by (16).
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Choosing the diffusion coefficient as in (10) we obtain

f̃ ∞
c (w) = (1 + w)[κ (c)(1+m∞ )/λβ2(c)]−1(1 − w)[κ (c)(1−m∞ )/λβ2(c)]−1

2[2κ (c)/λβ2(c)]−1 B
(

κ (c)(1+m∞ )
λβ2(c) , κ (c)(1−m∞ )

λβ2(c)

) , (19)

which shows that, for every c ∈ R+, the steady distribution
is a beta probability density function on the interval [−1, 1].
Here again B denotes the beta function. Interestingly, the mean
of (19) coincides precisely with m∞, thus it is, in particular,
independent of c. Hence in this case conditions (18) are
automatically satisfied for every choice of m∞ ∈ [−1, 1]. This
result can be fruitfully commented on.

(i) In general, studying the time-asymptotic problem may
not be enough to identify univocally the stationary distribu-
tions. For instance, when the steady state is given as in (19) the
value ofm∞ needs to be determined from the time-evolutionary
problem (15), and this requires the knowledge of p(t, w, c)
from (4) for all t > 0. However, for different choices of the
diffusion coefficient Dop(w, c), such as, e.g., those inspired
by [31], conditions (18) may give rise to a nonlinear equation
for m∞ which may admit solutions (though not necessarily
unique). This method is similar to the one proposed in [37] for
recovering the stationary fundamental diagrams of vehicular
traffic from a kinetic approach.

(ii) If the initial distribution p0(w, c) := p(0, w, c) =
fc,0(w)g(c), with fc,0(w) := fc(0, w), is chosen in such a way
that the mean mc(0) := ∫ 1

−1 wfc,0(w)dw is independent of c,

then, under the ansatz that also mc(t ) := ∫ 1
−1 wfc(t, w) dw is

independent of c for every t > 0, it follows that mc(t ) coincides
actually with the w mean m(t ) of p and further, from (15),
that this value is conserved in time. Hence, similarly to (13),
m∞ = m(0) in (19), with the significant difference that, unlike
f̃ ∞, here f̃ ∞

c is not the w-marginal distribution of p∞ or, in
other words, that it is not the asymptotic opinion distribution.
The latter is instead given by

f̃ ∞(w) =
∫
R+

f̃ ∞
c (w)g(c)dc.

III. SPREADING OF THE POPULARITY OF A PRODUCT

In this section we consider the problem of the spreading
of the popularity of a certain product induced by the opinion
dynamics described by the model of Sec. II. The “product”
may be any piece of information reaching the users of the
social network: news, videos, advertisements, and the like, that
individuals possibly repost to their followers depending on how
much their current opinion is aligned with it.

A. Microscopic model

We quantify the popularity of a product by means of a
variable v ∈ R+, whose evolution depends on the interaction
with the opinion w and the connectivity c of the agents that
the product reaches. In particular, we propose the following
microscopic update rule:

v′ = (1 − μ)v + P (w, c) + Dpop(v)ξ, (20)

where μ ∈ (0, 1) is the natural decay rate of the popularity
of a product which is not reposted, P : [−1, 1] × R+ → R+
is a function expressing the increase in popularity due to
reposting, and finally ξ is a random variable with zero mean and
finite variance ς2 > 0 modeling a stochastic fluctuation of the
popularity with popularity-dependent strength Dpop(v) � 0. A
possible choice for P is

P (w, c) = νcχ (|w − ŵ| ∈ [0,�]), (21)

where ν,� > 0 are parameters, χ is the characteristic function
of the interval [0,�], and ŵ ∈ [−1, 1] is the target opinion,
i.e., the opinion that the product is mainly addressed at. Hence,
according to model (21), the increase in the popularity depends
on whether an individual decides to repost the product, which
happens if his/her opinion is closer than the threshold � to
the target opinion. In such a case, the increase in popularity is
proportional to the connectivity of the individual, viz., to the
number of followers reached when reposting the product.

