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We explore the nonlinear dynamics of a driven power-law oscillator whose shape varies periodically in time
covering a broad spectrum of anharmonicities. Combining weak and strong confinement of different geometry
within a single driving period, the phase space allows not only for regular and chaotic bounded motion but
in particular also for an unbounded motion which exhibits an exponential net growth of the corresponding
energies. Our computational study shows that phases of motion with energy gain and loss as well as approximate
energy conservation alternate within a single period of the oscillator and can be assigned to the change of the
underlying confinement geometry. We demonstrate how the crossover from a single- to a two-component phase
space takes place with varying frequency and amplitude and analyze the corresponding volumes in phase space.
In the high-frequency regime an effective potential is derived that combines the different features of the driven
power-law oscillator. Possible experimental realizations are discussed.
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I. INTRODUCTION

Many physical systems can be modeled and described to
some approximation by individual oscillators or a collection
of interacting oscillators. Examples are vibrating molecules,
phonons in solids, and coupled Josephson junctions. The
route to complexity in the sense of a many-faceted dynamical
behavior is then at least twofold: either one increases the
number of (interacting) oscillators at the cost of dealing with
a high-dimensional generally mixed regular-chaotic phase
space, or one stays in low spatial dimensions and accounts
for a nonintegrable modification of the underlying integrable
oscillator. The latter case not only has been a paradigm for the
route to chaos in low-dimensional systems but also showcases
many mechanisms of universal character that are valid also for
higher-dimensional setups. In the present work we will pursue
this second route and introduce a type of one-dimensional
driven oscillator that unites properties usually occurring for
different dynamical systems. Before doing so and in order to
provide a proper embedding and bottom-up approach in terms
of complexity, let us briefly touch upon some important basic
facts concerning oscillators and dynamical billiards in low
dimensions.

For the one-dimensional harmonic oscillator exposed to
dissipation and forcing closed form analytical expressions are
available [1] for arbitrary time-dependent external forces. In
case of a periodic driving and for vanishing dissipation the
motion is nonresonant, regular and bounded if the frequency
of the driving is unequal the one of the harmonic confine-
ment. It is only for the resonant case of equal frequencies
that a linearly in time diverging amplitude is encountered.
Nonlinear oscillators such as the Duffing oscillator [2,3] or the
kicked rotor (see Refs. [4,5] and references therein) represent
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prototype systems whose phase space decomposition varies
from regular to mixed and finally predominantly chaotic with
correspondingly changing parameters. Specifically the kicked
rotor exhibits a transition from a motion with bounded energy
to a diffusive dynamics. The latter leads to an unbounded
momentum increase, and a linear increase of the energy in
time takes place beyond a critical kicking strength. Switching
from an external driving force to a parametric driving the
harmonic oscillator can gain energy for certain frequency
ratios of the natural frequency compared to the parametric
driving frequency. The maximum gain and exponential growth
of the oscillation amplitude occurs for a ratio of one half,
and the oscillator then phase locks to the parametric variation
[6].

On the other hand, Fermi acceleration (FA) [7], which refers
to the unbounded growth of the energy of particles while
repeatedly colliding with moving massive objects or fields, has
been of interest over many decades. Prototype models showing
FA are time-dependent hard wall two-dimensional billiards
which have come into the particular focus of exponential FA
during the past 10 years [8–14]. Under certain conditions
exponential FA can take place for most initial conditions. This
has been demonstrated for the rectangular billiard with an oscil-
lating bar [9–11] and for a class of chaotic billiards that exhibit
a separation of ergodic components [12,13]. Importantly, it has
been shown recently [14,15] that under very general conditions
a generic time-dependent two-dimensional billiard exhibits
FA in the adiabatic limit. A key ingredient therefore is that
the corresponding static, i.e., time-independent, counterpart
of the billiard exhibits a mixed regular-chaotic phase space.
However, the situation is very much different in a single spatial
dimension. Here the prototype billiard is the well-known
Fermi-Ulam model describing a particle that multiply collides
with moving walls [16]. The Fermi-Ulam model does not allow
for FA at all, and in particular not for the exponential FA, if
the applied time-dependent driving law is sufficiently smooth.
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This is due to the existence of invariant tori which suppress the
global energy transport [17].

The current work goes one step further in the above line and
introduces the driven or time-dependent power-law oscillator
(TPO). Opposite to the above-mentioned cases, where the
(harmonic) confinement of the oscillator remains intact during
the external forcing, this is not the case anymore for the
TPO. Here the confinement itself becomes time-dependent,
or, put it another way, the exponent of the power-law potential
becomes time dependent. Specifically we focus on the case
of a periodic driving characterized by a frequency and an
amplitude as well as a constant offset. Within a single driving
period phases of strong and weak anharmonic confinement
follow upon each other thereby covering a continuous interval
of power-law confinement strengths. Our aim is to provide a
first computational study of this driven power-law oscillator
with an emphasis on the analysis of its phase space. The latter
is straightforwardly possible due to the low dimensionality of
the TPO. As we shall see this peculiar oscillator provides an
unusual combination of dynamical features which one might
not suspect to appear from a first glance at its Hamiltonian and
from the preexperience gained from the “traditional” oscilla-
tors. Obviously the TPO characterized by the time-dependent
“pumping” of its anharmonicity is very much different from the
billiard dynamics. Nevertheless the question for a comparison
of the their energy growth behavior is an intriguing one.

In detail we proceed as follows. In Sec. II we introduce
our setup and in particular the underlying time-dependent
model Hamiltonian for the TPO. We discuss the properties
of the instantaneous one-dimensional potential whose con-
finement behavior changes qualitatively for different times.
The underlying phase space is equally considered. Section III
provides an analysis of the dynamics, first, by inspecting
trajectories and, second, by investigating the Poincaré surfaces
of section. This allows us to gain an overview of the dynamical
components in phase space. A quantification of the volume
of the different components of the phase space is provided.
Subsequently the time evolution of the energy behavior for an
ensemble is provided. This section contains also a discussion
of the high-frequency regime. We present our conclusions and
outlook in Sec. IV.

