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Networks of neurons can generate oscillatory activity as result of various types of coupling that lead to
synchronization. A prominent type of oscillatory activity is gamma (30–80 Hz) rhythms, which may play
an important role in neuronal information processing. Two mechanisms have mainly been proposed for their
generation: (1) interneuron network gamma (ING) and (2) pyramidal-interneuron network gamma (PING).
In vitro and in vivo experiments have shown that both mechanisms can exist in the same cortical circuits.
This raises the questions: How do ING and PING interact when both can in principle occur? Are the network
dynamics a superposition, or do ING and PING interact in a nonlinear way and if so, how? In this article, we
first generalize the phase representation for nonlinear one-dimensional pulse coupled oscillators as introduced by
Mirollo and Strogatz to type II oscillators whose phase response curve (PRC) has zero crossings. We then give
a full theoretical analysis for the regular gamma-like oscillations of simple networks consisting of two neural
oscillators, an “E neuron” mimicking a synchronized group of pyramidal cells, and an “I neuron” representing
such a group of interneurons. Motivated by experimental findings, we choose the E neuron to have a type I PRC
[leaky integrate-and-fire (LIF) neuron], while the I neuron has either a type I or type II PRC (LIF or “sine”
neuron). The phase representation allows us to define in a simple manner scenarios of interaction between the two
neurons, which are independent of the types and the details of the neuron models. The presence of delay in the
couplings leads to an increased number of scenarios relevant for gamma-like oscillatory patterns. We analytically
derive the set of such scenarios and describe their occurrence in terms of parameter values such as synaptic
connectivity and drive to the E and I neurons. The networks can be tuned to oscillate in an ING or PING mode.
We focus particularly on the transition region where both rhythms compete to govern the network dynamics and
compare with oscillations in reduced networks, which can only generate either ING or PING. Our analytically
derived oscillation frequency diagrams indicate that except for small coexistence regions, the networks generate
ING if the oscillation frequency of the reduced ING network exceeds that of the reduced PING network, and vice
versa. For networks with the LIF I neuron, the network oscillation frequency slightly exceeds the frequencies of
corresponding reduced networks, while it lies between them for networks with the sine I neuron. In networks
oscillating in ING (PING) mode, the oscillation frequency responds faster to changes in the drive to the I (E)
neuron than to changes in the drive to the E (I) neuron. This finding suggests a method to analyze which mechanism
governs an observed network oscillation. Notably, also when the network operates in ING mode, the E neuron
can spike before the I neuron such that relative spike times of the pyramidal cells and the interneurons alone are
not conclusive for distinguishing ING and PING.
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I. INTRODUCTION

Many processes in biology, physics, chemistry, and en-
gineering have an oscillatory character. Regular oscillations
on a limit cycle can be described by a single variable, the
phase, which characterizes the time needed to reach the current
state due to unperturbed dynamics when starting from some
specified “reset” point on the cycle (e.g., [1,2]). If an oscillator
receives inputs in the form of pulses and an input-induced
perturbation from the limit cycle relaxes back sufficiently
quickly (i.e., before the next input arrives), the system’s
dynamics can be characterized by the phase together with a

function telling how the phase changes in response to an input
pulse: the phase response curve (PRC) or the phase transition
curve or transfer function [1,3,4]. This phase representation has
been widely used to investigate network dynamics, especially
synchronization and locking phenomena, in areas of science
as diverse as neural circuits [5–8], technical networks [9,10],
and insect behavior [4,11].

A particularly simple type of oscillator is given by a
hybrid dynamical system whose state variable follows some
one-dimensional, possibly nonlinear continuous dynamics,
periodically reaches a threshold, and is then reset [12]. A rich
source of such oscillators is the reduction of spiking neurons
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to integrate-and-fire type neuron models [13–15]: Biological
neurons possess a complicated branched structure with protru-
sions of different function and many slow and fast degrees
of freedom associated with the resulting compartments. In
integrate-and-fire type neuron models, this spatial structure is
reduced to a single compartment “point neuron” and the high-
dimensional dynamics are reduced to one degree of freedom,
interpreted as the membrane potential [1,16]. Integrate-and-fire
type neurons interact with pulses, mimicking spikes or action
potentials; these are sent when the neuron is reset and are
received by postsynaptic neurons often after some delay. In
this article, we consider networks of two integrate-and-fire type
neurons in phase representation to investigate the competition
between mechanisms that are widely assumed to underlie
oscillations in biological neural networks. Each integrate-and-
fire type neuron thereby represents a synchronized population
of neurons.

