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Dynamics of a light beam suffering the influence of a dispersing
mechanism with tunable refraction index
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The dynamics of a monochromatic light beam is studied inside the oval billiard with an inner scatter circle,
which can be interpreted as a cross section of a long optical fiber. The outer oval boundary acts as a perfect
reflector for the light beam while the scatter circle encloses a medium with changeable refraction index. The
light beam refracts when it enters inside this circle and some drastic changes in the phase space are observed.
The increase of the refractive index destroys the center of stability in the phase space leading to a spread of
scattered light and the islands of traps for the light propagation become more pulverized. Numerical results are
presented and discussed.
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I. INTRODUCTION

The topics spatiotemporal chaos (STC) in optics and chaos
in nonlinear optics (CNLO) have been widespread in the
literature of optical physics [1–3]. The term STC is originally
associated with complex dynamical mechanical systems with
many degrees of freedom which show chaotic behavior in both
space and time [4–6]. It was adapted to optics since spatiotem-
poral effects, such as chaos [7,8] and pattern formations [9],
can appear in the perpendicular planes of electromagnetic
fields [10]. CNLO is frequently associated with nonlinear
responses of a given medium due to the application of strong
electromagnetic fields which is in general manifested in the
third-order susceptibility [11]. The control of optical chaos is
also intensively reported to stabilize laser behavior to mask
communicating information or to improve the performance
of optical switches [12]. Chaotic communication systems
based on chaos synchronization between emitter and receiver
have been present in theoretical and experimental works as
well [13–16]. Whispering gallery resonators are borrowed
from acoustic physics to nonlinear optical applications as
reported in [17]. The connection between deterministic chaos
with an optical system is introduced through a Hamiltonian
approach in [18]. An important class of Hamiltonian systems
is constituted by billiards. Billiards generally correspond to
models that qualitatively mimic properties, mechanisms, or
effects of more complex systems. A nonlinear mapping, de-
scribing the dynamics in the annular billiard [19], is adapted
to describe the effects of the refraction index in the dynamics
of a light beam [20]. Billiards generally correspond to models
that qualitatively mimic properties, mechanisms, or effects of
more complex systems. In this current work we present the
influence of the nonlinear classical dynamics on the propaga-
tion of a light beam in the oval billiard with an inner circular
scatter [21]. In the next section we present the main aspects of
the model, while in Sec. III we present the numerical results
concerning the effects of the position of the inner scatter.
In Sec. IV we apply the technique conservative generalized
bifurcation diagram [22] to go deeper into the light beam

dynamics and in Sec. V we present final remarks. Since the
literature on such subjects is so vast, we also refer the reader
to the papers cited within the list of references.

II. ABOUT THE MODEL

The oval billiard consists of a circular boundary with
unitary radius for the case considered unperturbed. However,
this radius is tunable through the expression

R(θ ) = 1 + ε cos(pθ ), (1)

where θ is the angular position measured counterclockwise
from the horizontal axis. The control parameter ε > 0 de-
forms the circle and p is a positive integer number, which
is kept fixed throughout the paper as p = 2 to simplify the
calculations. The inner scatter circle is built with a radius r∗
and eccentricity δ∗ which changes the horizontal position of
this circle. If δ∗ > 0, the circle moves to the left. In Cartesian
coordinates, the position of the center of the circle is given
by (−δ, 0), while the position of the billiard boundary is
described as

X(θ ) = R(θ ) cos(θ ) and Y (θ ) = R(θ ) sin(θ ). (2)

In Fig. 1 an example for the external boundary is shown
with p = 2 and ε = 0.2. The internal circle has r∗ = 0.4 and
δ∗ = 0.5. We consider that the light beam reflects specularly
with this boundary and at the collision point we define the
first angular position, called θ0. The corresponding position in
Cartesian coordinates, which we will call the starting point, is
then given by

(X0, Y0) = [X(θ0), Y (θ0)]. (3)