II. SETUP, HAMILTONIAN, AND STATIC PHASE SPACE

The TPO as defined below is motivated by the idea that a
most general oscillator would also allow for a time-dependent
variation of the geometry of the spatially confining potential.
This is obviously not the case for the harmonic oscillator
exposed to an external forcing, the Duffing oscillator, or
the parametric oscillator with a time-dependent frequency.
The most straightforward possibility to change the shape of
the potential time dependently is to maintain its power-law
appearance but make the exponent time dependent. The TPO
Hamiltonian then reads

H = p2

2
+ αq2β(t ) (1)

and contains the time-dependent potential V (q, t ) =
αq2β(t ) := α(q2)β(t ). The latter is a defining equation which
ensures a positive real argument and implies that the positive

real root always is taken for arbitrary powers β. For reasons of
simplicity we set the mass of the oscillator to one. Our focus
in this work is on a periodic time dependence of the exponent
β(t ) = β0 + β1 sin(ωt ), which contains the amplitude β1 of
the sinusoidal driving and the constant offset β0. α = 1, β0 = 1
will be chosen throughout, which means that the oscillation
takes place around the harmonic oscillator potential αq2 as
an equilibrium configuration. Depending on the amplitude
β1 the TPO possesses alternating phases of strong and weak
anharmonic confinement covering continuously the noninteger
powers within an individual oscillation.

It should be noted that, due to the occurrence of arbitrary
fractional powers already in the Hamiltonian (1), an analytical
approach of whatever kind is in general not obvious. The reason
therefore is that the resulting integrals cannot be evaluated an-
alytically. For the numerical solution of the resulting equations
of motion we employ a fourth-order Adams-Moulton predictor
corrector integrator. However, one has to take into account the
singularities of the potential and its derivates. Indeed, V (q, t )
becomes singular at q = 0 for β(t ) < 0 if β1 > β0. Equally
the first and second derivative become singular at q = 0
for β1 > β0 − 1

2 and β1 > β0 − 1, respectively. Therefore a
regularization of the equations of motion is appropriate. We
accomplish this by replacing the potential V (q, t ) = αq2β(t ) by
its regularized version V (q, t ) = α(q2 + C)β(t ). C is chosen
to be a very small (typical value of the order of 10−8) positive
constant removing all singularities at the origin. The impact of
this tiny regularization constant on the actual motion is very
limited and controllable. For the case β � 1 one can estimate
the impact of C �= 0 on the dynamics by calculating the relative
change of the velocity in a corresponding “collision.” This
amounts to �v

v
= 2αβ Cβ

v2 , which is for small C and a very large
range of velocities a tiny correction. Moreover, for β � 0.5

one can show that the spatial extension�x = 2[( y

α
)

1
β − C]

1
2 on

which the potential acquires values y � 0.1 decreases rapidly
to zero, which also renders the impact of a correspondingly
small C �= 0 very small [see Fig. 1(a) for the cusp at the origin].

Since the TPO (1) is of quite an unusual appearance let us
first discuss the instantaneous form of the potential as the time
evolution proceeds. This evolution is illustrated in Fig. 1(a).
For values β > 1 the nonlinear confinement is stronger (for
q > 1) than that of the harmonic oscillator covering in time
a continuous range of exponents 1 < β < 1 + β1 where the
curvature is always positive.

For values 0.5 < β < 1, however, the curvature decreases
and for β = 0.5 V (q ) becomes linear. Further decreasing its
value (0 < β < 0.5) the potential shows now a very weak
confining behavior and exhibits a negative curvature. Here
the formation of a negative cusp of V (q ) can be observed
[note that V (0) = 0 for C = 0 holds also in this regime].
Due to this cusp the dynamics close to the origin of such a
(static) potential experiences kicks, i.e., sudden changes of the
underlying momentum. How much of the above qualitatively
very different behavior of the instantaneous potential V (q ) is
covered for a corresponding TPO (1) depends of course on the
value of the amplitude β1.

The corresponding instantaneous phase space is illustrated
in Fig. 1(b). For β > 1 the phase space curves are convex,
but for β < 1 they develop a cusp at q = 0 and become
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FIG. 1. (a) Snapshots of the potential V (q ) for different instantaneous values of the parameter β. Red, green, blue, cyan, magenta, yellow,
and black lines correspond to the values β = 2, 1, 0.75, 0.5, 0.25, 0.125, 0.05 ordered according to their appearance from top to bottom for
q > 1. (b) Phase space (q, p) curves for the same values of β following the identical color coding. The energy chosen is E0 = 1. The central
inset shows the volume VE of the phase space for energies E � E0 as a function of the parameter β (see text).

piecewise concave. The total phase space volume bounded
by the energy shell with energy E0, i.e., the volume of
the set {(q, p)|E(q, p) � E0} for a fixed E0, is given by
VE = ∫

H(q,p)�E0
dp dq. Note that this quantity represents in

ergodic systems an adiabatic invariant [18]. VE is shown in
the central inset of Fig. 1(b), and we observe that it shrinks
monotonically with decreasing β. In particular also the average
width in momentum space decreases with decreasing β. Close
to maximal momenta are then accessible only in the vertical
channels around q = 0, which become increasingly narrow
with decreasing β.

III. RESULTS AND DISCUSSION

Due to the three-dimensional (q, p, t) character of our
system a complete overview of phase space can be achieved
by performing stroboscopic snapshots in time for each period
T = 2π

ω
. One might expect that the intermediate-frequency

regime (for which the driving frequency ω and the natural
frequency of the time-independent oscillator are comparable)
is the most interesting. Then a mixed phase space of regular
and chaotic motion, depending on the size of the oscillation
amplitude, could be expected. The high-frequency and low-
frequency motion could be predominantly regular at least for
small amplitude. A natural question to pose is: How does the
energy transfer to the oscillator take place and what is the
time evolution of its energy? Does the energy stay bounded or
become unbounded, and if the latter occurs, is the increase of
power-law or of exponential character ? From the quasistatic
picture discussed in Sec. II one might conjecture that during
the half-period of each cycle of the driving for which β > β0

the strong confinement prevents the oscillator from attaining
a large amplitude and therefore energy and vice versa for the
other half-cycle for which β < β0.

A. A first glance at the dynamics: Trajectories

In order to gain a first insight into the dynamical behavior
of the driven power-law oscillator it is instructive to consider
individual trajectories. The decisive parameters to be varied

for fixed β0 = 1, α = 1 are the amplitude of the oscillation β1

and the underlying frequency ω.
Let us briefly discuss some relevant aspect concerning the

initial conditions (ICs) of the trajectories for given parame-
ters of the oscillator. For the time-independent oscillator for
arbitrary values of β the distance of the IC from the origin
(q = 0, p = 0) in phase space plays no essential role for the
resulting phase space curves. Their overall shape remains the
same. However, as we shall see below, this distance is crucial
for the individual trajectory dynamics of our TPO. Therefore,
we shall choose in the following as examples ICs close to
and far from the origin. The origin itself is a fixed point
of the dynamics in all cases of the TPO, i.e., for arbitrary
parameter values, while it might change its stability character
(see below). The latter is not possible for the time-independent
oscillator where this fixed point is always stable for
β > 0.

