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Information filtering by smart nodes in random networks
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Diffusion of information in social networks has drawn extensive attention from various scientific communities,
with many contagion models proposed to explain related phenomena. In this paper, we present a simple contagion
mechanism, in which a node will change its state immediately if it is exposed to the diffusive information. By
considering two types of nodes (smart and normal) and two kinds of information (true and false), we study
analytically and numerically how smart nodes influence the spreading of information, which leads to information
filtering. We find that for randomly distributed smart nodes, the spreading dynamics over random networks
with Poisson degree distribution and power-law degree distribution (with relatively small cutoffs) can both be
described by the same approximate mean-field equation. Increasing the heterogeneity of the network may elicit
more deviations, but not much. Moreover, we demonstrate that more smart nodes make the filtering effect on a
random network better. Finally, we study the efficacy of different strategies of selecting smart nodes for information
filtering.
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I. INTRODUCTION

Prevalent viewpoints, ideas, or rumors are all examples of
information spreading, which has attracted a great deal of
attention from researchers in various areas, including social
science and statistical physics [1–12]. It is commonly believed
that human interactions play the key role in the information
diffusion process. Due to communications, information trans-
fers from one person to another, which may cause a large scale
of awareness or infection [13].

Many models have been proposed to explain information
diffusion phenomena [14], such as epidemic models [15–21],
rumor-spreading models [22–25], cascading models [26,27],
and threshold models [28–35]. In these models, individuals are
classified by their different states, where actually the interac-
tion patterns are quite different. For example, in the SI epidemic
model [or the Daley-Kendal (DK) rumor-spreading model]
[14,22], each interaction between susceptible (ignorant) and
infected (spreader) nodes is independent, and it sustains until
one of the two nodes switches its state. In the cascading models,
however, an active node has only one chance to affect its
inactive neighbors (the interactions are also independent). The
contagion mechanism underlying these models is “simple,”
implying that a node may change its state even if there is only
one active neighbor. However, it fails to characterize some
social spreading processes, such as the spreading of behaviors
or innovations, where social reinforcement should be taken into
account [4,8]. The linear threshold model [3], first proposed
by Granovetter, is the standard tool to capture these “complex”
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contagion phenomena. It assumes that a person will change its
state only if a certain fraction of its neighbors have done so.
This model has been studied extensively after the stimulating
work of Watts [28].

The aforementioned models have been studied extensively
in the scenario of one piece of information. However, people
are inundated with miscellaneous information in everyday life.
Some information is true, which is valuable to us. For exam-
ple, the information of individual states during an epidemic
outbreak over a social network can spur more people to take
precautionary measures, which will suppress the transmission
of the disease [36–39]. However, some information is false,
which may cause problems for people, such as online rumors.
Yet, to filter out false information is a rather challenging task.
In one sense, personal abilities play a crucial role in the filtering
process. For instance, some individuals have critical-thinking
abilities (being “smart”), and they usually perform better than
the normal ones in discriminating false information. How do
different kinds (true or false) of information spread in the
presence of smart people? This is an interesting question that
needs to be fully addressed in order to better understand var-
ious complex phenomena observed from the real information
diffusion processes in human society.

In this paper, we present a different but simple (thus ana-
lytically tractable) contagion network model in which nodes
have three different states: 0 (susceptible), 1 (adopted), or 2
(immune). We assume that a susceptible node will change its
state (to the adopted or immune state) immediately after one of
its neighbors has become adopted. Motivated by observations
in real life, we incorporate smart agents into the model, after
which we study the differences in spreading true and false
information on random networks. Our aim is to understand
how the number of smart nodes and their distribution affect
the filtering of information, where true information can spread
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throughout the system while false information will be purged.
Though the model is simple, it may provide enough insights
for more complex and realistic situations.

We organize the paper as follows. In Sec. II, we present
the details of our model. In Sec. III, we consider the case
of a random distribution of smart nodes in the network, and
we study analytically and numerically how these smart nodes
influence the filtering of information. In Sec. IV, we compare
three different distribution strategies of selecting smart nodes
for information filtering. Finally, we make a conclusion in
Sec. V.