Oscillations in biological neural networks may be important
for information processing [17,18]. One hypothesis is that they
may coordinate precise spike sending of neurons and lead
to synchronous spiking of neural populations [19]. Indeed,
experiments have found examples of highly synchronous
spiking associated with strong oscillations [20] and the timing
of individual spikes relative to a global oscillation’s phase can
carry important information [19,21–24]. Receiving neurons, in
turn, can be highly sensitive to coincident input; in particular,
types of synaptic plasticity depend on the timing of spikes [25].
Under high-input conditions the spike-generating mechanism
can adaptively enhance the sensitivity to synchronous input
while simultaneously decreasing the sensitivity to tempo-
rally uncorrelated inputs [26]. Further, oscillatory modulation
of the membrane potential, for example, by input from a
synchronously firing population of neurons, can provide a
precise temporal window for the integration of synaptic inputs,
favoring inputs arriving precisely at certain times [27,28].
The “communication through coherence” hypothesis suggests
that this promotes information transmission between coher-
ently oscillating neuron populations in different brain areas
and allows us to focus on attended stimuli [29–32]. Higher
frequency oscillations may support propagation and selection
of information within areas [33,34]. Oscillation coordinated
synchronous spiking across different neuron populations may
also allow us to bind different features of a stimulus into a
coherent percept [35–39] and generally parse and separate
information into chunks of different length [22,40,41].

In the current article, we will focus on gamma (30–
80 Hz) oscillations. These are prominent oscillations, which
have been linked to input selectivity [30,42], spike-phase
encoding [19,43], feature binding [35], as well as to storage
and retrieval of information [40,41]. Mainly two mechanisms
have been proposed to underlie gamma oscillations [44–46].
Both involve populations of excitatory pyramidal cells (E
cells) and inhibitory interneurons (I cells). Tonic excitation
of the interneurons, e.g., due to averaging slow excitatory
input, can give rise to interneuron network gamma (ING)
[47–52]: Imagine, by chance at some point more I cells spike
and generate increased inhibition. This hinders the other I
cells from spiking before the ones that have just spiked have
recovered, and recruits them into synchrony such that a rhythm
emerges [53]. The I cells undergo a cycle of enhanced spiking

activity, resulting in increased recurrent inhibition within
the population, subsequently decreased activity, followed by
recovery from inhibition and again enhanced spiking. The
resulting periodically increased inhibition generates rhythmic
spiking in connected E cells. Pyramidal-interneuron network
gamma (PING) is mediated by interacting populations of
E cells and I cells [51,54,55]. Imagine, by chance at some
point more E cells spike. The I cells respond to the increased
excitatory input from the E cells by increasing their spiking.
The resulting increased inhibitory input in turn hinders spiking
in the E cells, such that their activity goes down. The lack
of excitatory input leads to a decrease of I-cell activity, such
that the E cells can recover from inhibition and generate
increased spiking, which completes the cycle. To summarize,
ING relies crucially on mutual inhibition generated by the I
cells among each other, while PING relies crucially on the
E → I connections and the inhibitory feedback to the E cells.
In model networks, there can be a sharp boundary in parameter
space between the regime in which the I cells have weak enough
drive for PING, and the ING regime in which the drive to the I
cells is so large that they fire without being prompted by the E
cells [56]. However, recent studies have shown that this sharp
transition may be a simplification [57] and we highlighted in
Ref. [58] that there are two-neuron systems that can generate
ING as well as PING, depending on the initial conditions.

Using computer simulations of larger networks, in Ref. [58]
we have shown that in the range of parameter space where
ING and PING may in principle be expected to exist, both
mechanisms compete such that the mechanism generating
the higher oscillation frequency “wins”; i.e., the mechanism
with the higher frequency determines the frequency of the
network oscillation and suppresses the other one. In the
current article we provide a theoretical analysis of the finding,
using simplified networks of two oscillating integrate-and-fire
type neurons. The simplified system allows us to analytically
study the interactions between ING and PING and to better
understand their consequences for oscillations in networks of
interacting E cells and I cells. The analytically tractable model
consists of an E neuron, which belongs to the category of type
I neurons, and an I neuron, which can be either type I or type
II. For type I neurons an excitatory input always advances
the next spike; the PRC is entirely positive. In contrast, an
excitatory input arriving at a type II neuron can also delay
the next spike; the PRC is partially negative [1,59]. Indeed,
there is experimental evidence that I cells involved in gamma
oscillations may belong to the category of type II neurons
[60–62].

We consider current-based integrate-and-fire neurons,
where the currents have infinitesimally short temporal dura-
tion. The latter implies that the membrane potential responds
in jumplike manner to the input, the former that the height of the
jump is independent of the membrane potential. Note that also
some conductance-based and more general models can be cast
into this form by a transformation of variables [63,64]. For type
I neurons, where an excitatory jump (towards the membrane
potential threshold) always advances the phase, a phase repre-
sentation has been derived in Refs. [4,65]. We adopt this phase
representation for our type I neurons since the linearization
of the free dynamics strongly simplifies the analytical study
of the system and since the phase representation allows for
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simple and fast event-based numerical simulations. To be able
to study networks with type II interneurons in the same way, we
derive a generalized phase representation, which is applicable
to neurons of this type. For this, we assume that an infinitesimal
phase response curve (iPRC) of type II is given, and we derive
the corresponding membrane potential dynamics as well as the
PRC.