Another important angle is α ∈ (0, π ), measured counter-
clockwise from the tangent line at the collision point until
the output light beam, where it is assumed the law incidence
angle equals reflection angle. As an illustration, in Fig. 1
we consider a light beam at θ0 = 0.5 and α0 = 0.9. Some
important angles are also necessary to be defined, one of
them being the angle φ which gives the direction of the
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FIG. 1. A light beam starts its motion at (X0, Y0). After suffering
some refractions with the inner circle, it finally reaches the position
(X1, Y1). In order to reproduce this figure, consider p = 2, ε = 0.2,
δ∗ = 0.5, r∗ = 0.4, and η = 1.5. The initial angles were θ0 = 0.5 and
α0 = 0.9.

tangent line at the starting point (X0, Y0), and is measured
counterclockwise from the horizontal axis as presented in
Fig. 1. Therefore

μ0 = α0 + φ0 (4)

gives the initial direction of the output light beam and φ0 =
φ(θ0). The angle φ can be calculated by the following expres-
sion:

φ(θ ) = arctan

[
Y ′(θ )

X′(θ )

]
, (5)

where the derivatives are given by

X′(θ ) = ∂R(θ )

∂θ
cos(θ ) − Y0, (6)

Y ′(θ ) = ∂R(θ )

∂θ
sin(θ ) + X0. (7)

From Eq. (1), one can find that

∂R(θ )

∂θ
= −εp sin(pθ ). (8)

The main idea in this billiard is to find the position in which
the light beam touches the external boundary and in such a
situation, we consider that one iteration has been done. To do
so, first we need to know the conditions in which the light
beam reaches the internal circle [20,21]. It occurs for

|R(θ0) sin(θ0 − μ0) − δ∗ sin(μ0)| � r∗. (9)

If this condition is not satisfied, the light beam does not cross
the inner circle and we call it condition (i); then it reaches
the external boundary directly. On the other hand, we define
condition (ii) when this equation is satisfied and therefore the
light beam crosses the inner circle.

A. Condition (i): Light beam does not reach the internal circle

Let us start by describing condition (i). A light beam
starting at (X0, Y0) reaches the external boundary directly at

the position (X1, Y1) = [X(θ1), Y (θ1)]. The main idea here is
to solve the following transcendental equation [21]:

F (θ1) = Y0 − Y1 + tan(μ0)[X1 − X0] = 0, (10)

in order to get the new collision point (X1, Y1). This equation
needs to be solved numerically. To do so, one can vary the
value of θ1 ∈ [0, 2π ) and we evaluate the value of F (θ1)
through Eq. (10). After finding an interval that contains the
solution, we use a bisection method until F (θ1) < 10−13 ∼= 0.
After obtaining the solution θ1 we find the positions X1 and
Y1 and next we can find φ1 = φ(θ1) using Eq. (5). Therewith,
the new angle α1 can be obtained by

α1 = φ1 − μ0. (11)

Hence, the new angles θ1 and α1 were obtained. In such a
situation we say that one iteration of the mapping has been
done. We restart the light dynamics by considering θ0 = θ1

and α0 = α1.

B. Condition (ii): Light beam reaching the internal circle

Now let us describe what happens in condition (ii), which
occurs when condition (9) is true and then the light beam
crosses the internal circle. Hence one can start calculating the
angle βi , as shown in Fig. 1. After some calculations [21] and
from geometric considerations, it is possible to show that

βi = arcsin

[
R(θ0) sin(θ0 − μ0) − δ∗ sin(μ0)

r∗

]
. (12)

We define the point (Xc1, Yc1) as the position where the light
beam touches the inner circle. Drawing the normal of this
circle passing through (Xc1, Yc1) one can calculate the angle
βi , measured from the normal to the incident ray. In the
example shown in Fig. 1 the angle βi is negative because it
was measured clockwise.

