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Scale-free behavior as well as oscillations are frequently observed in the activity of many natural systems.
One important example is the cortical tissues of mammalian brain where both phenomena are simultaneously
observed. Rhythmic oscillations as well as critical (scale-free) dynamics are thought to be important, but
theoretically incompatible, features of a healthy brain. Motivated by the above, we study the possibility of
the coexistence of scale-free avalanches along with rhythmic behavior within the framework of self-organized
criticality. In particular, we add an oscillatory perturbation to local threshold condition of the continuous Zhang
model and characterize the subsequent activity of the system. We observe regular oscillations embedded in
well-defined avalanches which exhibit scale-free size and duration in line with observed neuronal avalanches.
The average amplitude of such oscillations are shown to decrease with increasing frequency consistent with real
brain oscillations. Furthermore, it is shown that optimal amplification of oscillations occur at the critical point,
further providing evidence for functional advantages of criticality.
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I. INTRODUCTION

Generic scale-invariance is ubiquitously observed in natural
systems [1–3] and has been a subject of study in physical
[4–6], geological [7], biological [8], and social sciences [9].
On the other hand, rhythmic behaviors such as resonance and
synchronization [10] are also observed and studied in many
natural systems [11]. From a theoretical point of view these two
phenomena seem to be incompatible, since oscillations imply
a definitive time-scale while scale-free avalanches exhibit no
particular time (or size) scales.

A perfect example of a system where both phenomena
are observed is the collective neural dynamics of mammalian
cortex. On one hand, rhythmic oscillations of cortical neurons
are well documented and intensively studied in regard to
their formation [12–15] as well as their functional and behav-
ioral correlates [16]. On the other hand, neuronal avalanches
[8,17–22] with scale-free statistics of their size and duration
imply lack of time and size scales for brain dynamics. It has
been shown that the coexistence of these two phenomena is
important for the development of cortical layers [23]. Scale-
free behavior of the brain, that is thought to be the result of
underlying criticality, has recently attracted much attention
in regard to optimum dynamic range in response to stimulus
[24,25], functional robustness [26], learning capability [27],
information processing [28], and transmission [29].

The important issue here is how these two phenomena, that
seem to be incompatible in a first pass, emerge simultaneously
in the cortex. Moreover, what would be the consequences of
such a coexistence. Despite the importance of this phenomena,
a few theoretical studies have been devoted to this subject.
Poil et al. have shown that this phenomena can emerge as
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a result of a balance between inhibition and excitation [30].
More recently Wang et al. have shown that this coexistence can
emerge as a finite-size effect in self-organized critical states of
small systems [31]. Emergent stochastic oscillations are also
observed close to the critical point in non-conservative systems
of interacting excitable nodes known as self-organized quasi-
critical models [32,33].

The typical theoretical framework for the study of rhythms
of the brain is synchronization of coupled phase oscillators
such as the Kuramoto model [10] while neuronal avalanches
are mostly studied in the context of self-organized criticality
(SOC) [31,34–39] or models of excitable nodes [25,30,40–42].
In this work, we intend to study the effects of oscillations in
the framework of SOC. In particular, we introduce and justify
an oscillatory perturbation into a well-known Zhang model of
SOC [43,44] and subsequently characterize its response to such
a perturbation. Interestingly, we find that oscillations domi-
nantly occur while embedded within well-defined avalanches
which exhibit scale-free statistics for their size and duration.
We further find that the well-established response of the system
is further enhanced and amplified at the critical point leading to
large amplitude oscillatory behavior as a result of subthreshold
oscillatory perturbations.