In order to guarantee from (20) that v′ � 0 we observe
that, since P (w, c) � 0, it is enough to require Dpop(v)ξ �
(μ − 1)v, which is satisfied if ξ � μ − 1 and Dpop(v) � v.
Hence the stochastic fluctuation can take negative values
provided the diffusion coefficient is not larger than v. The
latter characteristic induces, in particular, Dpop(0) = 0. The
most straightforward choice for Dpop is Dpop(v) = v, which
implies a larger and larger diffusion for increasing popularity.
Other options are

Dpop(v) = min{v, V0}, Dpop(v) = min

{
v,

V 2
0

v

}
,

where V0 > 0. The first function expresses a saturation of
the diffusion coefficient for high popularity (v > V0). The
second function expresses instead a decay of the popularity
fluctuations for highly popular products (again, v > V0).

B. Boltzmann-type description

We now implement a Boltzmann-type kinetic description
of the microscopic dynamics (20), coupled with either (1)
or (14), by introducing the distribution function h = h(t, v) :
R+ × R+ → R+ such that h(t, v)dv is the fraction of products
with popularity in [v, v + dv] at time t . If p(t, w, c) is the
distribution of the pair (w, c) at time t as introduced in Sec. II C.
we have

∂tp = Qop(p, p), ∂th = Qpop(h, p), (22)

where the collisional operator Qop has been defined in (3),
whereas Qpop writes as follows:

Qpop(h, p)(t, v)

=
〈∫

R+

∫ 1

−1

(
1

′Jpop
h(t, ′v) − h(t, v)

)
p(t, w, c) dw dc

〉
.
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Here ′v is the preinteraction value of the popularity which
generates the postinteraction value v according to the transfor-
mation (20), while ′Jpop is the Jacobian of such a transformation
as a function of the variable ′v. In weak form, the second
equation in (22) reads

d

dt

∫
R+

ϕ(v)h(t, v)dv

=
〈∫

R+

∫ 1

−1

∫
R+

[ϕ(v′)−ϕ(v)]h(t, v)p(t, w, c)dv dw dc

〉
,

(23)

where 〈·〉 denotes here the average with respect to the distri-
bution of the random variable ξ in (20) and ϕ : R+ → R is a
test function, i.e., any observable quantity of the popularity v.

If we assume, in particular, that opinion dynamics are a
much quicker process than the spreading of the popularity,
then in (23) we can replace p with the asymptotic distribution
p∞(w, c) to get

d

dt

∫
R+

ϕ(v)h(t, v)dv

=
〈∫

R+

∫ 1

−1

∫
R+

[ϕ(v′)−ϕ(v)]h(t, v)p∞(w, c)dv dw dc

〉
.

(24)

Choosing ϕ(v) = 1 shows that
∫
R+

h(t, v)dv is constant in
time, hence if we choose an initial distributionh0(v) := h(0, v)
which satisfies the normalization condition

∫
R+

h0(v)dv = 1,
then h(t, v) will be a probability density function for all t > 0.

Moreover, denoting by M (t ) := ∫
R+

vh(t, v)dv the average
of the popularity and letting ϕ(v) = v in (24) yields

dM

dt
= −μM + P,

where

P :=
∫
R+

∫ 1

−1
P (w, c)p∞(w, c)dw dc,

that is,

M (t ) =
(

M0 − P
μ

)
e−μt + P

μ

with M0 := M (0). As a result, the mean popularity reaches
asymptotically the value M∞ = P

μ
, which depends on the

statistical properties of the opinion distribution and of the social
network through P .

Likewise, denoting by E (t ) := ∫
R+

v2h(t, v)dv the energy
of the distribution h, we can study the asymptotic behavior of
E by taking advantage of the quasi-invariant limit procedure
illustrated in Secs. II C and II D. Precisely, let 0 < ε � 1 be a
small parameter and scale μ = μ0ε in (20) and ν = ν0ε in (21)
with μ0, ν0 > 0. Moreover, let P (w, c) = εP0(w, c) with
P0(w, c) = ν0cχ (|w − ŵ| ∈ [0,�]). In the large timescale
τ := εt the scaled distribution function h̃(τ, v) = h(τ/ε, v)
satisfies the equation

d

dτ

∫
R+

ϕ(v)h̃(τ, v)dv = 1

ε

〈∫
R+

∫ 1

−1

∫
R+

[ϕ(v′) − ϕ(v)]

× h̃(τ, v)p∞(w, c)dv dw dc

〉
.