Considering the Snell-Descartes law, one can find the
refracting angle βii , which is given by

βii = arcsin

[
1

η
sin(βi )

]
, (13)

where η = n2
n1

is the ratio between the refraction indexes,
where n2 is the refraction index inside the circle and n1 is the
refraction index outside the circle, i.e.. inside the external oval
billiard. After entering into the circle, the light beam direction
changes and we need the auxiliary angles

μ′ = μ0 − βi + βii (14)

and

γ = μ0 + π − βi mod(2π ), (15)

where γ is measured counterclockwise from the horizontal
line to the normal, of the inner circle, at the incident point.
The position (Xc1, Yc1) in which the light beam enters in the
inner circle is calculated through

Xc1 = r∗ cos(γ ) − δ∗ and Yc1 = r∗ sin(γ ). (16)

However, to obtain X2 and Y2 it is necessary to calculate
the angle ν (see Fig. 1). After some geometric considerations,
one can find that

ν = γ + π + 2βii, (17)

022224-2



DYNAMICS OF A LIGHT BEAM SUFFERING THE … PHYSICAL REVIEW E 98, 022224 (2018)

FIG. 2. Phase space α vs θ for the oval billiard with p = 2, ε =
0.1 and without the internal circle (r∗ = 0). The green crosses in
the center of the huge islands (θ = π/2 and θ = 3π/2) highlight a
period two fixed point.

where γ was calculated using Eq. (15). The coordinates
(Xc2, Yc2) are calculated by the following expression:

Xc2 = r∗ cos(ν) − δ∗ and Yc2 = r∗ sin(ν). (18)

The light beam then reaches (Xc2, Yc2) and suffers another
refraction, where the angle βiii can be calculated using again
the Snell-Descartes law. It is easy to see that βiii is equal to
βi . After suffering the refraction, the light beam direction is
changed and its angular coefficient is given by

μ′′ = μ0 + 2βii − 2βi. (19)

In order to find the position (X1, Y1) in which the light
beam attains the external boundary, one needs to consider the
following changes of variables:

X0 = Xc2, Y0 = Yc2, and μ0 = μ′′. (20)

After that, one needs to solve the transcendental equation (10),
where it is possible to find the angle θ1. The new angle α1 is
calculated using Eq. (11).

Finally, to conclude we update the mapping considering
θ0 = θ1 and α0 = α1. In such case we say that one iteration of
the mapping has been done.

III. NUMERICAL RESULTS

First of all, let us start by showing the phase space for
the regular oval billiard without the internal circle, which
can be done considering r∗ = 0 and perfect reflection on the
boundary. In Fig. 2 a phase space for ε = 0.1 and p = 2
(classical oval billiard) is shown. As one can see, the phase
space contains a huge chaotic sea (black region of the phase
space). Some invariant spanning curves are highlighted in the
figure limiting the size of the chaotic sea. In particular, two
huge periodic islands are observed, where in their centers (θ =
π/2 and θ = 3π/2) it is possible to see a period two stable

fixed point (marked as the green crosses). Many other periodic
islands are observed in such a figure, with different periods.

When we introduce the inner circle in the system (with dif-
ferent refraction index), we change some special portions of
the phase space shown in Fig. 2 (of course, when considering
the same values of p = 2 and ε = 0.1). We will focus on the
case of p = 2 and ε = 0.1 because it resumes what are the
changes expected when introducing the circle, but other values
of p and ε can also be studied.

We start by introducing the inner circle in the center of
the figure (δ∗ = 0), where the radius is r∗ = 0.2 and η = 1.1
(remember that η = n2/n1). The result is shown in Fig. 3(a).
The red portion of the phase space is important, because it
represents situations in which an initial condition θ0 and α0

led us to have a collision with the inner circle. On the other
hand, if we are outside the red region (black portions of the
phase space), it means that an initial condition θ0 and α0 does
not lead us to reach the inner circle.

Now it is interesting to compare Fig. 3 with Fig. 2. As
one can see, the important difference is observed near the two
huge periodic islands shown in Fig. 2, which are smaller in
Fig. 3(a). We also see many small periodic islands around the
two periodic islands. Hence, we only see changes around the
red regions of the phase space. The dynamics near θ = π/2
and θ = 3π/2 is highly influenced by the refractive circle put
in the center of the billiard.