II. THE MODEL

In order to study the behavior of a self-organized critical
(SOC) model under the influence of an external oscillatory
perturbation we use a sandpile model known as the stochastic
Zhang sandpile model [44]. The reasons for choosing this
model for our study is that it exhibits continuous dynamical
variables, a threshold dynamics that can mimic the neuronal
dynamics and well-behaved scaling behavior [45]. The model
is considered on a two-dimensional L × L square lattice
(number of sites in the lattice is N = L2) with nearest-neighbor
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interactions. Every node of the lattice i is assigned a dynamical
variable Vi (e.g., energy or potential). Dynamics of the model
exhibits a slow perturbative drive during which small amounts
of energy are added to the system, i.e., Vi = Vi + δV , where
δV is a randomly chosen real number from [0,0.25]. This pro-
cess is continued until a site reaches a threshold value (Vth = 1)
at this point a fast dynamics takes place. Addition of energy via
perturbative drive is not possible during an avalanche in SOC
systems. This property is known as separation of slow and fast
time scales [4–6]. The rule for the fast dynamics is that each
site i with Vi � Vth becomes unstable and distributes its energy
between its neighbors with the following toppling rule:

if Vi > Vth,

then Vj → Vj + WjVi, Vi → 0, (1)

in which the index j is related to all neighbors of site i,
and Wj are annealed random numbers in the range [0,1]
with the constraint of

∑
j Wj = 1 which leads to strict local

conservation of energy. Conservative dynamics in addition
to separation of time-scales are believed to be required for
observation of self-organized criticality. However, it has been
shown that breaking local conservation does not violate criti-
cality of the system as long as the dynamics is on the average
(or globally) conservative [36,37]. It is generally believed
that neuronal interactions are not conservative where different
electrophysiological mechanisms play a role in delivering
electrical signal via synapses. Therefore, models of non-
conservative interacting neurons have been developed as self-
organized quasi-critical models where approximate criticality
is considered as an explanation of scale-free behavior of
neuronal avalanches [32–34,46]. However, in this work we
use a conservative SOC model which can be considered as a
limiting case of a more realistic model of neuronal dynamics.

The fast dynamics pursuing Eq. (1) is triggered by a single
toppling. As a result of a toppling it is possible that the
neighbors that receive energy become unstable and topple in
the next time step and a cascade of toppling takes place which
is called an avalanche. An avalanche ends when there are no
unstable sites in the system. Here, we must note that all the sites
that become unstable in one time step will topple together, i.e.,
we use the parallel update rule [47]. Boundaries of the lattice
are open and energy can be dissipated through the boundaries.
Size (S) of an avalanche is defined as the number of topplings
and duration (D) of an avalanche is defined as the number of
time steps (parallel updates) of the avalanche.

We also use another version of sandpiles known as the
fixed energy sandpile model [48,49]. In this version, periodic
boundary conditions are imposed on the system and the
external perturbation is turned off. Therefore, the average
energy of the system (E = 1/N

∑N
i=1 Vi) is fixed by the initial

conditions. Fixed energy sandpile models exhibit a control
parameter which is the average energy of the system E and
an order parameter which is the long term average of the
density of active nodes ρ in the system. Activity is initiated by
choosing a random site i and allowing it to topple according
to Eq.(1), regardless of its value Vi . This model exhibits a
continuous (dynamical) phase transition, passing through a
critical point E = Ec, from an absorbing state where any
activity ends (ρ = 0) to a running state where one observes

ceaseless dynamics (ρ > 0). Properties of the system at the
critical point of a fixed-energy sandpile is in accordance with
its SOC counterpart [48]. Using fixed-energy sandpiles, we can
study the behavior of the system in the sub-critical (E < Ec)
as well as super-critical (E > Ec) phases.

We now introduce an oscillatory perturbation to the system.
During the fast dynamics we simply introduce a sub-threshold
oscillatory perturbation to the model that changes the dynamics
by changing the condition of toppling as follows:

if Vi + δ × f (�t + φ0) > Vth,

then Vj → Vj + WjVi, Vi → 0, (2)

in which f is a normalized oscillatory function, δ is the
(sub-threshold) amplitude of the oscillatory perturbation, � =
2π/T is the angular frequency of the oscillations (T is the
duration of oscillatory perturbation) and φ0 is the initial phase
that is chosen randomly from [0, 2π ] at the beginning of each
avalanche. Here, we must note that the oscillatory perturbation
does not add energy to the system, it just manipulates the
condition of toppling and the dynamics is, regardless of the
oscillations, strictly conservative. In this paper we will show
that it is possible to introduce a time-scale to the dynamics of
a critical system while it still remains at the critical point.