The article is structured as follows: Section II is dedicated to
the standard phase representation of a one-dimensional oscil-
lator, its derivation from the free dynamics, and its application
to the leaky integrate-and-fire (LIF) neuron, which is the type I
neuron model that we use throughout the article. In Sec. III, we
derive the phase representation of one-dimensional oscillators
of type II, where the iPRC can change sign. We apply the
scheme to derive the “sine neuron,” the type II neuron model
that we use throughout the article. The Appendix compares
this neuron with the radial isochron clock, an oscillator model
that has the same iPRC. In Sec. IV, we consider delayed pulse-
coupled networks of two model neurons and show the ways in
which they interact depending on their phase difference. This
yields a representation of the dynamics in terms of iteration
maps whose fixed points yield the regular oscillations that we
study in Sec. V. Section VI is dedicated to the competition and
coexistence of the ING and PING oscillation mechanisms. We
conclude with a discussion in Sec. VII, which puts our findings
in context to the existing literature and our previous larger
scale simulation studies [58]. We note that in Ref. [58] we
summarized, displayed, and discussed some of the results of
the current article.

II. PHASE REPRESENTATION OF TYPE I
ONE-DIMENSIONAL OSCILLATORS

A. General theory

In the following, we review the standard phase representa-
tion of one-dimensional oscillators coupled by infinitesimally
short pulsed interactions proposed in Refs. [4,8,65], as needed
for the purposes of the present article. For a more general
derivation and discussion, see [65].

A one-dimensional neural oscillator is generally charac-
terized by a voltage-like state variable V . We assume that
without arrival of fast inputs, V is strictly increasing up to
a spike threshold �V > 0. When reaching the threshold at a
time t , V (t ) = �V , V is reset to zero, i.e., V (t+) = 0, and
starts increasing again. We denote the period of these free
dynamics by T . We note that when V (t ) is specified by an
autonomous differential equation (the function specifying the
rate of change of V does not depend on time) with unique
solutions, trajectories cannot cross or overlap and furthermore
the oscillatory behavior forbids fixed points. This implies strict
monotonicity of V except where V is being reset.

We now introduce a so-called phase variable ϕ(t ), which
increases with slope one in absence of fast input,

dϕ(t )

dt
= 1, (1)

and has a phase threshold �. When ϕ reaches the threshold
at a time t , ϕ(t ) = �, the phase is reset to zero, ϕ(t+) = 0.
Note that Eq. (1) implies that the free period of the phase is
�. Since we want to map ϕ(t ) to V (t ), we choose the free

periods identical, � = T . The strict monotonicity of V (t ) then
implies that there is a strictly monotonic, bijective so-called rise
function U , mapping phase ϕ to voltage V , i.e., at time t

V (t ) = U (ϕ(t )). (2)

In particular, �V and � are related by

�V = U (�). (3)

For the LIF neuron, the type I neuron we focus on in our
study, U : ] − ∞,�] →] − ∞,�V ] (depending on the neuron
model domain and/or codomain are different).U can be derived
directly from free membrane potential dynamics: Consider
free membrane potential dynamics Ṽ , which start at the reset
potential at t = 0, i.e., Ṽ (0) = 0. Ṽ can be continued for
negative times towards −∞ (or a possible lower bound) and for
positive times to �V . The analogous dynamics of ϕ run from
−∞ (or a possible lower bound) to � = T with ϕ(0) = 0. We
have U (ϕ) = Ṽ (ϕ), since time equals phase for the considered
piece of dynamics.

When ϕ reaches the phase threshold, it is reset and a spike is
emitted. After a delay time τ , the spike arrives at postsynaptic
neurons at, say, time ta . We assume that they respond with an
instantaneous jump in their membrane potential. The strength
ε of the coupling from the pre- to the postsynaptic neuron
specifies the height of the jump. The corresponding phase jump
is computed using a transfer function H ,

ϕ(t+a ) = H (ϕ(ta ), ε). (4)

For convenience, we will omit ta and use ϕ instead of ϕ(ta ).
If an input of strength ε is subthreshold, i.e., U (ϕ) + ε < �V ,
the transfer function is given by

H (ϕ, ε) = U−1(U (ϕ) + ε). (5)

We may understand this formula as follows: We take ϕ and
change to the membrane potential domain using U given in
Eq. (2). We know that in the membrane potential domain an
input of strength ε additively changes the membrane potential
U (ϕ) by ε. We compute the corresponding phase, i.e., the
phase after the input, using U−1. The composition of the steps,
U−1(U (ϕ) + ε), maps the phase before the interaction to the
phase after the interaction. We note that H (ϕ, ε) is strictly
monotonically increasing, both as a function of ε and ofϕ, since
U and thus U−1 are strictly monotonically increasing. Since
suprathreshold input leads to immediate spiking and reset of
the neuron, we need to extend the definition of the transfer
function to

H (ϕ, ε) = U−1(U (ϕ) + ε), for U (ϕ) + ε < �V , (6)

H (ϕ, ε) = 0, for U (ϕ) + ε � �V . (7)

H (ϕ, ε) yields the new phase of a neuron when it receives an
input ε at phase ϕ [cf. Eq. (4)]. It is thus closely related to the
PRC P (ϕ, ε) (e.g., [3]), which yields the phase change induced
by an input ε received at phase ϕ,

P (ϕ, ε) = H (ϕ, ε) − ϕ. (8)