In order to see the influence of the position of the circle,
we start by increasing the value of δ∗ to 0.1926, as shown
in Fig. 3(b). Something interesting happens when we consider
this value of δ∗. As one can see, the two big periodic islands in
the center of Fig. 2 disappear. Other periodic islands near θ =
π/2 and θ = 3π/2 appear and their shape, size, and period
have suffered considerable changes. The original fixed points
were stable and now they bifurcated to unstable.

Increasing the value of δ∗ to 0.2448 makes the periodic
islands near θ = π/2 and θ = 3π/2 start appearing again [see
Fig. 3(c)]. Now for δ∗ = 0.3510, as shown in Fig. 3(d), one
can see that these two periodic islands are much larger. This
point becomes clearer in Fig. 3(e) for δ∗ = 0.6129. In such
a figure there are many island chains surrounding the huge
islands.

Now we consider the limit case, where the value of δ∗ is
maximum. It can be done considering [21]

δ∗
max = 1 + ε − r∗, (21)

where for r∗ = 0.2 and ε = 0.1 is given by δ∗
max = 0.9. The

result is shown in Fig. 3(f). The red region suffers a great
deformation, stretching from α = 0 to α = π , which causes
the destruction of all invariant spanning curves (also known as
whispering gallery orbits) and the dynamics almost recovered
its regular shape and size presented in Fig. 2. As a conse-
quence, the size of the chaotic sea increases. So, if one wants
to create a bigger region of chaotic sea, start by using the case
δ∗ = δ∗

max through Eq. (21).

IV. CONSERVATIVE GENERALIZED
BIFURCATION DIAGRAM

As shown in Refs. [21,22], we can obtain the conservative
generalized bifurcation diagram (CGBD) for our system. It
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FIG. 3. Phase space for different values of δ∗. (a) δ∗ = 0; (b) δ∗ = 0.1926; (c) δ∗ = 0.2448; (d) δ∗ = 0.3510; (e) δ∗ = 0.6129; (f) δ∗ =
δ∗

max = 0.9. The red color represents values in the phase space in which the light beam suffered a refraction with the inner circle. The other
control parameters used were p = 2, ε = 0.1, r∗ = 0.2, and η = 1.1.

is used to show what happens with some fixed points, their
stability, and to highlight direct and inverse parabolic bifur-
cations. To do so, we could first of all study the Lyapunov
exponent of the system. Indeed, it is possible, but depending
on the system, it is not so easy to obtain. As our model
presents too many equations, it is not so easy to find the
Jacobian matrix and as consequence, the Lyapunov exponents.
So, we decided to use two different observables, which can
highlight the bifurcations as well.

To understand how to obtain the CGBD, we look back
at Fig. 2. This figure shows a phase space α vs θ . Now we
consider different initial conditions, but all of them starting
at α0 = π/2 (green dotted horizontal line passing through

α = π/2), and the initial angle θ is chosen in the inter-
val θ0 ∈ [0, 2π ]. So, we are taking only a portion of the
phase space, and studying what happens in such a figure.
For example, observe Fig. 2, following the dotted horizon-
tal line passing through α = π/2, we see two huge peri-
odic islands, where their centers are located at θ = π/2 and
θ = 3π/2 (green crosses). Four other periodic islands (two
purple and two yellow crosses) are also observed. So, as a
conclusion, following line α = π/2, one can observe how
many islands there are. The CGBD is then used to check
the presence of islands and also if they suffered duplica-
tions of period or disappeared (direct and inverse parabolic
bifurcations) [22].
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FIG. 4. Conservative generalized bifurcation diagrams θ0 vs δ∗, where the colors represent in (a) the observable �α [see Eq. (22)] and in
(b)–(d) the number of different returning times ndif. Panel (c) is a representation of the bottom half of item (b). Panel (d) is a magnification of
the brown rectangle in (c). The control parameters used were p = 2, ε = 0.1, r∗ = 0.2, and η = 1.1.