Let us begin with the case β1 = 0.1, ω = 0.1 which is
the case of comparatively small amplitude and low frequency.
Figure 2(a) shows for the IC [q(t = 0) = 1, p(t = 0) = 1],
i.e., close to the origin, the time dependence of the energy. It
exhibits two frequencies. The smaller one corresponds to the
driving frequency ω and the larger one to the instantaneous
oscillator frequency. The latter varies not significantly due
to the small amplitude β1 in this case. Note that the overall
variation of the energy is very small and amounts to less than
1% of the initial energy E(t = 0). The inset in Fig. 2(a) shows
the corresponding phase space curves, which, on the given
timescale, shows small deviations from the time-independent
case. In Fig. 2(b) for the same setup the IC (−30, 20) is
chosen, i.e., an IC far from the central fixed point. Here we
observe a large variation of the energy with time of more
than 50% of the initial energy. Still the energy shows bounded
oscillations with essentially two frequencies. The smaller one
again corresponds to the driving frequency ω and the larger
one [note that the corresponding oscillation is hardly visible
in Fig. 2(b) due to the small amplitude] to the instantaneous
oscillator or confinement frequency. The corresponding phase
space curves in the inset show now significant deviations
from the initial winding of the phase space trajectory, thereby
changing its overall anisotropic shape.
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FIG. 2. Trajectories of the TPO for ω = 0.1 with varying amplitude β1. (a) Total energy E(t ) as a function of time and in the inset
the covered phase space [q(t ), p(t )] during the same time period for the IC q(t = 0) = 1, p(t = 0) = 1 for β1 = 0.1. (b) Same as for
(a) but for the IC q(t = 0) = −30, p(t = 0) = 20. (c) Amplitude β1 = 0.5; the time evolution of the coordinate q(t ) and in the inset the
corresponding total energy E(t ) for the IC q(t = 0) = 5, p(t = 0) = 5. (d) β1 = 0.5: the time evolution of the absolute value |q|(t ) for the
IC q(t = 0) = 20, p(t = 0) = 20 together with β(t ) in the inset. (e) Same parameter values as in (c, d), but showing the corresponding phase
space curves [q(t ), p(t )] on different scales (zoom in for inset) and (f) showing the corresponding time evolution of the total (main figure) and
kinetic energies (inset) for the same IC.

The dynamics changes qualitatively if we consider the
situation of an increased amplitude. Figures 2(c)–2(f) ana-
lyze the dynamics again for a low-frequency ω = 0.1 but
a substantially increased amplitude β1 = 0.5 such that the
oscillator potential changes between |q| and |q|3 (assuming
C = 0), which covers a broad interval of anharmonicities of
fractional powers. Figure 2(c) shows the time evolution in
coordinate space q(t ) for the IC (5,5). The envelope behavior
obeys the frequency ω = 0.1, but now a strong chirp of the
frequency of the individual oscillations can be observed. Large-
amplitude behavior occurs for low frequencies, whereas small
amplitudes occur at high frequencies. The inset demonstrates
that a large variation of the underlying energy E(t ) takes place
at the frequency ω (the larger frequency and small-amplitude
oscillations are hardly visible in the inset). We emphasize that
all the dynamics observed so far is regular, i.e., periodic and
quasiperiodic, and in particular bounded, which holds also for
the corresponding energy.

The above situation changes if we consider an IC (20,20)
farther away from the stable elliptic fixed point of the TPO
at the origin. Figure 2(d) shows |q|(t )| on a semilogarithmic
scale as a function of time for a somewhat longer time interval
as compared to Fig. 2(c). Here we observe in the average
an exponential increase of the amplitude of the coordinate
oscillations, which equally cover positive and negative val-
ues. Periods of high-frequency and smaller-amplitude motion
are intermittently interrupted by periods of lower-frequency
large-amplitude motions. With the help of the corresponding
inset showing β(t ) the latter can be assigned to the overall

periodic oscillations of the TPO. For time intervals where
the power of the oscillator covers the interval 1 � 2β � 2,
i.e., if the oscillator confinement weakens from quadratic to
linear, large-amplitude excursions occur. For time intervals
with 2 � 2β � 3, i.e., if the oscillator confinement increases
up to a cubic behavior, the high-frequency small-amplitude
oscillations are encountered. Figure 2(e) shows the corre-
sponding phase space curves [q(t ), p(t )]. Extending on the
discussion of the anisotropically evolving phase space curves,
according to the inset of Fig. 2(b), we now observe that
this pattern repeats subsequently on different length scales.
This is shown in Fig. 2(e) and its inset for a zoom into the
central part of the phase space. According to the observed
exponential scaling the winding of the phase space curves at
high frequency on their individual length scales is connected
by low-frequency intermediate transients which connect the
different length scales. The dynamics therefore repeats as time
proceeds on different length scales in a self-similar fashion,
which can nicely be seen in Fig. 2(e). Finally Fig. 2(f) shows
the time evolution of the corresponding total energy E(t ) and
kinetic energy EK (t ) in the inset on a semilogarithmic scale.
During the time intervals of low-frequency high-amplitude
motion of |q|(t ) [see Fig. 2(d)] a plateau-like behavior is
observed for the energyE(t ). During the high-frequency small-
amplitude motion of |q|(t ) a strong increase and decrease of
the total energy can be observed. E(t ) increases strongly when
the amplitude of the high-frequency oscillations decreases
and vice versa. In the average the total energy increases
exponentially. As a matter of precaution, we note that this
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and similar statements are to be understood within our finite
time simulations of a finite portion of the TPO phase space.
A similar behavior can be observed for the kinetic energy EK

in the inset of Fig. 2(f) which demonstrates in particular that
the kinetic energy also grows on the average exponentially.
The kinetic energy becomes large during intervals of motion
of the TPO with strong confinement 2 � β � 3, i.e., when
the TPO compresses and “pumps” the motion. Low kinetic
energies occur for the intervals of motion 1 � β � 2 of the
TPO where it releases the motion to a much less confining
potential. The latter interval coincides with the plateau-like
behavior of the total energy, i.e., we have approximately no
increase or decrease of the total energy.

Already the above-analyzed few trajectories for given pa-
rameter values exhibit a rich behavior of the TPO dynamics.
Having this in mind, let us now gain an overview of complete
phase space by inspecting the corresponding Poincaré surfaces
of section (PSS). These PSS are stroboscopic snapshots of the
dynamics at periods of the external driving. We will explore
the PSS with varying parameters.