The iPRC Z(ϕ) characterizes the phase shift of a neuron around
ε = 0; i.e., an infinitesimal input dε generates an infinitesimal
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FIG. 1. Infinitesimal phase response curves (iPRC) Z, rise functions (U ), and inverse rise functions (U−1) for the type I leaky integrate-
and-fire neuron and the type II sine neuron. Upper panels show (a) the iPRC, (b) the rise function, and (c) the inverse rise function for the leaky
integrate-and-fire neuron. Corresponding data are shown in the lower panels (d), (e), and (f) for the sine neuron; its inverse rise function has
two branches (blue: k = 1, red: k = 2). Parameter setting: γ = 1, �V = 1, and � = 1.

phase shift

dϕ = Z(ϕ)dε. (9)

For small ε around 0 we have P (ϕ, ε) ≈ Z(ϕ)ε;
H (ϕ, ε) ≈ ϕ + Z(ϕ)ε. Z(ϕ) and H (ϕ, ε) are thus
related by

Z(ϕ) = ∂H (ϕ, ε)

∂ε

∣∣∣∣
ε=0

. (10)

As mentioned above, U−1 is strictly increasing. Equations (6)
and (8) then imply that H and P are strictly increasing in ε for
subthreshold input. Because P (ϕ, 0) equals 0, P (ϕ, ε) > 0 for
ε > 0 and subthreshold input. In other words, the PRC has to
be of type I; the formalism is thus applicable to type I neurons
only.

B. The LIF neuron in phase representation

We now review the derivation of the phase representation for
the type I LIF neuron using the methods described in Sec. II A
(cf. also [65]). The dynamics of the membrane potential VLIF(t)
of the LIF neuron are given by

dVLIF(t )

dt
= −γVLIF(t ) + I, (11)

where γ represents the inverse of the membrane time con-
stant and I captures the external driving current. When the
membrane potential reaches its threshold �V , the neuron
spikes and the membrane potential is reset to zero. A spike

arriving at time t at a synaptic connection with strength ε

induces an instantaneous change in the membrane potential,
i.e., VLIF(t+) = VLIF(t ) + ε. We assume that slow external
inputs add up to a constant current I , which drives the
neuron continuously over the threshold, such that it oscillates
“intrinsically” in absence of fast synaptic input. This allows us
to define the phase −∞ < ϕ � �, which increases with slope
1 and is reset to zero when it reaches �, where also a spike is
emitted.

The rise function U linking the phase ϕ of the spiking cycle
to the membrane potential description V can be determined as
described in Sec. II A as

VLIF = ULIF(ϕ) = I

γ
(1 − e−γ ϕ ) (12)

(see [4,65]), yielding the inverse

U−1
LIF(VLIF ) = 1

γ
ln

(
I

I − γVLIF

)
. (13)

ULIF is a monotonically increasing function of ϕ. Figures 1(b)
and 1(c) show the rise function ULIF and its inverse U−1

LIF,
respectively. The phase threshold is explicitly given in terms
of the voltage threshold �V by

� = U−1
LIF(�V ) = 1

γ
ln

(
I

I − γ�V

)
. (14)

ULIF and U−1
LIF yield the transfer function of the LIF neuron

HLIF(ϕ, ε; �V ) =
{− 1

γ
ln

(
e−γ ϕ − γ ε

I

)
, for ULIF(ϕ) + ε < �V ,

0, for ULIF(ϕ) + ε � �V ;

(15)

(16)

022217-4



ANALYZING THE COMPETITION OF GAMMA RHYTHMS … PHYSICAL REVIEW E 98, 022217 (2018)

FIG. 2. Free dynamics (V ) and transfer functions (H ) for the type I leaky integrate-and-fire neuron and the type II sine neuron. Upper
panels show (a) the free membrane potential dynamics, (b) the transfer function as a function of the coupling strength ε for different constant
values of the phase ϕ at input arrival (blue, red, black, green, cyan: ϕ = 0, 0.25, 0.5, 0.75, and 1), and (c) the transfer function as a function of
ϕ for different constant ε (blue, red, black: ε = −0.5, 0, and 0.5) for the LIF neuron. Lower panels (d)–(f) show the corresponding plots for the
sine neuron. Parameter setting: γ = 1, �V = 1, and � = 1.

cf. Eqs. (6) and (7). It is displayed in Fig. 2, panels (b)
and (c).

Note that the phase ϕ can assume all values within
] − ∞,�], where negative phases are generated by inhibitory
inputs that cause hyperpolarization of the membrane potential.
Since we use the convention that the phase ϕ is reset to zero
when it reaches the threshold �, at the time of a spiking
due to the driving current we have ϕ = � rather than ϕ = 0.
Since γ > 0, we can set γ = 1 and �V = 1 after appropriate
scaling of time and voltage, without loss of generality for
a single neuron. For simplicity, we assume that in networks
with two type I neurons the membrane time constants are the
same, such that the scaling is possible. The driving current I

that gives ULIF(�) = 1 follows in a straightforward way from
Eq. (12),

I = 1

1 − e−�
. (17)

The rise function Eq. (12) and its inverse Eq. (13) are then
given by

ULIF(ϕ) = 1 − e−ϕ

1 − e−�
, (18)

U−1
LIF(VLIF ) = − ln[1 − (1 − e−�)VLIF]. (19)

Equations (15) and (16) yield the transfer function

HLIF(ϕ, ε; �) =
{− ln[e−ϕ − (1 − e−�)ε], for ULIF(ϕ) + ε < 1,

0, for ULIF(ϕ) + ε � 1,

(20)

(21)

and, according to Eq. (10), the iPRC is given by

ZLIF(ϕ; �) = (1 − e−�)eϕ, (22)

which is shown in Fig. 1(a).