II. MODEL

The model consists of N nodes forming a random network
with degree distribution p(k). The average degree is z =
�kkp(k). A node in the network can be in one of the three
states: 0 (susceptible), 1 (adopted), or 2 (immune). Initially
all nodes are in state 0, except that one node is selected as the
seed at random, which is in state 1. At each time step, all nodes
are updated synchronously [40]. If a node with state 0 has no
adopted neighbors, it remains in state 0 at the next step. Yet,
if there is at least one adopted node around it, the node will
change its state according to the following rule:

si (t + 1) =
{

1 with probability p,

2 with probability 1 − p,
(1)

where si (t + 1) represents the state of node i at time t + 1.
Rule (1) means that once a susceptible node is exposed to any
adopted node, it will become adopted with probability p or
refuse with probability 1 − p. Once a node becomes adopted
or immune, it cannot change its state until the end of the
process. It is worth noting that we only consider two possible
state transitions in the spreading dynamics (0 → 1 and 0 → 2).
Different from the traditional rumor-spreading model (and the
SIR epidemiological model), the transition of state from 1
to 2 is neglected. This dynamics is suitable to characterize
behaviors such as reposting an article or a message on a social
website—once a person reposts it, he/she will probably keep
it and thus always be in an adopted state. As a supplement,
the transition 1 → 2 is also considered in a modified model as
shown in the Appendix.

In real life, both true and false information exists. Facing
this, individuals exhibit heterogeneous abilities of discrimi-
nation of false information. For example, some people are
well educated or have critical-thinking skills, so they could
distinguish whether a message is true or false with ease. To
mimic such a situation, we select a fraction r of the nodes
in the network as smart nodes (agents), who have different
adopting probabilities from the normal ones. We assume that
the probability of a normal node to become adopted is pn

(regardless of true or false information). The probability of
a smart node becoming adopted is

ps =
{
H1 true message,
H0 false message, (2)

where H1 > pn > H0. This indicates that, for the true (false)
information, a smart node will adopt it with a higher (lower)
probability than a normal node.

III. RANDOM DISTRIBUTION OF SMART NODES

For the sake of mathematical simplicity, in this section we
first assume that the smart nodes are randomly distributed on
the network, that is, a randomly chosen node has a probability
r being smart, which will be a controlling parameter in our
model. We provide a mean-field analysis for the spreading dy-
namics in Sec. III A, and we confirm the theoretical predictions
by extensive simulations on ER networks and an uncorrelated
configuration model (UCM) with degree distribution p(k) ∼
k−λe−k/κ in Sec. III B.

A. Theoretical analysis

We take the mean-field approximation approach to inves-
tigating the spreading dynamics analytically. Supposing that
ρ∞ is the adoption density at the steady state, we have the
following equation:

ρ∞ = ρ0 + (1 − ρ0)
∞∑

k=1

p(k)

[
k∑

m=1

rpsbk,m(ρ∞)

+
k∑

m=1

(1 − r )pnbk,m(ρ∞)

]
≡ F (ρ∞), (3)

wherebk,m(ρ∞) = ( k

m)ρm
∞(1 − ρ∞)k−m, denoting the probabil-

ity of a node of degree k has m adopted neighbors at t = ∞,
and ρ0 = 1/N is the initial adoption density, which goes to
0 if the network size is infinitely large. The probability that
a randomly chosen node is in state 1 at time t = ∞ is the
sum of two contributions: the probability ρ0 that the chosen
node is adopted at t = 0 and the probability 1 − ρ0 that the
node is susceptible at t = 0 but has at least one adopted
neighbor at time t = ∞. Since the chosen node is either smart
or normal, the probability that it adopts is the sum of two
parts:

∑k
m=1 rpsbk,m(ρ∞) and

∑k
m=1(1 − r )pnbk,m(ρ∞). The

sum over k accounts for all possible degrees a node may
have.

The value of ρ∞ can be obtained by solving Eq. (3)
iteratively. Moreover, the global cascade condition (as N →
∞, ρ∞ corresponds to a finite value) can also be determined
from this equation. Note that ρ∞ = 0 is always a solution
to ρ∞ = F (ρ∞) (in the case of ρ0 → 0). To have a positive
solution, the condition F ′(ρ∞)|ρ∞=0 > 1 must be fulfilled.
Thus we get

z[rps + (1 − r )pn] > 1. (4)

Note that, when z < 1, inequality (4) can never be satisfied
[as rps + (1 − r )pn < 1]. In this case, both true and false
messages cannot spread out, since the network is under
percolation. We are interested in the case of z > 1, assuming
that the network is well connected.