(25)

Choosing ϕ(v) = v2 and taking the quasi-invariant interaction
limit ε, ς2 → 0+ (recall that ς2 = 〈ξ 2〉) we obtain

dE
dτ

= −2μ0E + 2P0M

+ lim
ε,ς2→0+

ς2

ε

∫
R+

D2
pop(v)h̃(τ, v) dv, (26)

where we have denoted

P0 :=
∫
R+

∫ 1

−1
P0(w, c)p∞(w, c)dw dc.

If ς2/ε → 0+, then Eq. (26) reduces to

dE
dτ

= −2μ0E + 2P0M,

which implies for the energy the asymptotic value E∞ =
P0M

∞/μ0. Noticing that with the ε scaling introduced above
it results M∞ = P0/μ0, we finally obtain E∞ = (P0/μ0)2 =
(M∞)2. This indicates that the asymptotic popularity distri-
bution h̃∞(v) := limτ→+∞ h̃(τ, v) has zero variance, hence
h̃∞(v) = δP0/μ0 (v).

If conversely ς2/ε → ζ > 0 and if we choose, in particular,
Dpop(v) = v, then the previous equation gives

dE
dτ

= (ζ − 2μ0)E + 2P0M, (27)

which implies E∞ = 2P2
0

μ0(2μ0−ζ ) . From the constraint E∞ � 0
we deduce that this value is admissible only if ζ < 2μ0. Instead
if ζ � 2μ0, i.e., for a too strong diffusion in the limit, (27)
indicates that E∞ → +∞, hence that h̃∞ has infinite variance.
In any case, for ζ > 0 the asymptotic popularity distribution
is no longer a Dirac delta, i.e., it does not collapse onto the
asymptotic mean value M∞. We defer to Sec. III C a more
detailed analysis of the large time behavior in this case.

C. Fokker-Planck asymptotic analysis with popularity diffusion

We can apply to (25) the same quasi-invariant limit proce-
dure discussed in Sec. II D, taking ε, ς2 → 0+ and assuming
ς2/ε → ζ > 0. This describes an asymptotic regime in which
the effects of natural decay plus reposting and diffusion bal-
ance. The resulting Fokker-Planck equation for the distribution
h̃(τ, v) is

∂τ h̃ = ζ

2
∂2
v

[
D2

pop(v)h̃
] + ∂v[(μ0v − P0)h̃],

which admits the following stationary solution:

h̃∞(v) = K

D2
pop(v)

exp

(
2

ζ

∫ P0 − μ0v

D2
pop(v)

dv

)
,

where K > 0 is a normalization constant such that∫
R+

h̃∞(v)dv = 1.
For Dpop(v) = v we obtain, in particular,

h̃∞(v) = (2P0/ζ )1+(2μ0/ζ )

�
(
1 + 2μ0

ζ

) e−2P0/ζv

v2[1+(μ0/ζ )]
, (28)
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where �(z) := ∫ +∞
0 t z−1e−t dt is the gamma function. Notice

that (28) is a fat-tailed inverse gamma distribution; indeed,
h̃∞(v) ∼ v−2[1+(μ0/ζ )] when v → +∞. Precisely, this distribu-
tion exhibits a Pareto tail (cf. [38]), which indicates that prod-
ucts reaching very high popularity levels may be rare in general
but not that improbable. The mean of the distribution (28) is
P0/μ0, consistent with the result found in Sec. III B. Notice
also that v2h̃∞(v) ∼ v−2μ0/ζ for v → +∞, which confirms

that the energy and the variance of the distribution (28) are
finite only if ζ < 2μ0.

Figure 2 shows different profiles of the distribution (28) for
fixed μ0, ζ and increasing values of the parameter P0, which
accounts for the amount of popularity pumped into the system
by the users of the social network through reposting.