III. PHASE REPRESENTATION OF TYPE II
ONE-DIMENSIONAL OSCILLATORS

A. General theory

The phase representation Sec. II is only valid for one-
dimensional neurons of type I, such as the LIF neuron. In
the following we generalize it to neurons of type II, whose
iPRC has negative and positive parts. We assume that our
type II neuron is a current-based one-dimensional oscillator,
which receives current inputs of infinitesimally small temporal
extent. These generate jumplike responses in the membrane
potential; the height of the jump is independent of the voltage.
We further assume that the membrane dynamics are at first

unknown, and the neuron dynamics are instead specified by an
infinitesimal phase response curve, which specifies the phase
response to input pulses of infinitesimally small strength. We
then derive the free membrane dynamics as well as the full
phase representation. They turn out to follow nearly uniquely
from the iPRC for the considered class of oscillator models.

The domain of the iPRC can be divided into several
intervals, in which the iPRC has the same sign (positive or
negative). As an example, for a type I iPRC that is everywhere
larger than zero, we have only one interval ] − ∞,�[; cf.
the LIF neuron in Sec. II B. For a sine-like type II iPRC, cf.
Sec. III B below, there are two subintervals ]0,�/2[, ]�/2,�[,
and the iPRC becomes zero at the ends of the intervals. We aim
to construct rise functions for each subinterval and combine
them to obtain the transfer function H .

Restricted to a single interval i, the iPRC is either com-
pletely positive or negative. A strictly increasing free voltage
implies a positive iPRC: A small upward jump in the voltage
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maps the current state to a state that would be reached in
the future by free evolution; cf. Sec. II. A strictly decreasing
free voltage implies a negative iPRC, as an upward jump in
the voltage maps the current state to an earlier state. In turn,
a positive (negative) iPRC implies monotonically increasing
(decreasing) free voltage dynamics. We note that this implies
that a differential equation specifying V must switch between
intervals with different signs of the iPRC (cf. Sec. III B below).
In interval i we can define a monotonically increasing or
decreasing transfer function Ui , which maps phase to voltage,
cf. Eq. (2), as follows: For given ϕ, there are sufficiently small
inputs ε such that the voltage and phase stay within the interval
even if i is the interval neighboring the threshold. Then, the
transfer function is given by Eq. (5) and

∂Hi (ϕ, ε)

∂ε
= 1

U
′
i

(
U−1

i (Ui (ϕ) + ε)
) . (23)

By setting ε to 0, see Eq. (10), we obtain for all ϕ in the interval

Z(ϕ) = ∂Hi (ϕ, ε)

∂ε

∣∣∣∣
ε=0

= 1

U
′
i

(
U−1

i (Ui (ϕ))
) = 1

U
′
i (ϕ)

.

(24)

The slope of Ui (ϕ) specifies Ui (ϕ) up to a constant, so
Ui (ϕ) is basically the antiderivative Fi (ϕ) of 1/Z(ϕ) in
interval i,

Fi (ϕ) =
∫

1

Z(ϕ)
dϕ. (25)

We obtain Ui (ϕ) from Fi (ϕ) by specifying the voltage at some
phase.

When ϕ approaches an interval boundary where the iPRC
has a zero, Ui (ϕ) and thus the voltage will usually tend to ±∞,
which we then take as the value assumed by the rise function
there. We note that the voltage can tend to +∞ even if the
phase is not in the interval neighboring the threshold. Then
the phase does not reach the phase threshold and the neuron
does not spike. Models with this property may be interpreted as
having a history-dependent voltage spike threshold. We note
that our formalism allows us to construct oscillator models
from the iPRC for which Ui (ϕ) does not have a reasonable
biological interpretation in terms of a voltage. As an example,
an iPRC that is negative in the interval adjacent to the phase
threshold can give rise to a Ui (ϕ) that reaches −∞ as the phase
approaches the phase threshold and the neuron spikes.

If ε does not lead the dynamics out of interval i, the transfer
function is given by

Hi (ϕ, ε) = U−1
i (Ui (ϕ) + ε). (26)

It is uniquely determined by the iPRC, since adding a constant
to Ui , i.e., using Ui,ci

(ϕ) = Ui (ϕ) + ci to define Hi , does not
change it,

Hi (ϕ, ε) = U−1
i,ci

(Ui,ci
(ϕ) + ε) = U−1

i (Ui (ϕ) + ci + ε − ci )

= U−1
i (Ui (ϕ) + ε). (27)