Our aim is to find a parameter regime in which the true
message can spread widely through the system while the false
message cannot. For the true message (ps = H1), the condition
for global cascading is

(H1 − pn)rT + pn > 1/z. (5)
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FIG. 1. Phase diagrams on ER networks. The circles and squares
are the simulation results for z = 5 and 10, respectively, where z is
the average degree. The solid and dashed lines are the theoretical
solutions, respectively. The points are obtained when the final density
ρ∞ of adopted nodes exceeds 0.5% of the population.

For the false message (ps = H0), the condition for a note to be
in the absorbing state (no global cascades) is

(H0 − pn)rF + pn < 1/z. (6)

Without loss of generality, we assume that H1 = 2pn and
H0 = 0, satisfying H1 > pn > H0. Thus, the above inequali-
ties become

rT > � = 1/z − pn

pn

, (7)

rF > −� = 1/z − pn

−pn

. (8)

Denote ρT and ρF as the final adoption densities for true and
false information, respectively. The above inequalities imply
three typical regions for the spreading dynamics: (i) 0 < pn <
1
2z

(� > 1). In this case, ρT → 0 and ρF → 0. (ii) 1
2z

� pn �
1
z

(0 � � � 1). In this case, inequality (8) is always satisfied,
meaning that ρF → 0, while for the true information, there
is a threshold rc = �, below which ρT → 0, but for r > rc,
ρT > 0. (iii) pn > 1

z
(−1 < � < 0). The system is always in

the active state for true messages, i.e., ρT > 0. But for the false
information there is a threshold rc = −�, which separates the
two different situations.

B. Simulation results

We first perform simulations on uniformly distributed ran-
dom networks [41]. The size of the underlying network is
N = 5000 and the average degree is z. We choose H1 = 2pn

and H0 = 0 as assumed in the theoretical analysis. All the
results are averaged over 1000 different realizations.

Figure 1 shows the global cascading boundary in the (pn, r )
space for both true and false information. The blue circles
and yellow squares correspond to z = 5 and 10, respectively.
Taking z = 5 for example, there are two boundary lines (the
left and right ones represent the spreading of true and false

FIG. 2. The final density ρ∞ of adopted nodes as a function of pn

for different values of r (the ratio of smart nodes) in ER networks,
where the average degree is z = 10. Circles and squares correspond
to r = 0.4 and 0.8, respectively. Different colors with the same shape
represent different kinds of information. The dashed lines are the
theoretical results obtained from Eq. (3).

information, respectively), which separate the phase diagram
into three regions. In region I, both true and false information
cannot spread out. Even if the network is full of smart nodes, the
contagion probability (pn or ps) is too small to trigger a large
number of nodes to adopt. In region II, the true information
can percolate through the whole network, while the false in-
formation cannot. This is an ideal region in which the network
can filter out the true message from mixed ones. In region III,
both true and false information could spread throughout the
network. It can be seen that, when pn is greater than a specific
value (pn > 0.1 for z = 5), there appears a threshold rc for
each pn that separates two different phases, indicating that it
requires at least rc smart nodes to successfully filter different
messages. As pn increases, rc drops at first and then grows
again. The decreasing behavior is natural since larger pn (or
ps) makes the true information easier to spread even among
normal nodes. However, when pn increases further, the false
information could also trigger global cascading. To suppress
this effect, more smart nodes are needed to hinder the spreading
process.

The increase of the average degree promotes the spreading
of both true and false information. As shown in Fig. 1
(comparing the red solid lines and the green dashed lines), the
boundary lines are shifted to the left. However, the influence of
the average degree on the spread of false information is more
profound than that of true information (for r > 0). Note that
the smart nodes make the false messages hard to spread; in
this case, increasing the average number of links of a node
could effectively break this constraint. On the contrary, for
true messages, even without many links, the smart nodes could
help the information spread out successfully, which makes the
average degree less important. It is obvious that, as the average
degree increases, the filtering region shrinks.

Figure 2 illustrates the asymptotic density ρ∞ of adopted
nodes as a function of pn for different values of r with z = 10.

022308-3



RUAN, WANG, XUAN, FU, AND CHEN PHYSICAL REVIEW E 98, 022308 (2018)

FIG. 3. Phase diagrams on UCM networks. The solid and dashed
lines correspond to the mean-field results for z = 5 and 6.9, respec-
tively. The circles and squares correspond to the UCM networks with
κ = 12 (z ≈ 5) and κ = 100 (z ≈ 6.9), respectively. The results are
obtained when ρ∞ exceeds 0.5% of the population.