For Dpop(v) = min{v, V0}, V0 > 0, the stationary distribu-
tion reads instead

h̃∞(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K
e−2P0/ζv

v2[1+(μ0/ζ )]
if v � V0

Ke(μ0/ζ )[1−(4P0/μ0V0 )]

V
2(1+ μ0

ζ
)

0

e(2/ζV 2
0 )[P0−(μ0/2)v]v if v > V0.

(29)

Notice that now h̃∞(v) ∼ e−(μ0/ζV 2
0 )v2

when v → +∞, thus fat tails disappear immediately if the diffusion coefficient is assumed
to saturate at high popularity.

Finally, for Dpop(v) = min{v,
V 2

0
v

}, V0 > 0, the stationary distribution becomes

h̃∞(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K
e−2P0/ζv

v2[1+(μ0/ζ )]
if v � V0

Ke(μ0/2ζ )[1−(16P0/μ0V0 )]

V
2[2+(μ0/ζ )]

0

v2e(2/3ζV 4
0 )[P0−(3μ0/4)v]v3

if v > V0,

(30)

which has an even thinner tail than (29), indeed h̃∞(v) ∼
v2e−(μ0/2ζV 4

0 )v4
for v → +∞.

The distribution of popularity h̃∞ supported the most by
empirical evidence is (28). For instance, in [4] the author finds
that the statistical distribution of the popularity of scientific
papers, measured in terms of the received citations, features
a power-law-type tail with Pareto exponent near to 3. In [6]
the authors find that the popularity of the movies in the United
States, measured in terms of their box office gross income,
exhibits completely analogous statistical properties.

FIG. 2. The asymptotic distribution (28) with μ0 = 3
5 , ζ = 1. and

different values of P0.

The Pareto exponent of the distribution (28) can be com-
puted out of the probability that the popularity be greater than
a given threshold v > 0:

Ce−2P0/ζv

v1+(2μ0/ζ )
�

∫ +∞

v

h̃∞(u)du � C

v1+(2μ0/ζ )
,

where C > 0 is a constant. Hence
∫ +∞
v

h̃∞(u)du ∼
v−[1+(2μ0/ζ )] when v → +∞, giving the Pareto exponent
1 + 2μ0

ζ
. Owing to the constraint ζ < 2μ0, this exponent is

invariably greater than 2 and is near 3 if μ0/ζ is near 1, i.e., if
the natural decay rate of popularity is of the same order as the
variance of the stochastic fluctuations.

IV. NUMERICAL EXPERIMENTS

This section is devoted to a numerical investigation of the
kinetic models (4) and (23) of the opinion dynamics over
a background social network and of the resulting spreading
of the popularity of products. The numerical approximation
of the Boltzmann equations is done by means of Monte
Carlo methods in the Fokker-Planck scaling (see [25,39,40]).
In the following we use, in particular, samples of N = 105

particles.

A. Test 1: Opinion dynamics with independent w,c

In this first test we consider the opinion dynamics model (1)-
(3) under the independence assumption (5) between w and c,
which leads to Eq. (6) for the evolution of the marginal opinion
distribution f (t, w). We remark that in this case the asymptotic
profile of f can be analytically computed in the quasi-invariant
opinion regime[ cf. Sec. II D and in particular (13)]. Therefore
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this test serves as a benchmark for successive numerical
experiments.

We consider the following connectivity distributions for
c ∈ R+:

g1(c) = e−1/c

c3
, g2(c) = e−c, (31)

which are, respectively, a power law of degree 3 (for c large)
and an exponential distribution. Notice that both distributions
imply a unitary mean connectivity, indeed∫

R+
cg1(c)dc =

∫
R+

cg2(c)dc = 1.

The choice of g1 in (31) is motivated by the experimental
literature, see, e.g., [21,23,41] among others, according to
which the connectivity distribution of many networks resulting
from social interactions, such as, e.g., contact or follower net-
works in online platforms, scientific collaboration networks,
economic networks, is of power-law type. This feature is
commonly assumed to be generated by the tendency of the
individuals to create links with highly connected vertices of the
network rather than with poorly connected ones. Conversely
the choice of g2 in (31) is motivated by the fact that many
social networks feature the so-called small-world structure,
i.e., they are highly clustered with small characteristic path
lengths [42,43].