We can derive the rise function also in a more intuitive
manner as follows: An input to our neuron models should have
the same effect whether we apply it at once or in small pieces,
which we may imagine to be separated by small temporal

differences. Indeed, in the membrane potential representation,
the input is simply additive, so this is certainly satisfied. In
phase representation, it should be satisfied as well. An input
dε̃ arriving at phase ϕ leads in linear approximation to a new
phase ϕ+ = ϕ + Z(ϕ)dε̃. If the change due to an input piece
dε̃ does not depend on the total input ε, we should get the
same change, if the previous phase has been reached due to
a previous piece ε̃ of an input. Denoting the phase before the
arrival of dε̃ by ϕ(ε̃), we find that the input ε̃ + dε̃ leads to
the phase ϕ(ε̃ + dε̃) = ϕ(ε̃) + Z(ϕ(ε̃))dε̃. Note that ϕ(ε̃) is
the exact nonapproximated phase after receiving ε̃, while the
impact of dε̃ is covered up to first order. Knowing the impact
of an additional input dε̃ up to first order (equivalently, the
impact of an infinitesimal input) allows us to write the phase
change in the form of a differential equation,

dϕ(ε̃)

dε̃
= Z(ϕ(ε̃)). (28)

Since the impact of an input piece does not explicitly depend
on the previously received input, the right-hand side does not
explicitly depend on the independent variable ε̃, but only via
ϕ(ε̃). In other words, the phase change ϕ(ε̃) is characterized by
an autonomous ordinary differential equation. In the Appendix,
we highlight that general phase oscillators do not have this
property, using the radial isochron clock. Note that Eq. (28)
can also be derived by discretizing the timelike variable ε into
many small steps of size dε̃, expanding the PRC around zero
coupling strength by its Taylor series, and taking the limit of
dε̃ → 0.

Solving Eq. (28) by separation of variables, we obtain∫ ϕ+

ϕ

1

Z(ϕ)
dϕ =

∫ ε

0
dε̃ = ε, (29)

where ϕ+ and ϕ are the phases before and after arrival of the
total subthreshold input ε. By the first fundamental theorem of
calculus, we have Fi (ϕ+) − Fi (ϕ) = ε, where again Fi (ϕ) =∫

1/Z(ϕ)dϕ. Since on the other hand

Ui (ϕ
+) − Ui (ϕ) = ε, (30)

Fi equals Ui up to an additive constant and Ui is basically the
antiderivative of 1/Z(ϕ) in the interval i.

Equation (28) and its property of being autonomous can also
be directly derived from the fact that dVi (the change of the
voltage due to dε̃) does not explicitly (not even implicitly) de-
pend on already applied subthreshold input: While receiving an
input, Vi may be seen as a function Vi (ε̃) of the already applied
piece of input ε̃, with initial value Vi (0) = Vi and ε̃ running
from 0 to ε. Vi (ε̃) then satisfies the autonomous differential
equation dVi (ε̃)/dε̃ = 1. This implies dUi (ϕ(ε̃))/dε̃ = 1 and,
after application of the chain rule, the differential equation
dϕ(ε̃)/dε̃ = 1/U ′

i (ϕ(ε̃)). Since for ε̃ = 0 the left-hand side
equals Z(ϕ) and the differential equation is autonomous, we
have 1/U ′

i (ϕ) = Z(ϕ) for all phases. This implies that ϕ(ε̃)
satisfies Eq. (28) and it implies Eq. (30).

Equation (28) also allows us to directly derive the transfer
function and thus the complete phase representation from the
iPRC. We note that ϕ(ε̃) = Hi (ϕ, ε̃) and rewrite Eq. (28) as

∂Hi (ϕ, ε̃)

∂ε̃
= Z(Hi (ϕ, ε̃)) (31)
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with initial condition Hi (ϕ, 0) = ϕ, which reduces to Eq. (10)
for ε̃ = 0. Solving the differential equation yields the transfer
function in interval i.

Phases ϕ where the iPRC is zero are fixed points of the
dynamics Eqs. (28) and (31). Thus, under weak conditions
on Eq. (28) (the iPRC is globally Lipschitz continuous such
that the differential equation has a unique solution existing
for all ε), such a ϕ will not be changed by input, Hi (ϕ, ε) =
ϕ = constant; furthermore, no finite input will lead beyond the
borders of an interval i where the iPRC gets zero.

B. The sine neuron in phase representation

Typical type II neurons show a phase delay in response
to excitatory input ε > 0 arriving at small phases (early in
the spiking cycle, shortly after a spike) and a phase advance
when such input arrives at larger phases [3,57]. With these
characteristics in mind, we define our type II neurons as “sine
neurons” by an iPRC,

Zsine(ϕ) = − sin

(
2π

�
ϕ

)
, (32)

where ϕ ∈ [0,�] [see Fig. 1(d)] and � ≡ T is the period
and the phase threshold of the neuron. We use the sinusoidal
function as the iPRC of our type II neurons also because neuron
models such as the Hodgkin-Huxley neuron can undergo Hopf
bifurcations [66,67] and the normal form oscillator of Hopf
bifurcating systems and thus general Hopf bifurcating systems
with appropriate parameters have near the bifurcation for
suitable inputs a sinusoidal iPRC Eq. (32) [68]. To facilitate
the analytical study of two-neuron networks that include type
II neurons, we apply the phase oscillator formalism to the sine
neuron. Since the iPRC changes sign, we use the methodology
derived in Sec. III A.