The circles and squares (simulation results) correspond to the
case of r = 0.4 and 0.8, respectively, which agree well with
the theoretical solutions (dashed lines). As the number of smart
nodes grows, the density of adopted nodes at the final state for
true (false) information increases (decreases). In other words,
the difference in the densities of true and false information,
namely ρT − ρF , becomes larger if more smart nodes are in
the network. This means that the more smart nodes there are,
the better is the filtering effect.

We then turn to heterogeneous random networks. Consider
the degree distribution p(k) ∼ k−λe−k/κ , where λ and κ are
constants. These kinds of networks (having a power-law degree
distribution with an exponential cutoff) are ubiquitous in
nature, including collaboration networks, e-mail networks,
and protein networks [42,43]. Unlike the uniform random
networks, where the degrees of most nodes are around the
average value, the degree distributions of heterogeneous ran-
dom networks are highly skewed. In this case, the majority of
nodes have small degrees while a few have large numbers of
connections. In the simulations we take the UCM networks,
with the maximal degree satisfying kmax < N1/2 and the
minimal degree being kmin = 3 [44].

We show the phase diagrams on heterogeneous networks in
Fig. 3. The red circles correspond to the UCM networks with
κ = 12 (i.e., z ≈ 5). The solid lines correspond to Eqs. (7)
and (8) for z = 5. We can see that the deviations are small,
indicating that the mean-field method also works for hetero-
geneous networks (with relatively small κ) approximately.
Moreover, the asymptotic values of the density of adopted
nodes ρ∞ for various pn almost overlap in UCM and ER
networks with z = 5 [see Fig. 4(a)]. Note that for ER networks,
the variance of degree σ 2 = 〈k2〉 − z2 = z. The variance of
degree for UCM networks with κ = 12 is 12.58, which is
more than twice that of ER networks with z = 5. Increasing
the heterogeneity of the node degree may make the deviations
become larger, but not too much. As shown in Fig. 3, the green

FIG. 4. The final density ρ∞ of adopted nodes as a function of pn

for ER (circles) and UCM (squares) networks. In each subplot, the
two kinds of networks have the same average degree: (a) z = 5 and
(b) z = 6.9. Different colors with the same shape represent different
kinds of information. The ratio of smart nodes is r = 0.4.

squares and dashed lines correspond to the UCM networks with
κ = 100 (z ≈ 6.9, σ 2 = 55.43) and the mean-field solutions
for z = 6.9, respectively. Correspondingly, the values of ρ∞
for various pn in two kinds of networks are shown in Fig. 4(b),
which deviate only a little. Further increasing κ has similar
conclusions [45].

These arguments suggest that our model is quite differ-
ent from the traditional epidemic models (and the threshold
models), where the spreading process is highly sensitive to
the hubs. In our model, the role of hubs in the spreading of
information seems to be weakened. To better understand why
this is, we take the star networks as an extreme example. As
a comparison, the case of ER networks with the same average
degree is also considered [Fig. 5(a)]. For simplicity, we assume
all nodes are normal here. Initially, a node is selected randomly
as a seed, and the adoption probability is set to be pn = 0.2.
The size distribution of adopted nodes in star networks is
bimodal [as shown in Fig. 5(b)], indicating that there is a small
probability that a randomly chosen seed may trigger a large
cascade (s ≈ 1000). However, in ER networks, the largest
cascade size is much smaller (s ≈ 16). This means that the
hubs could greatly facilitate the spreading of information. On
the other hand, the probability that a randomly chosen seed
triggers a very small cascade (with size s = 1) in star networks
is higher than that in ER networks. Once the hubs turn into
state 2 (with probability 1 − pn), a large number of nodes
cannot be affected by the information. From this point of view,
the hubs may also impede the spreading of information. As a
consequence, the two actions might offset (at least partly) each
other.

IV. SELECTING STRATEGIES FOR SMART NODES

The selection of smart nodes in the network plays an
important role in the filtering process. To elucidate the effect of
different distributions of smart nodes in a network, we compare
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FIG. 5. Size distribution of adopted nodes at the steady state in (a)
ER networks and (b) star networks. The parameters are N = 5000,
z = 1.9996, and pn = 0.2. The distributions are obtained from 1000
different trials.

three heuristic strategies of selection: (i) random selection,
which we already studied in Sec. III; (ii) selecting nodes
according to their degrees, i.e., sorting the nodes by degree
and selecting the rN largest nodes as smart ones; (iii) selecting
nodes by k-shell index in descending order. The selection of
smart nodes in (ii) and (iii) may not be unique—there may be
many sets of nodes that can be selected, since some nodes have
the same degree or k-shell index. In such situations, we choose
one at random.