B. Poincaré surfaces of section

Our few above-analyzed example trajectories have been
focusing on the low-frequency case. We have observed that
with increasing amplitude β1 of the TPO there exist not only
regular trajectories with bounded energy oscillations, but also
trajectories that exhibit an exponential increase in position and
energy. In the following we discuss the corresponding PSS of
our TPO for different frequencies ω and amplitudes β1. In this
way we will gain a more complete overview of phase space
with varying parameters. Note, that due to the fact that the
phase space of the TPO is unbounded from above, the following
computational studies focus on a finite but quite large energy
window above zero energy. The minimal zero energy is given
by the fixed point at the origin (assuming C = 0).

Figure 3(a) shows the PSS for a comparatively low-
frequency ω = 0.1 and small-amplitude β1 = 0.1 correspond-
ing to the trajectories shown in Figs. 2(a) and 2(b). All
of the phase space appears to be regular, i.e., periodic and
quasiperiodic motion. Exclusively bounded trajectories are
encountered. The corresponding amplitude of the bounded
energy variations during the driving cycles increases with
increasing distance of the trajectories from the stable period
one fixed point at the origin [see Figs. 2(a) and 2(b)]. Note
that these statements hold significantly beyond the spatial
scales shown in Fig. 3(a). This picture changes if we increase
the amplitude to β1 = 0.5; see Fig. 3(b). Now a regular
island of the phase space centered around the fixed point at
the origin is surrounded by an irregular point pattern. This
pattern corresponds to the trajectories analyzed in Figs. 2(d)–
2(f) showing a time evolution characterized by an average
exponential increase in coordinate and energy space. Phase
space can therefore be divided into two portions: one with
bounded and one with unbounded motion. This picture persists
with increasing frequency ω. For a given frequency and small
driving amplitude β1 low-energy phase space is regular. With
increasing β1 the phase space volume of the bounded regular
motion decreases (see below), and gradually the phase space
component consisting of “exponential motion” takes over.

For a large amplitude β1 = 1 all of phase space consists of
exponentially diverging trajectories, and no regular (or chaotic;
see below) structures survive. Note that β1 = 1 is the case
where the lower turning point of the oscillating power of the
TPO corresponds to power zero and is therefore subject to free,
i.e., unconfined dynamics.

Beyond the above general statements, let us increase the
frequency ω stepwise and see how the structures in the PSS
change. Figure 3(c) shows the PSS for β1 = 0.5 and ω = 0.3.
It exhibits a large centered regular island around the stable
period one fixed at the origin. Decentered regular islands occur
which correspond to period two stable fixed points at (|q| =
33, |p| = 33.5). A hierarchical structure of smaller islands
around these main ones can equally be observed. The sequence
of PSS in Figs. 3(d)–3(f) is for an intermediate frequency
ω = 1 with increasing amplitude β1 = 0.15, 0.2, 0.9 of the
TPO. Figure 3(e) shows the PSS for ω = 1 and β1 = 0.2. It
exhibits two large separated regular islands around period two
fixed points which are off-center. The corresponding centered
regular island (see the inset for its magnification) with the
period one fixed point at the origin is of much smaller size.
The two fixed points of the large decentered regular islands
in Fig. 3(e) describe a two-mode left-right asymmetric motion
in the oscillator potential accompanied by alternating phases
of small- and large-amplitude motion. Off those large regular
islands [see Fig. 3(e)] there is an area with many significantly
smaller regular islands interdispersed in a sea of irregular
motion.

We mention that trajectories starting from this mixed
portion of phase space, which finally become unbounded
with an exponential increase of their coordinate and momenta
(energy), can beforehand show a long period of stickiness to
the neighborhood of small regular islands in this regime. All
outer parts of phase space [see Fig. 3(e) with a strongly de-
pleted spread point pattern], as discussed above, correspond to
exponentially diverging trajectories. Decreasing the amplitude
β1 leads to an increase of the size of the off-centered large
islands. They will then take over a large part of the completely
regular “low-energy” phase space of the TPO; see Fig. 3(d). In
Fig. 3(d) regular islands around two period three fixed points
also can be observed. Increasing the amplitude [see Fig. 3(f)
for β1 = 0.9 and ω = 1] now shows a completely confined
chaotic sea and only tiny regular structures within it. We
note that for β1 > 0.5 the above-discussed cusplike behavior
[see corresponding discussion in the context of Fig. 1(a)] of
the instantaneous potential of the TPO for β < 0.5 is the
origin of an unstable behavior and resultingly chaotic sea
in the immediate vicinity of the origin in the corresponding
PSS. Again, outside this confined chaotic sea unbounded
exponentially diverging trajectories take over.

Figure 3(g) addresses the case of a much larger frequency
ω = 10 for small-amplitude β1 = 0.1. It shows again an
exclusively regular phase space with one large centered main
island with the period one fixed point. For the same frequency
but β1 = 0.3 Fig. 3(h) presents a two-component phase space
again. The inner regular island around the period one fixed
point shows subislands around a period four fixed point. The
outer part of phase space corresponds exclusively to the ex-
ponentially diverging motion. We conclude that an amazingly
broad frequency and amplitude regime is encountered within
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FIG. 3. Poincaré surfaces of section of phase space (q, p). (a), (b) Low-frequency ω = 0.1 and two different amplitudes β1 = 0.1 and
β1 = 0.5, respectively. (c) A somewhat larger frequency and intermediate amplitude ω = 0.3, β1 = 0.25. (d)–(f) The cases ω = 1 for β1 =
0.15, 0.2, 0.9, respectively. (g), (h) The case of a larger frequency ω = 10 with increasing amplitude β1 = 0.1 and β1 = 0.3, respectively. (i)
The magnitude of the coordinates and momenta of the positions of the dominant period two fixed points of the PSS with varying β1 on a double
logarithmic scale. From large to small values in phase space the positions of the fixed points are indicated by crosses for which β1 varies from
0.10 (|q| = 1754, |p| = 3593) to 0.34 (|q| = 16.0, |p| = 17.8) in steps of 0.01 for ω = 1. Note the different scales of the subfigures.

which the underlying motion of the TPO is of composite
character showing both a regular or mixed regular-chaotic
bounded motion and an exponential unbounded dynamics.
Finally Fig. 3(i) shows the positions (crosses) of the dominant
period two stable fixed points of the PSS (period 2T = 4π

ω
for

the TPO) in phase space with varying amplitude β1 and for the
frequency ω = 1. For β1 = 0.10 the stable fixed point occurs
at large distances (|q| = 1754, |p| = 3593) and provides the
center of an equally large regular island. With increasing β1 it
moves inwards, i.e., towards the origin [shown in Fig. 3(i) in
steps of 0.01 for β1] and is accompanied by a shrinking of the
size of the corresponding regular islands [see also Figs. 3(d)
and 3(e) for ω = 1 and β1 = 0.15, 0.2 respectively]. Finally at
approximately β1 = 0.34 (|q| = 16.0, |p| = 17.8) this regular
island and the stable fixed point disappear.