For both networks modeled by g1 and g2 we compute
numerically the large time trend of the solution f to the
Boltzmann equation (6) using in the binary interaction rules (1)
the functions κ given by (2) and Dop given by (10) with, in
particular,

β(c) = 1
1

10 + c
. (32)

This function models a local diffusion which becomes weaker
and weaker as the connectivity increases, meaning that people
with higher credibility tend to be less prone to erratic changes
of opinions due to self-thinking.

As initial opinion distribution we take

f0(w) := f (0, w) = 1
2χ (w ∈ [−1, 1]),

i.e., the uniform distribution in the interval [−1, 1] with mean
m = 0, which, as discussed in Sec. II C, is conserved in
time. The initial bivariate distribution function p0(w, c) :=
p(0, w, c) of the kinetic model is then either

p0(w, c) = 1

2
χ (w ∈ [−1, 1])

e−1/c

c3
, (33)

if the network connectivity is described by the distribution g1

in (31), or

p0(w, c) = 1
2χ (w ∈ [−1, 1])e−c, (34)

if it is described by the distribution g2 in (31) (see Fig. 3).
Figure 4 shows an approximation, for a sufficiently large

time, of the asymptotic bivariate distribution p∞(w, c) =
f ∞(w)g1,2(c), where f ∞(w) is obtained by solving numer-
ically the scaled Boltzmann equation (7) with γ = 10−3. Not
surprisingly, it turns out to be close to the asymptotic distribu-
tion (13) computed in the quasi-invariant opinion regime from
the Fokker-Planck equation (12), as is further clearly shown by
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FIG. 3. Test 1, Sec. IV A. Initial distributions (33) (top row)
and (34) (bottom row). Left column: 103 particles sampled from the
prescribed initial distributions. Right column: continuous numerical
approximations of such distributions.

Fig. 5. The latter displays the transient behavior of f (t, w) in
the time interval [0,10] and the asymptotic profile of f ∞(w),
which agrees perfectly with (13) computed using the values of
C,B evaluated from (9) and (11) by numerical integration of
the functions κ, β, g1,2 of the present test and moreover with
λ = 3 × 10−3.

It is interesting to observe, from the right panel of Fig. 5,
that, thanks to its heavier tail, the power-law distribution g1

induces a greater opinion consensus around the conserved
mean m = 0 than that produced by the exponential distribution
g2. This is somehow reminiscent of the dichotomy between
clustering and consensus dynamics analyzed in [44].

B. Test 2: Opinion dynamics with dependent w,c

In this second test we consider the Boltzmann-type
model (1)-(3) for the bivariate kinetic distribution p(t, w, c)
without the independence assumption (5) between the variables
w and c. The reference theoretical discussion is the one set
forth in Sec. II E. In particular, we choose as initial condition
a distribution p0(w, c) := p(0, w, c) which does not write as

FIG. 4. Test 1, Sec. IV A. Large time bivariate solution p∞(w, c)
of the Boltzmann-type model (3)-(4) with power-law (left) and
exponential (right) connectivity distribution [cf. (31)], and with
the independence assumption (5) of the variables w, c. The initial
conditions are the distributions (33) and (34), respectively, displayed
in Fig. 3.
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FIG. 5. Test 1, Sec. IV A. Left: transient trend of the marginal
distribution f (t, w) in the time interval [0,10] with power-law
connectivity distribution. Right: large time opinion distribution (at
the final computational time T = 10) in the two cases of connectivity
distribution (g1: power law; g2: exponential). The blue curves are the
analytical steady distribution plotted from (13).

the product of its marginals, precisely:

p0(w, c) = χ [(w, c) ∈ [−1, 0] × [0, c0)]g1,2(c)

+χ [(w, c) ∈ (0, 1] × [c0,+∞)]g1,2(c), (35)

where g1,2(c) is either connectivity distribution given in (31).
The function

fc,0(w) = χ [(w, c) ∈ [−1, 0] × [0, c0)]

+χ [(w, c) ∈ (0, 1] × [c0,+∞)],

with c0 ∈ R+, is the initial conditional distribution of w

given c. In practice, such an fc,0 says that individuals with a
connectivity lower than c0 have initially an opinion uniformly
distributed in the interval [−1, 0], whereas individuals with
a connectivity greater than or equal to c0 have initially an
opinion uniformly distributed in the interval [0,1]. This models
polarized opinions around the mean values ∓ 1

2 of fc,0 (for
c < c0 and c � c0, respectively) depending on the connectivity
distribution.