We split the interval domain [0,�] of Zsine into two, i.e.,
]0,�/2[ and ]�/2,�[, and treat Usine(ϕ) at ϕ ∈ {0,�/2,�}
separately. Equations (25) and (32) yield the rise functions
for the first subinterval (Usine,1(ϕ), ϕ ∈ ]0,�/2[) and for the
second subinterval (Usine,2(ϕ), ϕ ∈ ]�/2,�[): Usine,k(ϕ) =
−� ln[| tan(πϕ/�)|]/2π + ck , where ck ∈ R and k ∈ {1, 2}.
From the first subinterval, we compute the values of
the rise function at ϕ = 0 and ϕ = �/2, Usine(0) =
limϕ→0+ Usine,1(ϕ)=∞,Usine(�/2)= limϕ→�−/2 Usine,1(ϕ) =
−∞. Compatible with this, limϕ→�+/2 Usine,2(ϕ) = −∞.
Finally, at ϕ = �, Usine(�) = limϕ→�− Usine,2(ϕ) = ∞. In
summary, the rise function of the sine neuron is given by

Usine(ϕ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∞, for ϕ ∈ {0,�},
−∞, for ϕ = �/2,

− �
2π

ln
[
tan

(
π
�

ϕ
)] + c1, for ϕ ∈ ]

0, �
2

[
,

− �
2π

ln
[
tan

(− π
�

ϕ
)] + c2, for ϕ ∈ ]

�
2 ,�

[
.

(33)

Figure 1(e) illustrates the rise function Usine(ϕ) for the sine
neuron with c1 = c2 = 0.

Since the membrane potential of our sine neuron satis-
fies Vsine(t ) = Usine(ϕ(t )), it reaches +∞ in finite time [see
Fig. 1(e)]. We can thus set the spike threshold to ∞. In
this respect, the sine neuron resembles the theta or quadratic

FIG. 3. Vector field of the sine neuron defined by Eqs. (34) and
(35). The solid curves represent Vsine(t ) = Usine(ϕ(t )) for c1 = c2 =
0. The vector field switches when Vsine reaches +∞ or −∞.

integrate-and-fire model (see, e.g., [1] and Sec. VII). How-
ever, the sine neuron is not reset to −∞. When it reaches
threshold, the membrane potential decreases from +∞ to −∞
halfway through the cycle by its intrinsic dynamics. In this
regime, excitatory input yields a phase delay. Thereafter the
membrane potential increases gradually to +∞ in a regime
where excitation yields a phase advance. The dynamical
regime thus depends on the last “event.” If the last event was
sending a spike (Vsine = ∞), we are in regime k = 1, where
excitation delays the phase. If the last event was reaching the
reset potential (Vsine = −∞), we are in regime k = 2, where
excitation advances the phase. Note that this is an extension
to the dynamics of standard integrate-and-fire models, where
neurons are only in one dynamical regime and reset in an
infinitesimally short time after they reach threshold. In contrast
to the “spike response” extension (see [69]), the dynamical
regime in our extension does not only depend on the time
elapsed since spike sending, but also on the full dynamics of the
neuron. A stronger asymmetry between spiking and reset or a
more rapid onset of spikes can be easily achieved by modifying
the sinusoidal shape of the iPRC.

Interestingly, the membrane potential of our sine neuron
obeys the simple nonlinear differential equation

dVsine(t )

dt
= dUsine(ϕ)

dϕ

dϕ(t )

dt
= − cosh

[
2π

�
Vsine(t )

]
(34)

in the regime k = 1, i.e., if the previous event was a spike, and
it obeys

dVsine(t )

dt
= cosh

[
2π

�
Vsine(t )

]
(35)

in the regime k = 2, i.e., if the previous event was a reset; cf.
Fig. 3.

Using Eq. (33), we can define an inverse function U−1
sine with

two branches; see Fig. 1(f). For the branch k = 1 the inverse
function U−1

sine maps the state variable Vsine ∈ ] − ∞,∞[ to the
phase ϕ ∈ ]0,�/2[ by

U−1
sine(Vsine) = �

π
arctan

(
e− 2π

�
(Vsine−c1 )

)
. (36)
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For the branch k = 2, the inverse function U−1
sine maps the

membrane potential Vsine in the range ] − ∞,∞[ to ]�/2,�[,

U−1
sine(Vsine) = −�

π
arctan

(
e− 2π

�
(Vsine−c2 )

) + �. (37)

Using these branches, we can now construct the transfer
function Hsine(ϕ). For this, we first consider the membrane
potential dynamics and note that an input ε cannot bring Vsine

above +∞ or below −∞. As a consequence, inputs do not
alter the dynamical regime k. To compute the phase after an
input we therefore have to use Eq. (36) if the original phase ϕ is
within ]0,�/2[ (regime k = 1) and Eq. (37) if ϕ ∈ ]�/2,�[
(regime k = 2). Further taking into account that the transfer
function is the identity for any input at ϕ ∈ {0,�/2,�} (the
zeros of the PRC; see Sec. III A), we arrive at Hsine(ϕ, ε):

Hsine(ϕ, ε)

=

⎧⎪⎨⎪⎩
U−1

sine,1(Usine(ϕ) + ε), for ϕ ∈ ]
0, �

2

[
,

U−1
sine,2(Usine(ϕ) + ε), for ϕ ∈ ]

�
2 ,�

[
,

ϕ, for ϕ ∈ {
0, �

2 ,�
}
,

(38)

=

⎧⎪⎪⎨⎪⎪⎩
�
π

arctan
[

tan
(

π
�

ϕ
)
e− 2πε

�

]
, for ϕ ∈ ]

0, �
2

[
,

�
π

arctan
[

tan
(

π
�

ϕ
)
e− 2πε

�

] + �, for ϕ ∈ ]
�
2 ,�

[
,

ϕ, for ϕ ∈ {
0, �

2 ,�
}
.