C. Quantification of phase space volumes and mean energy gain

Let us quantify the above observations. To this end we derive
computational estimates of the volume Vps of the phase space

that leads to bounded motion. The latter can be purely regular
or of mixed regular-chaotic origin and changes with varying
parameters such as the frequency ω and the amplitude β1.
Knowing Vps (ω, β1) tells us how generic the exponentially
diverging dynamics is which occupies the complementary
part of phase space. Vps (ω, β1) therefore corresponds to the
finite and bounded low-energy portion of phase space that
“survives and resists” to the driving in the sense that the energy
fluctuations in the course of the dynamics remain bounded. The
unbounded complementary part of phase space is exclusively
occupied by the exponentially diverging motion and infinite
energy growth.

Figure 4 shows on a logarithmic scale the volume Vps of
phase space in the stroboscopic PSS with varying oscillation
amplitude β1 of the TPO. Three cases of different frequencies
ω = 0.1, 1, 10 are presented addressing comparatively low,
intermediate, and higher frequencies. Vps has been determined
numerically by coarse graining the phase space in the PSS
and approximately measuring the area of the corresponding
(regular and chaotic) islands. Since Vps varies over many
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FIG. 4. Volume Vps of phase space in the PSS which corresponds
to the bounded motion with varying oscillation amplitude β1 of
the TPO. Full, dashed, and dash-dotted curves correspond to the
frequencies ω = 0.1, 1, 10, respectively. Note the logarithmic scale
for Vps .

orders of magnitude (see Fig. 4) with varying value of β1 we
are predominantly interested in a crude estimate of its value.
Three different regimes I, II, and III can be distinguished
in Fig. 4. For small amplitudes β1 � 0.25 (regime I) the
volume Vps is extremely sensitive to the value of the amplitude
β1 of the TPO. It covers many orders of magnitude, e.g.,
decreasing from 2.5 × 106 to approximately 40 when β1

increases only from 0.15 to 0.3 for the case of ω = 10. This
clearly demonstrates that for small amplitudes β1 the phase
space is rapidly taken over by regular and bounded motion in
agreement with the above-discussed PSS [see Figs. 3(a), 3(d),
and 3(g)]. The dependence of Vps on β1 becomes much weaker
in the intermediate regime 0.3 � β1 � 0.9 (regime II), where,
e.g., for the case ω = 1 almost a plateau-like structure can
be observed. While the volume Vps of bounded motion does
not change as much as in regime II as it does in regime I, the
character of the confined motion could severely change. This is
demonstrated in Figs. 3(f) and 3(h). For the low-frequency ω =
0.1 a purely regular island of bounded motion occurs, whereas
for an intermediate-frequency ω = 1 a bounded chaotic sea
is encountered. Finally, in regime III for 1 � β1 � 0.9 we
observe again a rapid decrease of Vps for β1 increasing from 0.9
to 1. In the limit β1 = 1 we arrive at Vps = 0, and all of phase
space consists of exponentially diverging trajectories. Note that
the corresponding transition needs to be by no way smooth. Its
details depend on the destruction of the last invariant spanning
manifolds, which could, as is, for example, the case for ω = 1
and β1 > 0.9 [see the confined chaotic sea in Fig. 3(f)], lead
to a sudden transition from a finite bounded volume to zero
volume.

It is instructive to consider not only individual trajectories
in the regime of exponential growth but also the behavior of the
mean of the energy Ē and the corresponding standard deviation
�E for an ensemble of trajectories with randomly chosen
initial conditions in this regime. We note that these trajectories
are sensitive to the initial conditions as it holds for any chaotic
trajectory. Figure 5 shows these two quantities Ē,�E as a

FIG. 5. Mean energy Ē (full line) and its standard deviation �E

(dashed line) as a function of time for a statistical ensemble of
trajectories sampled from the exponentially accelerating part of the
phase space for ω = 1 and β1 = 0.9.

function of time for 100 trajectories of the phase space for ω =
1, β1 = 0.9 [see also Fig. 3(f)]. The envelope behavior shows
an exponential increase of both Ē,�E where the standard
deviation is slightly larger than the mean. The cycles of the
“pumping” of the TPO (the period of the oscillator is here 2π )
are clearly visible. Note the extraordinary large energy gain per
cycle which amounts to two orders of magnitude in the energy
per cycle. As such this oscillator is therefore an extremely
efficient “accelerator” or energy pumping “device.” We remark
that our numerical simulations have been performed for larger
times than the ones shown in Fig. 5 and support this picture.
However, with increasing propagation time the computational
time to integrate one further oscillator period grows substan-
tially and therefore limits the time evolution to be probed.

As already indicated in Sec. III A in the context of the
discussion of individual trajectories we observe a rapid energy
change for the first half-cycle nT < t < (n + 1/2)T (n is a
positive integer) for which the strong confinement of the TPO
obeys β(t ) > β0. For a substantial part of the second half-
cycle (n + 1/2)T < t < (n + 1)T with the weaker confine-
ment β(t ) < β0 the energy remains approximately unchanged
(on the logarithmic scale of Fig. 5). This picture provides,
however, an incomplete description of the growth of the energy.
Indeed, the dynamics and time evolution of the energy is
asymmetric with respect to the turning points of the TPO (n +
1/4)T , (n + 3/4)T for both the first and second half-cycle.
This asymmetry is particularly pronounced for the second
half-cycle. Specifically, during the first quarter cycle nT <

t < (n + 1/4)T the energy increases, whereas it decreases
to a slightly lesser extent during the second quarter-cycle
(n + 1/4)T < t < (n + 1/2)T . At the beginning of the second
half-cycle the energy saturates and remains approximately
constant, but does so not for all of the second half-cycle. Instead
it raises substantially again towards the end of the second half
cycle, i.e., within the last quarter-cycle. This strong asymmetry
leads to the net energy gain of the TPO.
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FIG. 6. Effective potential Veff in the high-frequency limit (see text) (a) in the vicinity of the origin and (b) for a larger q interval. The
assignment of the values β1 = 0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 0.99 corresponds to the curves from bottom to top.