An example of a physical situation for our model is a cortical
tissue that receives sub-threshold oscillatory input from any
other parts of the brain. A real neuron undergoes oscillations
in its membrane potential when receiving a sub-threshold
oscillatory input current [50]. Subsequently, the excitability of
a neuron becomes an oscillatory function of time. Therefore,
our model captures in a simple way a threshold and release
mechanism, driven by an external oscillatory plus local inputs,
and thus resembles what one expects from real neuronal
dynamics.

III. RESULTS

To understand the scaling as well as oscillatory behavior of
the system, we performed extensive computer code simulations
of the systems with different sizes of L = 512, 1024, 2048.
First, we focus on the activity of the system (x) which is
defined as the number of active sites (the sites that topple)
at each time step of an avalanche. An avalanche starts when x

becomes equal to one and ends when it becomes zero. We find
that systems that are influenced by the oscillatory perturbation
exhibits oscillations in activity embedded in avalanches, i.e.,
during each avalanche x is an oscillatory function of time with
a period equal to the oscillatory perturbation [see Figs. 1(a)
and 1(b)].

In order to study the properties of oscillatory perturbations
we calculate the average amplitude of oscillations as

A = 〈Ak〉 = 〈〈
xk

max

〉 − 〈
xk

min

〉〉
, (3)

where 〈xk
max〉 and 〈xk

min〉 are, respectively, the average of
maxima and minima of oscillatory activity in an oscillatory
avalanche k. Large brackets are for averaging over all oscilla-
tory avalanches. An interesting property of these oscillations
is that their normalized amplitude increases as a power-law
function (A/〈x〉 ∼ T 0.55, where 〈x〉 is the average activity of
the system over all oscillatory avalanches) of the period of
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FIG. 1. (a) Activity of the system (consecutive avalanches) as a function of time for a system with T = 64. An avalanche starts when x > 0
and ends when x = 0. Note the logarithmic scale on the vertical axis. (b) Oscillations of the activity embedded in avalanches. (c) Normalized
amplitude of oscillations in activity as a function of period of oscillations. (d) Power spectrum of x for different phases of systems with
oscillatory perturbations with T = 128 at(E = Ec = 0.596), above (E = 0.608) and below (E = 0.585) the critical point, compared with the
critical system without oscillatory perturbation. We set L = 1024, f = sin(�t + φ0 ), and δ = 0.1 in all panels.

oscillatory perturbation [see Fig. 1(c)]. This property is in
agreement with our knowledge of the rhythms of the brain [12],
where we observe low amplitude, high frequency oscillations
and vice versa. For example, low frequency α (∼10 Hz)
oscillations occur at relatively high amplitude while high
frequency γ (30–80 Hz) oscillations occur at low amplitudes
in the cortex.

Power spectrum of the activity of system is calculated and
plotted in Fig. 1(d) for different fixed-energy models with and
without oscillatory perturbations at E = Ec, and also above
and bellow the critical point. In the sub-critical phase we
observe a flat line for low frequencies which is an indication
of a noisy dynamics. Compared to the critical state of the
system without oscillatory perturbation, it is clear that for
the critical system with oscillatory perturbation, one obtains a
power-law function with a peak at the frequency of oscillatory
perturbation. This behavior is ubiquitously observed in elec-
troencephalogram as well as local field potential analysis of
many parts of the brain [51]. We have done the same analysis
for different values of T = 128, 64, 32 and we observed the
same behavior in all cases. Therefore, we can conclude that
the system exhibits a wide range of frequencies that have
the potential to be amplified and observed at the critical
point. A degree of amplification of oscillatory perturbations
is observed in the super-critical phase with an amplitude
smaller than the the observed amplitude in the critical phase
[see Fig. 1(d)]. Using a quantitative analysis, we will show
later that the amplification is maximized at the critical point
compared to off-critical phases. We note that in contrast to
the phenomenon of resonance where amplification of special
frequencies is possible, this amplification is possible for all the
power-law distributed frequency range. This behavior is in line

with oscillatory behavior in the brain where a wide range of
frequencies is observed [12,51].