-1 -0.5 0 0.5 1

2

4

6

8

10

-1 -0.5 0 0.5 1

2

4

6

8

10

FIG. 6. Test 2, Sec. IV B. Initial distributions (35) with c0 = 3
and connectivity distribution given by either the power law g1 in (31)
(top row) or the exponential law g2 in (31) (bottom row). Left column:
103 particles sampled from the prescribed initial distributions. Right
column: continuous numerical approximations of such distributions.

FIG. 7. Test 2, Sec. IV B. Large time bivariate solution p∞(w, c)
of the Boltzmann-type model (3)-(4) with power law (left) and
exponential (right) connectivity distribution [cf. (31) and without
the independence assumption (5) of the variables w, c]. The initial
conditions are the distributions (35) displayed in Fig. 6.

Figure 6 shows either distribution (35) with c0 = 3 for the
two different choices (31) of the distributiong. It is worth point-
ing out that with this threshold c0 the initial fraction of indi-
viduals with opinion w � 0, namely,

∫ 0
−1

∫
R+

p0(w, c)dc dw,
is invariably larger than that of individuals with opinion
w > 0, namely,

∫ 1
0

∫
R+

p0(w, c)dc dw, for both choices of the
distribution g.

We compute the large time trend of the system choosing
the connectivity-based interaction function κ (2) and the local
diffusion coefficient Dop (10) with β given by (32). Notice,
in particular, that the choice (2) of κ makes this numerical
experiment depart from the analysis performed in Sec. II E,
where the function κ was supposed to depend only on the
connectivity of one individual of the interacting pair. This gives
us the opportunity to explore a scenario which was not possible
to cover analytically in detail.

Figure 7 shows the large time solution of the Boltzmann-
type model (1)-(3) computed under the time scaling τ = γ t

with γ = 10−3 (cf. the quasi-invariant opinion limit described
in Sec. II D). The numerical solution is shown at the com-
putational time T = 100, which, owing to the above scaling,
yields a good approximation of the asymptotic profile. It is
interesting to observe that, in contrast to the test considered
in Sec. IV A, here the statistical dependence of the variables
w, c tends to drive the kinetic distribution p toward the region
of the state space where w � 0. This happens in spite of the
fact that initially such a region contains the lower fraction
of individuals, who are, however, the most influential ones
of the social network, namely, those with an overthreshold
connectivity c. This trend is even more evident in Fig. 8, which

FIG. 8. Test 2, Sec. IV B. Time evolution of the marginal opinion
density f (t, w) in the time interval [0,100] for power-law (left) and
exponential (right) connectivity distribution.
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FIG. 9. Test 2, Sec. IV B. Time evolution of the mean opinion in
the time interval [0,100] with the two connectivity distributions given
in (31). The evolution of the mean opinion in the case of independent
w, c [cf. Sec. II C] is also reported for comparison.

shows the time evolution of the marginal opinion distribution
f (t, w), and in Fig. 9, which shows the time evolution of
the mean opinion m(t ) = ∫ 1

−1 wf (t, w)dw. Unlike the case
addressed analytically and numerically in Secs. II C and IV A,
here m is no longer constant in time (as expected) and,
in particular, is attracted toward a non-negative asymptotic
value (with small variance; cf. Fig. 8) dictated by the initial
distribution of the influencers, i.e., the individuals with c � c0.

It is also interesting to observe from Fig. 9 that with the
power-law connectivity distribution g1 the mean opinion m

tends asymptotically to a value closer to the initial mean
opinion of the influencers, namely, 1

2 , than with the exponential
connectivity distribution g2. This is consistent with the fact that
the heavier tail of g1 makes the presence of influencers, i.e.,
individuals with a very high connectivity, much more probable.