Let us start by showing how to produce Fig. 4(a). Consider
1000 × 1000 equally spaced values of δ∗ and θ0 ∈ (0, 2π ),
with α0 = π/2 as previously mentioned. For each combi-
nation of δ∗ and θ0 an orbit is iterated up to 103 times.
In this mean time, we calculate the maximum (αmax) and
mininum (αmin) values of α found. So, the observable �α was
calculated using

�α = αmax − αmin. (22)

It indirectly measures the spread, in the α axis, of the orbit
in the phase space. If we have a periodic island, and its
center is positioned in a horizontal line that passes through
α = π/2, it is going to be highlighted in Fig. 4(a) as the
black regions, corresponding to a fixed point. If the color
is green or blue, it means that the center of the island is
not in α = π/2, but is near that in a quasiperiodic curve. In
summary, the colors black, green, and blue are highlighting
periodic islands observed in α = π/2. What we need to pay
attention to is that we are changing the value of δ∗ in the
horizontal axis of Fig. 4(a). The other colors (purple and red)
basically highlight chaotic regions. An important result is to

observe what happens when δ∗ → δ∗
max, given by Eq. (21).

As one can see, the chaos is red in such a region, mean-
ing that �α → π when δ∗ → δmax. In conclusion, observing
Eq. (22), one can argue that αmax → π and αmin → 0, which
means that the chaotic sea destroyed all the invariant span-
ning curves, expanding its size, as shown and explained in
Fig. 3(f).

The other observable used in this paper, in order to generate
the CGBD, is the number of different returning times (ndif ),
where the results are shown in Figs. 4(b)–4(d). To construct
such figures, we choose 1000 × 1000 different values of δ∗
and θ0 for α0 = π/2. The main idea is to count the number of
iterations until an orbit returns near the initial condition. It can
be done by evaluating the following conditions:

|θn+1 − θ0| < 0.5% × 2π and |αn+1 − α0| < 0.5% × 2π.

(23)

The measure 0.5% × 2π is a portion of the maximum size of
the phase space (which is 2π for θ ), and the value 0.5% was
chosen because apparently it could give us better results. If
both conditions are true, then we save the number of iterations
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FIG. 5. Conservative generalized bifurcation diagrams θ0 vs η, where the colors represent the number of different returning times ndif.
Panel (b) is a magnification of the rectangle in item (a), while panel (c) is a magnification of the rectangle in (b). Finally (d) is a magnification
in the rectangle shown in (c). The control parameters used were p = 2, ε = 0.1, and r∗ = δ∗ = 0.2.

and start counting again the number of iterations. According
to Slater’s theorem [23], a quasiperiodic orbit on an irrational
torus has at maximum three different returning times, while
chaotic orbits have more than that.

In Fig. 4(b) we present the results, for which depending
on the value of ndif a different color was set. We chose a
continuous color grid from 0 (white) to 1 (black), and after
that it goes from 1 to 3 (blue). Higher values of ndif were set
from red to pink. ndif = 0 (null returning time) means that the
orbit does not return to the neighborhood of (θ0, α0). As one
can see, this figure presents a clear symmetry in the vertical.
So, amplifying the bottom half of this figure, one can see
with more detail what is happening, and the result is shown
in Fig. 4(c). In this figure, we marked, as green vertical lines,
some interesting values of δ∗. For example, the first line shows
a cut of the phase space (in α = π/2) with δ∗ = 0, which was
shown in Fig. 3(a). So, each vertical line is one of the items
shown in Figs. 3(a)–3(f). The black regions in Fig. 4(c) are
the center of periodic islands. The huge black to blue region
in the right side of this figure is the big periodic island, which
starts recovering its shape when we increase the value of δ∗. In
the second line [with index 3(b)], the fixed point at θ = π/2
disappears completely and the chaotic sea takes the place of
this region confirming the previous result shown in Fig. 3(b),
where we had seen that the fixed point had disappeared. The

last line [named as 3(f)] shows the limit case (δ∗ = δ∗
max),

where there are no invariant spanning curves and the two huge
periodic islands are observed [see Fig. 3(f)].

Figure 4(d) shows an enlargement in the brown rectangle
of Fig. 4(c). This figure shows details about one of the
periodic islands, where it disappears at δ∗ ∼= 0.75. This figure
has a fractal structure at the borders, shown with details in
Refs. [21,22].