In order to study the scaling behavior of the system we focus
on avalanche statistics. A prototypical example of probability
distribution function of duration of avalanches [P (D)] is
plotted in Fig. 2(a) for L = 512, f = sin(�t + φ0), δ = 0.1,
and T = 128. It is interesting that P (D) exhibits a bouncing
behavior for large enough D over intervals of �D = T . And,
if we average the data over time bins of �D = T , we observe
power-law behavior of the binned data. Notably, this bouncing
behavior is not observed for the probability distribution func-
tion of avalanche sizes and a standard power-law behavior is
observed for P (S).

Simply observing extended scaling for a finite system is not
necessarily proof of criticality. To verify establishment of self-
organized criticality and also evaluating scaling exponents, we
perform a finite-size scaling of our data for different system
sizes of L = 512, 1024, 2048. We consider a simple scaling
ansatz for the probability distribution function of size and
duration of avalanches:

P (y) ∼ y−τy Gy (y/Lβy ), (4)

where y can be either the binned data of D or S, τy is the critical
exponent, βy is the finite size exponent determining the cutoff
in P (y), and Gy is the universal function that, in the case of
criticality, exhibits the same shape for all system sizes [4]. If
the system is critical, and we rescale y → y/Lβy and P (y) →
yτy P (y), then the plots of rescaled data must collapse into one
universal curve for different system sizes. In Figs. 2(c) and
2(d) we present the results of finite-size scaling analysis of our
data. We observe good collapse of data for both cases of D and
S with τS = 1.28(1), τD = 1.50(1), βS = 2.75(1), and βD =
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FIG. 2. (a) Probability distribution function of duration of avalanches [P (D)] is plotted for L = 512, f = sin(�t + φ0 ), δ = 0.1, and
T = 128. Circles are the results of averaging over intervals of �D = T which exhibit power-law behavior shown by the dashed line. (b,c) Main
panels are finite-size scaling collapse of rescaled data into one universal curve for probability distribution functions of duration (D) and size
(S) of avalanches, where τS = 1.28 and τD = 1.50. Insets are plots of probability distribution functions of S and D corresponding to the main
panels.

1.50(1). These values of exponents are in agreement with the
scaling exponents in the absence of oscillatory perturbations
[4,36,49], which indicates robustness of scaling behavior of
SOC systems in the presence of oscillatory perturbations. Here,
we can conclude that despite having oscillatory behavior the
system exhibits scale invariance and criticality. We note that
the same analysis were performed for different f = sin(�t +
φ0), f = sin(�t + φ0) + 1, f = sin(�t + φ0) − 1 as well as
different values of δ = 0.5, 0.1, 0.2 and the same behavior is
observed in all cases.

To better understand the behavior of the system in sub-
and super-critical phases we performed computer simulations
of the above explained fixed-energy sandpile model with L =
1024, T = 64 128, and δ = 0.0, 0.1. Figure 3(a) is a plot of the
order parameter ρ versus the control parameter E. It is clearly
seen that there is a continuous phase transition at the critical
point Ec which is in agreement with the Ec that is obtained
from the self-organization process in the standard form of the
model with open boundary conditions and external drive [see
Fig. 3(b)].