Figure 6 shows the phase diagrams for the three se-
lecting strategies on ER networks of size N = 5000 with
average degree z = 5. It can be seen that the highest-degree

FIG. 6. Phase diagrams for three different selecting strategies of
smart nodes on ER networks, where N = 5000 and z = 5. The points
are obtained when the final density ρ∞ of adopted nodes exceeds 0.5%
of the population.

selection strategy performs best, which corresponds to the
largest filtering region (region II). Specifically, for a fixed value
of pn, this selection method requires the fewest smart nodes
for the outbreak of the true information and extinction of the
false information. Since the nodes with a high degree can
influence a large number of nodes in the network, choosing
these nodes as smart ones has a better performance than
the case of random selection. The k-shell method performs
worse than the highest-degree selection strategy but better
than the random one. Note that, statistically, higher k-shell
nodes may also have higher degrees. Nevertheless, it cannot
guarantee that their degrees are always the highest. On the
other hand, nodes in the highest k-shells, by construction,
are connected to other high-degree nodes [34]. This implies
that smart nodes tend to affect smart nodes (if one selects
smart nodes by the descending order of their k-shell index),
which confines the efficacy of smart nodes in the filtering
process.

V. CONCLUSION

In this paper, we have proposed a simple contagion model
incorporating smart nodes to study how different kinds (true or
false) of information spread in networked populations. In our
model, a node would take action (adopt or refuse) immediately
as soon as it is exposed to the diffusive information. We argue
that this contagion mechanism is suited to modeling such
behaviors as reposting messages to social websites, where
people are more concerned about the content of the messages
and ignore what others do (peer pressure). Based on this
observation, we considered how true and false information
spreads in the presence of smart nodes, who have a higher
(lower) probability to adopt true (false) information. We have
shown that, in the (pn, r ) parameter space, where pn is the
normal adoption probability and r is the fraction of smart
nodes, there is a filtering region in which true information
can percolate throughout the network while false information
cannot. For ER networks with a random distribution of smart
nodes, the spreading dynamics can be described by a mean-
field equation. We found that this equation also works ap-
proximately for heterogeneous networks with relatively small
cutoffs. Increasing the heterogeneity of the network may elicit
deviations (relatively small). These results indicate that, in our
model, the spreading of information is not very sensitive to the
hubs. The reason lies in the double-edged role the hubs may
play: if they adopt, many nodes could be influenced by the
diffusive information, which facilitates the spreading process;
if they refuse to adopt, many nodes would be ignorant of
the information, which hinders the spreading of information.
Finally, we studied the effect of different selection strategies
for smart nodes on the information spreading process. Our
results demonstrate that selecting smart nodes by their degrees
(from the highest down) works best, which corresponds to
the largest filtering region in the phase diagram. This model
may help us to better understand some complex spreading
phenomena in real life. Moreover, it also has the potential to
measure the information filtering ability of a social network,
and, furthermore, to improve the filtering performance. This
model can also be modified by considering more intriguing
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FIG. 7. Phase diagrams for the modified model. The circles and
squares correspond to α = 0.1 and 0.2, respectively. We perform
simulations on ER networks with an average degree z = 5. These
results are obtained when ρ∞ (the density of immune nodes) exceeds
0.5% of the population.

cases, for instance the recurrent activation process [46–48],
which will need many further investigations.
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APPENDIX: A MODIFIED MODEL

In the previous model, there are only two state transitions:
0 → 1 and 0 → 2. However, in some scenarios (especially
for traditional rumor-spreading), it is also possible for the
transition 1 → 2 to happen, since when people know the news
they may lose interest in spreading it (because the rumor has
lost its “new value”). We assume that, at each time step, a
susceptible node will become adopted with probability p or
immune with probability 1 − p if there is (at least) one adopted
neighbor; in the meantime, the adopted nodes will become
immune with probability α if they encounter another node in
an adopted or immune state. Figure 7 shows the phase diagrams
for the modified model for different values of α. Similar to the
previous model, we find that the phase diagram is divided into
three regions. Moreover, it seems that the parameter α has no
effect on the cascading dynamics, since the time for a node to
turn into the immune state is inessential in the model.
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