Now we start changing the amplitude of η, which indirectly
changes the refraction index of n1 and n2. In Fig. 5(a) we
show the CGBD for δ∗ = 0.2, p = 2, ε = 0.1, and r∗ = 0.2.
As one can see in such figure, a complex behavior of the
fixed points is observed. In particular, after an enlargement
of the green rectangle, we obtain Fig. 5(b), which shows some
details about the fixed points near θ = π/2. Applying a new
enlargement in the green rectangle, one can obtain Fig. 5(c).
Such a figure shows with details that after introducing the tun-
able refraction index, one can raise a very intrinsic behavior
of the fixed points, and a lot of them appear near θ = π/2.
Another enlargement is shown in Fig. 5(d).

Now we show how the variation of η, considered in
Figs. 5(a)–5(d), affects the phase space of the system. To do
so, first we plot Fig. 6(a), which considers r∗ = δ∗ = 0.2,
η = 1, p = 2, and ε = 0.1. In such case, similar results to the
mirrored version of the inner circle are reproduced. In such
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FIG. 6. Phase space θ vs α for p = 2, ε = 0.1, r∗ = δ∗ = 0.2 and for different values of η. Panel (a) shows the results for η = 1. In (b) the
value of η was changed to 1.001, while in (c) the value of η is 1.12 and in (d) η = 1.1936.

case we see a chaotic sea for an orbit starting from θ0 = 0.01
and α0 = π/2 − 0.01. A big periodic island is observed in
(θ, α) = (π/4, π/2). Now you need to observe Fig. 5(c). In
such figure, we highlighted a straight line with η = 1.001.
Considering this combination of control parameters, we con-
structed Fig. 6(b). We observe that the periodic islands now
are broken into several small periodic islands, and a chaotic
orbit now can travel inside the region in which we have only
periodic regions in Fig. 6(a). It explains what happens in
Fig. 5(c), in which we have a proliferation of periodic orbits
near θ = π/4.

Figure 6(c) refers to a cut in Fig. 5(b), which highlights
the results for η = 1.12. Here one can see that the number
of islands is smaller than Fig. 6(b). Finally, we changed the
control parameter to η = 1.1936 [which is another cut in the
CGBD shown in Fig. 5(b)], and the results are shown in
Fig. 6(d). Basically, when changing the value of η, for the
combination of control parameters taken, we are changing
the same portion of the phase space, but the results vary
depending on the value of η.

V. FINAL REMARKS

In this work we present part of a study that is in devel-
opment concerning properties of the optical oval billiard. We

present the behavior of a light beam under the effect of a
tunable-refractive index in the circular scatter. The inner side
of the external boundary is considered a perfect reflector in
such a way that a light beam suffers complete reflection,
and when there is not the inner scatter, this means unitary
refractive index, the corresponding phase space presents two
huge stability regions. On the other hand, when the inner
scatter is introduced, a sudden change occurs in previous sta-
bility regions and another region is characterized in the plots
through red color. This is the region which corresponds to the
light trajectories that refracts in the refractive scatter. That red
region is very sensitive to the position of the center of the
circular scatter. As the eccentricity (δ∗) increases, this region
suffers deformations and expressively alters their neighbor-
hood. In the limit case of maximum eccentricity it stretches
vertically and destroys all whispering gallery orbits. It is
worth pointing out that there are persistent small resonance
structures along the red layer for any value of the eccentricity.
The conservative generalized bifurcation diagram technique,
and the returning times as well, are also presented to show
the finest structures of the dynamics. As the eccentricity is
changed we observe the transformation of the huge stable
structures cited above and a very rich set of bifurcations. On
the other hand, the increase of the refractive index changes
the neighborhood of the central elliptic fixed point, so that the
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center of stability in the phase space is destroyed, which leads
to a dispersion of scattered light. In place of the huge stability
islands appear pulverized islands, changing the structure of
the traps for the light propagation. This suggests that the
tunable refractive index allows one to vary the light coding
transmission. Further studies with the optical oval billiard are
in preparation.
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