C. Test 3: Spreading of the popularity

In this test we consider model (22) for the spreading of
the popularity of a product in connection with the opinion
dynamics investigated so far. In particular, in contrast to the
analysis performed in Sec. III, here we solve the dynamically
coupled model, i.e., we do not assume that opinion dynamics
are necessarily a much quicker process than the spreading of
the popularity. This allows us to account for a richer time trend
of the relevant statistical quantities than the simple exponential
decay found in Sec. III B.

We adopt the power-law connectivity distribution g1 given
in (31) and, as far as the opinion distribution is concerned,
we take as initial condition the corresponding probability
density function (35) with c0 = 3 (see also the top row of
Fig. 6). This means, in particular, that we consider the case of
dependent variables w, c. In parallel, we assume that initially
the popularity v is uniformly distributed in the interval [0,10],
hence

h0(v) := h(0, v) = 1
10χ (v ∈ [0, 10]).

We fix the other parameters of the microscopic interactions
[cf. (20)–(21)] as follows: ε = 10−3 (the scaling parameter of
the quasi-invariant regime; cf. Secs. III B and III C), μ = 10−5,

FIG. 10. Test 3, Sec. IV C. First row and second row, left: Time
evolution of the popularity distribution h(t, v) coupled to the opinion
dynamics examined in test 2, Sec. IV B for the three different choices
of the target opinion ŵ = −1/2, 0, 1/2. Second row, right: Analytical
and numerical asymptotic distributions of the popularity computed
respectively from (28) and by numerical integration of model (22) up
to the computational time T = 700.

whence μ0 = μ/ε = 10−2, ν = 10−3, whence ν0 = ν/ε = 1,
� = 0.15, ς2 = 10−5, whence ζ = ς2/ε = 10−2. Finally, we
choose the diffusion coefficient Dpop(v) = v. Notice that this
choice of the microscopic parameters implies, in particular,
μ0/ζ = 1, which is the condition found in Sec. III C for ob-
taining an asymptotic distribution of the popularity with Pareto
exponent 3, the value supported by empirical observations.

The initial condition p0(w, c) in (35) with the fat-tailed
connectivity distribution g1(c) [cf. (31)] implies that initially
the mean opinion of the population is

m0 :=
∫
R+

∫ 1

−1
wp0(w, c)dw dc = 1

2
− �

(
2,

1

3

)
≈ −0.45,

where �(s, x) := ∫ +∞
x

t s−1e−t dt is the incomplete gamma
function. By looking only at this aggregate characteristic of
the society one may argue that a good strategy for enhancing
the popularity of a product is to target an opinion close to m0.
For instance, one may take ŵ = − 1

2 in (21). Nevertheless, our
mathematical model shows that this is by no means a good
choice, in fact in such a case the popularity decays rapidly to
zero [cf. Fig. 10(a)].

Another possibly common strategy may be to target the
neutral opinion ŵ = 0 in the hope that this may render the
product more generically suited to most individuals. Our model
clearly shows that also this choice turns out to be ineffective,
because, after a temporary rise, the popularity of the product
invariably vanishes in the long run [cf. Fig. 10(b)].

The drawback of both strategies is that they choose the target
opinion ŵ by basically ignoring statistical facts related to the
connectivity distribution in the population. Considering that
most individuals are actually not influencers, in fact the fraction
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TABLE I. Total number of social interactions involving three
hashtags in the most popular social networks (Facebook, Twitter,
Instagram, Google+, and Youtube) in the period March-April 2018.
Source: brand24.com.

Week #metoo #shareacoke #cambridgeanalytica

10 March 17
17 March 10521 468
24 March 14954 194 10662
31 March 16375 306 9768
7 April 15936 594 10055
14 April 15337 723 13497
21 April 0 1293 6626

of agents with low connectivity (c < c0 = 3) is∫ 3

0

∫ 1

−1
p0(w, c)dw dc =

∫ 3

0
g1(c)dc = �

(
2,

1

3

)
≈ 95%,

one understands that the value m0 is mainly determined by
people who will not be able to dictate the opinion trends. Owing
to this, the strategy of targeting the initial mean opinion of the
influencers (c � c0), namely, ŵ = 1