D. High-frequency regime

Finally let us discuss the dynamics of our TPO in the high-
frequency limit ω → ∞. Obviously in this limit the largest
frequency in the system is the one associated with the time-
changing power of the TPO. A way to describe this situation
is to average the rapidly oscillating potential over a period of
the oscillation thereby obtaining an effective time-independent
potential [19–24]

Veff = 1

T

∫ T

0
αq2β(t ) dt, (2)

where we remind the reader that β(t ) = β0 + β1 sin(ωt ).
Due to the integration in Eq. (2) Veff is independent of the
frequency ω and depends solely on β0, β1. The question is
how this autonomous (energy-conserving) one-dimensional
potential, which leads to exclusively integrable, i.e., periodic
motion, looks like. Or, in other words, which features of the
different instantaneous power-law potentials reflect themselves
in the time-averaged high-frequency limit leading to Veff .
For potentials of a product form concerning their time and
spatial dependence such as the parametrically driven harmonic
oscillator Vpo(t ) = β(t )q2 the shape of the time-averaged
potential is the same as the original one. This is certainly not
the case for our TPO. Rescaling time under the integral and
accounting for the regularization of the power-law potential
Eq. (2) becomes

Veff = α

2π
(q2 + C)β0

∫ 2π

0
(q2 + C)β1 sin(t )dt. (3)

Exploiting the fact that the subintegrals in the intervals
[0, π

2 ] and [π, 3π
2 ] equal those in the intervals [π

2 , π ] and
[ 3π

2 , 2π ], respectively, as well as employing the substitution
u = β1 sin(t ) results in the following representation of the
effective potential:

Veff = α

πβ1
(q2 + C)β0

∫ β1

0
[(q2 + C)u − (q2 + C)−u]

× 1√
1 − (

u
β1

)2
du. (4)

The peculiarity of both representations ofVeff in Eqs. (3) and
(4) is the fact that the integration is performed with respect to
the exponent of the integrand. As a result the integral cannot be
expressed in terms of simple known analytical functions, i.e., it

has to be performed numerically. This goes hand in hand with
our previous remark that in general any analytical approach to
the TPO seems to be very difficult due to its time-dependent,
in general fractional, exponent.

Figures 6(a) and 6(b) show the effective potential Veff in the
high-frequency limit, as obtained by a numerical integration.
Let us first focus on the behavior close to the origin, which
is shown in Fig. 6(a). With increasing β1 ranging from 0.1
to 0.7 the flat bottom of the potential around the origin
develops into a linear rise. Further increasing the distance
from the origin this linear behavior turns into a quadratic and
subsequently higher order one. This happens because the linear
scaling dominates in the integral for the effective potential
Veff for very short distances as compared to the quadratic
one. It is, however, “accessible” only within the TPO if the
amplitude β1 is sufficiently large. For β1 > 0.7 the behavior
close to the origin is characterized by a cusplike dip, which
can be assigned to the dominance of the powers of the TPO
being sublinear [see also the corresponding snapshots of the
static potential of the TPO in Fig. 1(a)] and possesses for
C = 0 diverging derivatives at the origin. For larger distances
from the origin the potential changes its second derivative
from negative to positive. All potentials become degenerate
at q = ±1 independently of the value of β1. Figure 6(b) shows
Veff on a larger spatial scale where a clear ordering with
respect to the strength of the asymptotic (q → ∞) confinement
is visible. Larger amplitudes β1 correspond to a stronger
asymptotic confinement in this high-frequency limit. Finally
let us compare the TPO dynamics and the dynamics in the
time-independent effective potential Veff [see Eqs. (3) and (4)].
Figure 7 shows typical trajectories for the initial condition
[q(t = 0) = 5, p(t = 0) = 5] for both cases, where ω = 1000
has been chosen for the TPO. The differences w.r.t. their
dynamics not being visible for the finite resolution of Fig. 7
amount to maximally 0.1% for the propagation time shown.
This confirms the validity of the high-frequency picture derived
above. Let us shed some light on the behavior of the TPO with
increasing frequency towards the high-frequency limit. The
period T of the oscillations for our specific trajectory is T =
3.7878 for ω = 10 and becomes T = 3.7590 for ω = 1000,
whereas the effective potential provides the value T = 3.7588.
We note that the corresponding time-independent harmonic
oscillator (α = 1, β0 = 1, β1 = 0) amounts to T = 4.4429.
These comparatively small deviations in the frequency should,
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FIG. 7. Trajectories q(t ) in coordinate space with initial condi-
tion q(t = 0) = 5, p(t = 0) = 5 for both the TPO and the time-
independent effective potential [see Eqs. (3) and (4)]. The two curves
are indistinguishable, i.e., on top of each other on the resolution of
the figure. The TPO parameters chosen are ω = 1000, β1 = 0.3.

however, not obscure the fact that there are major deviations
between the cases ω = 10 for the TPO and the effective
potential dynamics for the trajectory q(t ), which amount up
to 12%.

IV. CONCLUSIONS AND OUTLOOK

We have explored the nonlinear dynamics of the driven
power-law oscillator with a focus on the analysis of the
phase space structures and the possibility of energy gain of
the oscillator. When comparing to the existing models for
oscillators in the literature, the TPO appears to be of unusual
appearance. Opposite to the kicked or parametrically driven
oscillators which keep their shape during driving, the TPO
continuously changes its shape in the course of a period of
the periodic driving. Choosing as an equilibrium the harmonic
oscillator, during one half-period of the driving the confine-
ment strength of the anharmonic TPO is larger and during
the other half-period the power of the confining potential
is smaller when compared to the harmonic oscillator. With
increasing amplitude of the oscillating power the oscillator
potential can become linear or even inverse its curvature, such
that the confining properties become correspondingly weak.
In the latter case a cusp appears in the instantaneous potential
that leads to kicks in the dynamics particularly relevant for
low-velocity trajectories near the origin.