The key feature of neural networks poised close to a
standard second-order phase transitions is the “optimum”
response to stimulus [25,28]. So far, we have essentially added
small subthreshold oscillations to a well-known model of SOC,
and have characterized their effect on the activity of the system.
We next ask to what extend criticality provides amplifications
of such oscillations. In order to quantify the amplification of
oscillatory perturbations, we define χ as the expectation value
of average amplitude of oscillations over all active times

χ =
〈
Pk

Ak

〈x〉 k

〉
, (5)

where Pk is the probability of having a rhythmic behavior in
an avalanche k, which is a binary probability, i.e., it is equal
to one if there is an oscillation in the avalanche and is equal
to zero otherwise. Ak is the average amplitude of oscillations
as defined in Eq. (3) and 〈x〉k = Sk/Dk , is the average activity
during the kth avalanche, which serves as normalization. Large
brackets indicate averaging over all avalanches. Figure 3(c)
shows a plot of χ around the critical points as a function of
E − Ec for T = 64, 128. It is interesting that amplification
of oscillations is maximized at the critical point regardless

of the value of T . However, we observe larger amplification
for slower oscillations around the critical point which is in
agreement with our results of Fig. 1(c). We therefore conclude
that optimal amplification of sub-threshold oscillations occurs
at criticality. This has important consequences for brain func-
tion as production of rhythms are thought to be key elements
in coding and transfer of information in the brain. This yet
provides another motivation for the critical brain hypothesis.

IV. CONCLUDING REMARKS

Motivated by critical as well as oscillatory dynamics of
neuro-cortical circuits, we have analyzed a simple model
of SOC which is influenced by sub-threshold oscillations.
Interestingly, we find that the system exhibits well-defined
oscillations embedded in avalanches where the average am-
plitude of oscillations is an increasing power-law function of
the period of oscillations. Consequently, an off-critical system,
that exhibits a time scale Dmax for avalanches, cannot respond
to a wide range of frequencies and is thus limited in the range
of oscillatory activity it can exhibit. However, due to scale-free
behavior of avalanches at the critical point one observes a
proper response to all frequencies. This could be important for
a functional brain since we observe a wide range of frequency
of rhythms in different regions of the brain.

One might be tempted to associate the observed amplifica-
tion of system’s response to stochastic resonance (SR), as there
too, one observes the amplification of external (subthreshold)
drive frequency in a stochastic background. However, the
mechanisms are entirely different. The criticality associated
with the collective dynamics of our model is capable of
amplifying a wide range of subthreshold frequencies, without
need to tune any system parameter. On the other hand, in SR
one needs to tune the noise intensity (and thus the system’s
natural frequency) in order to see amplification in response for
a given frequency [52,53].

Our finite size scaling analysis of the statistics of size and
duration of avalanches suggests that, despite having oscilla-
tions, the system exhibits critical properties in agreement with
the systems without oscillatory perturbations. We showed that
the same exponents are observed with oscillatory perturbation
and thus the robustness of criticality as well as universality
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FIG. 3. (a) Second-order (continuous) phase transition from absorbing to running state for fixed energy sandpile models with oscillatory
perturbations. (b) Self-organization of average energy where after a transient time the open system with external drive settles into the critical
steady state in agreement with the transition point of the fixed-energy model shown in (a). (c) Average amplitude of oscillations as a function
of the control parameter E.

class was confirmed. We note that divergence of avalanche
durations with system size implies that duration of spontaneous
oscillations in the resting state of the brain should only be
bound by the size of the cortex.

We also note that the exponents we obtained for the Zhang
model are not the same as the standard mean-field exponents
for real neuronal avalanches. However, on can imagine struc-
tural as well as dynamical modifications to our model which
could lead to mean-field exponents. For example, our 2D
nearest-neighbor interaction is not a good topology for the
real cortex. Larger average connectivity along with random
neighbor would lead to mean field behavior, which is the exact
solution for an all-to-all network model. Furthermore, as has
been shown in Ref. [36], the addition of synaptic noise in the
dynamics could also lead to mean field behavior independent
of the structure of the network chosen.

It has been shown that criticality of the brain leads to many
advantages for the brain functions [24–29]. Due to the crucial

role of oscillations in brain functions, it is very important that
the brain responds to oscillatory perturbations efficiently. We
show that the optimum amplification of oscillatory perturba-
tions takes place at the critical point. In other words, not only
the system remains critical but also amplification of oscillations
is allowed over a wide range of frequencies. This optimum
amplification can be the root to optimum signal coding and
transmission by oscillations over different time and length
scales.
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