2 , turns out to be successful
in spite of the very small fraction of influencers in the social
network (about 5%). In fact, as Fig. 10(c) shows, the popularity
suffers from an initial short decrease due to the fact that the
target opinion is somehow elitist at the beginning; then it goes
through a nonzero plateau during the influencer-driven phase of
reorganization of the opinions; and finally it steadily rises when
the influencers manage to drag the opinions of the population
in their area. For this last case we also compare in Fig. 10(d)
the asymptotic distributions of the popularity computed analyt-
ically from (28) and by numerical integration of model (22) up
to the computational time T = 700. Remarkably function (28),
in spite of having been obtained under the simplification of
steady opinion dynamics (cf. Sec. III), turns out to be a good
approximation of the actual popularity distribution computed
from model (22) in which popularity trends are dynamically
coupled with opinion formation.

Among the possible measures of popularity in social net-
works, the number of social interactions involving hashtags
(such as, e.g., posts on online social platforms, their shares
and likes) is adopted by several media-marketing websites. As
an example, in Table I we report the week data collected by the
reference web app brand24.com in the period March-April
2018 concerning three hashtags which have characterized
recent social media campaigns:

(i) #metoo about the movement against sexual harassment;
(ii) #shareacoke about the advertisement of a popular soft

drink;
(iii) #cambridgeanalytica about the improper use of

personal data of social network users.
In Fig. 11(a) we plot the time trends of the popularity

of these hashtags obtained by means of a third-order spline
interpolation of the data in Table I. We point out that data in
the plot have been normalized with respect to their maxima
for an easier visualization. In Fig. 11(b) we show instead the
time evolution of the mean popularity in the scenarios (a)–(c)
illustrated in Fig. 10. The comparison shows that the popularity

FIG. 11. Test 3, Sec. IV C. Third-order spline interpolation of the
popularity time trend of the three hashtags reported in Table I. For
ease of representation data have been normalized with respect to their
maxima (up). Colored markers are the noninterpolated data. Time
evolution of the mean popularity M (down) in the three scenarios
considered in Fig. 10.

trends simulated by our model capture qualitatively well the
observable characteristics of representative real trends, thereby
confirming that our model may explain the basic microscopic
mechanisms of popularity spreading in connection with opin-
ion sharing on social networks.

V. CONCLUSIONS

In this article we introduced mathematical models of kinetic
type able to follow the marketing of products by using social
networks. Our analysis is twofold. First, we considered the
problem of opinion formation in a social network in which
the change of opinion also depends on the connectivity of
the agents. Specifically, in agreement with the literature, we
assumed that agents with low connectivity are more prone to
be influenced by well connected agents (the so-called influ-
encers). Then, we investigated the spreading of the popularity
of a selected product (such as, e.g., news, video, advertisement)
by coupling it to the opinion dynamics taking place over the
social network. In particular, we assumed that the product
launched onto the social network targets a given opinion and
can be possibly reposted by the agents that it reaches depending
on how much their current opinion is aligned with the targeted
one. By means of analytical and numerical results we were
able to recover the typical fat-tailed statistical distribution of
the popularity well acknowledged by empirical observations.
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In addition to this, our results pointed out the importance
of the agents with high connectivity, and of their opinions,
in the possible success of the product under consideration.
More in general, they highlighted clearly the role of the
social network in promoting different forms of consensus, and
consequently different trends of popularity, depending on the
connectivity distribution of the agents. Finally, we showed the
potential effectiveness of our modeling approach by means of a
qualitative comparison of the simulated popularity trends with
real trends of a few media campaigns.

Further extensions of the proposed model may include,
for instance, a variable target opinion which follows the
ongoing opinion dynamics over the social network as well as
a dynamic network in which connections among the agents
can possibly change in time (see, e.g., [33]). Moreover the
notion of popularity, here considered especially in connection
with product marketing, may be thought of more in general
as a measure of the permeation of a given message into

the population of agents. Therefore the approach developed
in this article can constitute a formal basis for the inves-
tigation of effective communication strategies in awareness
campaigns concerning important contemporary social issues
such as, e.g., homeland security, national health, or other social
programs.
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