Our computational study has shown that for sufficiently
large amplitude the TPO exhibits exponential acceleration and
energy gain within the regime of phase space and timescales
considered here. We conjecture that this holds even for an
infinitely large part of the unbounded phase space. The
structure of the finite low-energy part of the phase space
around the origin exhibits bounded motion which can be
completely regular (small-amplitude, arbitrary frequency) or
mixed regular-chaotic (intermediate-amplitude) up to the case
of a dominantly chaotic phase space (intermediate-amplitude

and frequency). We unraveled an intriguing mechanism of
energy gain on the level of individual trajectories which links
to the power-law pumping during the cycling of the TPO.
Performing a corresponding statistical analysis we could assign
the different periods of energy flow in and out of the oscillator
to the phases of the external driving with the net result
of an exponential energy gain. The exponential acceleration
takes place in an amazingly broad parameter regime w.r.t. the
frequency and amplitude of the TPO. The volume of phase
space which corresponds to the bounded motion is extremely
sensitive to the amplitude of the driving varying over many
orders of magnitude and showing a rich structure. We remark
that the observed exponential acceleration could potentially
also be related to heating, which has very recently been found to
occur in periodically driven many-particle systems [25] show-
ing different “temperatures” after thermalization for slow and
fast driving. Finally, in the high-frequency limit, an effective
time-averaged and static potential has been determined which
combines interesting features, such as the near origin cusp (for
sufficiently large driving amplitude) and a very strong effective
confinement at large distances. The exact dynamics reflects
this high-frequency behavior only for large values of the
frequency.

Although our driven power-law oscillator is a kind of oscil-
lator with peculiar properties and as such, to our opinion, of
interest on its own, let us briefly address possible experimental
realizations. Of course, no experimental setup will ever lead
to an infinitely spatially extended confinement such that any
concrete realization will always probe the TPOs dynamics on
finite timescales. This holds in particular w.r.t. the component
of the exponentially diverging motion. Since the trapping
technology of cold ions and especially of neutral atoms has
advanced enormously during the past decades [26–29] there
exists a huge flexibility concerning the design and the time-
dependent change also of the shape of these traps. One can
therefore use a gas of, e.g., thermal atoms for which interaction
effects are negligible and “pump” the oscillator according to
the TPO in order to finally perform absorption spectroscopy
at different time instants and as a result observe the expansion
dynamics of the atomic cloud. This is a microscopic example
and in particular does not exclude the possibility of probing
the TPO at hand of a macrosopic, i.e., mechanical setup. As
can be seen from the time evolution of the energy of the
oscillator our TPO is an extremely efficient “accelerator,” and
one could in principle imagine its application as a few-cycle
trap accelerator efficiently switching between different energy
regimes.

As a look into the future, it might be interesting but very
challenging to provide an analytical approach to the TPO in
some of the accessible parameter regimes. However, it is not
clear whether these plans are destined to fail, since even the
simplest integrals cannot be expressed in terms of standard
functions because it is typically the time-dependent exponent
which is to be integrated. Still, a further more detailed analysis
and understanding of the rich structure of the TPO is certainly
desirable and, if not analytically, then computationally an
interesting endeavor. Going one step further and analyzing
the quantum TPO via, e.g., Floquet theory and identifying
the characteristics of its Floquet spectrum is an intriguing
perspective.

022222-9



PETER SCHMELCHER PHYSICAL REVIEW E 98, 022222 (2018)

ACKNOWLEDGMENTS

This work has been in part performed during a visit to
the Institute for Theoretical Atomic, Molecular and Optical

Physics (ITAMP) at the Harvard Smithsonian Center for
Astrophysics in Cambridge, Massachusetts, whose hospitality
is gratefully acknowledged. The author thanks B. Liebchen for
a careful reading of the manuscript and valuable comments.

[1] R. Weinstock, Am. J. Phys. 29, 830 (1961); R. T. Bush, ibid.
41, 738 (1973); A. Thorndike, ibid. 68, 155 (2000); C. F.
Farina and M. M. Gandelman, ibid. 58, 491 (1990); K. R.
Symon, Mechanics, 3rd ed. (Addison-Wesley Reading, MA,
1972); G. Flores-Hidalgo and F. A. Barone, Eur. J. Phys. 32, 377
(2011).

[2] I. Kovacic and M. J. Brennan (eds.), The Duffing Equation,
Nonlinear Oscillators and Their Behaviour (Wiley, Chichester,
UK, 2011).

[3] H. J. Korsch, H. J. Jodl, and T. Hartmann, Chaos (Springer,
Heidelberg, 2008).

[4] L. E. Reichl, The Transition to Chaos, 2nd ed. (Springer, New
York, 2004).

[5] H. J. Stöckmann, Quantum Chaos: An Introduction (Cambridge
University Press, Cambridge, UK, 1999).

[6] T. I. Fossen and H. Nijmeijer, Parametric Resonance in Dynam-
ical Systems (Springer, New York, 2011).

[7] E. Fermi, Phys. Rev. 75, 1169 (1949).
[8] V. Gelfreich and D. Turaev, J. Phys. A 41, 212003 (2008).
[9] K. Shah, D. Turaev, and V. Rom-Kedar, Phys. Rev. E 81, 056205

(2010).
[10] B. Liebchen, R. Buechner, C. Petri, F. K. Diakonos, F. Lenz, and

P. Schmelcher, New J. Phys. 13, 093039 (2011).
[11] K. Shah, Phys. Rev. E 88, 024902 (2013).
[12] V. Gelfreich, V. Rom-Kedar, K. Shah, and D. Turaev, Phys. Rev.

Lett. 106, 074101 (2011).
[13] V. Gelfreich, V. Rom-Kedar, and D. Turaev, Chaos 22, 033116

(2012).
[14] B. Batistic, Phys. Rev. E 90, 032909 (2014).
[15] T. Pereira and D. Turaev, Phys. Rev. E 91, 010901(R)

(2015).

[16] S. M. Ulam, in Proceedings of the 4th Berkeley Sympo-
sium on Mathematical Statistics and Probability, edited by J.
Neyman (University of California Press, Berkeley, 1961), Vol. 3,
pp. 315–320.

[17] M. A. Lieberman and A. J. Lichtenberg, Phys. Rev. A 5, 1852
(1972).

[18] M. Robnik and V. G. Romanovski, J. Phys. A 39, L35 (2006);
D. Boccaletti and G. Pucacco, Theory of Orbits 1 and 2 (Springer,
Berlin, Heidelberg, New York, 2004).

[19] I. Vorobeichik, R. Lefebvre, and N. Moiseyev, Europhys. Lett.
41, 111 (1998).

[20] P. K. Papachristou, E. Katifori, F. K. Diakonos, V. Constantoudis,
and E. Mavrommatis, Phys. Rev. E 86, 036213 (2012).

[21] M. Gärttner, F. Lenz, C. Petri, F. K. Diakonos, and P. Schmelcher,
Phys. Rev. E 81, 051136 (2010).

[22] F. R. N. Koch, F. Lenz, C. Petri, F. K. Diakonos, and P.
Schmelcher, Phys. Rev. E 78, 056204 (2008).

[23] S. Rahav, I. Gilary, and S. Fishman, Phys. Rev. Lett. 91, 110404
(2003).

[24] S. Rahav, I. Gilary, and S. Fishman, Phys. Rev. A 68, 013820
(2003).

[25] M. Bukov, M. Heyl, D. A. Huse, and A. Polkovnikov, Phys. Rev.
B 93, 155132 (2016).

[26] C. Schneider, M. Enderlein, T. Huber, and T. Schaetz, Nat. Phot.
4, 772 (2010).

[27] M. D. Hughes, B. Lekitsch, J. A. Broersma, and W. K. Hensinger,
Contemp. Phys. 52, 505 (2011).

[28] G. Wilpers, P. See, P. Gill, and A. G. Sinclair, Nat. Nanotech. 7,
572 (2012).

[29] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute
Gases (Cambridge University Press, Cambridge, UK, 2008).

022222-10

https://doi.org/10.1119/1.1937628
https://doi.org/10.1119/1.1937628
https://doi.org/10.1119/1.1937628
https://doi.org/10.1119/1.1937628
https://doi.org/10.1119/1.1987356
https://doi.org/10.1119/1.1987356
https://doi.org/10.1119/1.1987356
https://doi.org/10.1119/1.1987356
https://doi.org/10.1119/1.19388
https://doi.org/10.1119/1.19388
https://doi.org/10.1119/1.19388
https://doi.org/10.1119/1.19388
https://doi.org/10.1119/1.16453
https://doi.org/10.1119/1.16453
https://doi.org/10.1119/1.16453
https://doi.org/10.1119/1.16453
https://doi.org/10.1088/0143-0807/32/2/010
https://doi.org/10.1088/0143-0807/32/2/010
https://doi.org/10.1088/0143-0807/32/2/010
https://doi.org/10.1088/0143-0807/32/2/010
https://doi.org/10.1103/PhysRev.75.1169
https://doi.org/10.1103/PhysRev.75.1169
https://doi.org/10.1103/PhysRev.75.1169
https://doi.org/10.1103/PhysRev.75.1169
https://doi.org/10.1088/1751-8113/41/21/212003
https://doi.org/10.1088/1751-8113/41/21/212003
https://doi.org/10.1088/1751-8113/41/21/212003
https://doi.org/10.1088/1751-8113/41/21/212003
https://doi.org/10.1103/PhysRevE.81.056205
https://doi.org/10.1103/PhysRevE.81.056205
https://doi.org/10.1103/PhysRevE.81.056205
https://doi.org/10.1103/PhysRevE.81.056205
https://doi.org/10.1088/1367-2630/13/9/093039
https://doi.org/10.1088/1367-2630/13/9/093039
https://doi.org/10.1088/1367-2630/13/9/093039
https://doi.org/10.1088/1367-2630/13/9/093039
https://doi.org/10.1103/PhysRevE.88.024902
https://doi.org/10.1103/PhysRevE.88.024902
https://doi.org/10.1103/PhysRevE.88.024902
https://doi.org/10.1103/PhysRevE.88.024902
https://doi.org/10.1103/PhysRevLett.106.074101
https://doi.org/10.1103/PhysRevLett.106.074101
https://doi.org/10.1103/PhysRevLett.106.074101
https://doi.org/10.1103/PhysRevLett.106.074101
https://doi.org/10.1063/1.4736542
https://doi.org/10.1063/1.4736542
https://doi.org/10.1063/1.4736542
https://doi.org/10.1063/1.4736542
https://doi.org/10.1103/PhysRevE.90.032909
https://doi.org/10.1103/PhysRevE.90.032909
https://doi.org/10.1103/PhysRevE.90.032909
https://doi.org/10.1103/PhysRevE.90.032909
https://doi.org/10.1103/PhysRevE.91.010901
https://doi.org/10.1103/PhysRevE.91.010901
https://doi.org/10.1103/PhysRevE.91.010901
https://doi.org/10.1103/PhysRevE.91.010901
https://doi.org/10.1103/PhysRevA.5.1852
https://doi.org/10.1103/PhysRevA.5.1852
https://doi.org/10.1103/PhysRevA.5.1852
https://doi.org/10.1103/PhysRevA.5.1852
https://doi.org/10.1088/0305-4470/39/1/L05
https://doi.org/10.1088/0305-4470/39/1/L05
https://doi.org/10.1088/0305-4470/39/1/L05
https://doi.org/10.1088/0305-4470/39/1/L05
https://doi.org/10.1209/epl/i1998-00117-6
https://doi.org/10.1209/epl/i1998-00117-6
https://doi.org/10.1209/epl/i1998-00117-6
https://doi.org/10.1209/epl/i1998-00117-6
https://doi.org/10.1103/PhysRevE.86.036213
https://doi.org/10.1103/PhysRevE.86.036213
https://doi.org/10.1103/PhysRevE.86.036213
https://doi.org/10.1103/PhysRevE.86.036213
https://doi.org/10.1103/PhysRevE.81.051136
https://doi.org/10.1103/PhysRevE.81.051136
https://doi.org/10.1103/PhysRevE.81.051136
https://doi.org/10.1103/PhysRevE.81.051136
https://doi.org/10.1103/PhysRevE.78.056204
https://doi.org/10.1103/PhysRevE.78.056204
https://doi.org/10.1103/PhysRevE.78.056204
https://doi.org/10.1103/PhysRevE.78.056204
https://doi.org/10.1103/PhysRevLett.91.110404
https://doi.org/10.1103/PhysRevLett.91.110404
https://doi.org/10.1103/PhysRevLett.91.110404
https://doi.org/10.1103/PhysRevLett.91.110404
https://doi.org/10.1103/PhysRevA.68.013820
https://doi.org/10.1103/PhysRevA.68.013820
https://doi.org/10.1103/PhysRevA.68.013820
https://doi.org/10.1103/PhysRevA.68.013820
https://doi.org/10.1103/PhysRevB.93.155132
https://doi.org/10.1103/PhysRevB.93.155132
https://doi.org/10.1103/PhysRevB.93.155132
https://doi.org/10.1103/PhysRevB.93.155132
https://doi.org/10.1038/nphoton.2010.236
https://doi.org/10.1038/nphoton.2010.236
https://doi.org/10.1038/nphoton.2010.236
https://doi.org/10.1038/nphoton.2010.236
https://doi.org/10.1080/00107514.2011.601918
https://doi.org/10.1080/00107514.2011.601918
https://doi.org/10.1080/00107514.2011.601918
https://doi.org/10.1080/00107514.2011.601918
https://doi.org/10.1038/nnano.2012.126
https://doi.org/10.1038/nnano.2012.126
https://doi.org/10.1038/nnano.2012.126
https://doi.org/10.1038/nnano.2012.126