(39)

Figures 2(e) and 2(f) show the transfer function as a function of
synaptic increment ε and as a function of phase ϕ, respectively.
The panels illustrate, in particular, that ϕ can assume values in
[0,�], that the neuron cannot be excited suprathresholdly, and
that inputs do not give rise to transitions between the regimes
k = 1 and k = 2. We note that in phase representation, we do
not have to keep track of the type of the last event to execute
the dynamical evolution since this information is contained in
the current phase.

IV. INTERACTION SCENARIOS, ITERATION MAP,
AND PHASE-LOCKING EQUATIONS

A. Interaction scenarios

In this section, we start to consider networks of two neurons,
an excitatory (henceforth E) and an inhibitory (henceforth
I) neuron [cf. Fig. 4(a)]. They represent two synchronized
coupled neuron populations, an excitatory and an inhibitory
population, by one representative neuron for each population.
The couplings between the neuron populations are accounted
for by couplings between the two representative neurons. We
aim at setting up an event-based iteration map in the phase
variables, which fully describes the network dynamics. Its fixed
points and periodic orbits correspond to periodic oscillations
in the phase dynamics (cf., e.g., [70]). To derive the map, we
consider the difference of shifted phases of the two neurons
and describe how it changes when the neurons send and receive
spikes. We focus on regular periodic oscillations, where the E
and I neurons spike once per cycle, argue which fixed points or
periodic orbits in the dynamics correspond to ING and PING
rhythms, and explore when they are generated and how they
give way to each other.

We incorporate couplings from E to I (strength εE→I ), from
I to E (εI→E), and self-inhibition from I to itself (εI→I ). For
simplicity, we do not consider self-excitation from E to itself,
as it is not critically involved in PING or ING rhythms. Five
events can take place in such networks: spiking of the E neuron,
spiking of the I neuron, arrival of a spike from the E neuron (E
spike) at the I neuron, arrival of a spike from the I neuron (I
spike) at the E neuron, and arrival of an I spike at the I neuron.
When an event occurs, the phase difference between the E and
I neurons typically changes. We choose the conduction delay
between spike sending and receiving to be τ for all connections
to reduce the number of free parameters. Further, we assume
that the neurons do not oscillate with too high frequencies
(intrinsic period is longer than 2τ ) to ensure that a spike does
not arrive in the next cycle. Finally, we assume that inhibition
always induces a phase delay in the E neuron. Due to the
finite delay τ , spikes of the two neurons can overlap in the
sense that one neuron spikes, while a spike sent by the other
neuron has not yet arrived. To deal with this, we construct
nonoverlapping interaction scenarios, each containing a series
of events. Each of the scenarios defines a local iteration map.
The local maps can be combined to a global one, G, which acts
on a single variable �ψ , the difference of shifted phases of the
two neurons taking into account the differences in intrinsic
period.

Without any restriction on firing activities of the E and
I neurons, the events can be combinatorially combined in
infinitely many ways, which results in infinitely many in-
teraction scenarios. However, under the assumptions made
in the previous paragraphs, there are five oscillation-relevant
interaction scenarios; cf. the five panels in Fig. 4(b). Each
interaction scenario gives rise to a local iteration map, which
maps the difference of shifted phases �ψ before the scenario
to the difference of shifted phases �ψ̃ after the scenario. In
scenario 1, the I neuron spikes and the spike is received before
any other event, in particular, before the E neuron spikes.
Similarly, in scenario 5 the E neuron spikes and the spike
is received before any other event, in particular, before the I
neuron spikes. In regular rhythms, scenario 1 must be followed
by scenario 5 and vice versa. However, in general periodic
oscillations, scenario 1 is not necessarily tied to scenario 5
and we therefore do not combine them into one scenario.
We note that if scenario 1 follows shortly after scenario 5,
the corresponding rhythm is PING, since the E input nearly
generates the spiking of the I neuron (see Sec. VII for further
discussion). If the time difference is larger, the character of the
rhythm becomes unclear. However, for the considered sets of
parameters around the crossing of pure ING and pure PING
network oscillation frequencies, we find in our simulations that
scenario 1 always follows shortly after scenario 5 in regular
oscillations (less than 0.1T , where T is the network oscillation
period). For simplicity, we thus denote every scenarios 5,1 in
alternation rhythm as PING in the following. We note that
scenario 1 will usually not shortly precede scenario 5, since
the I-spike arrival at the end of scenario 1 has a retarding effect
on E-spike generation, which starts scenario 5. In scenario 2 the
I neuron spikes, followed by the E neuron before the inhibitory
input from the I neuron arrives and can hinder it. Since the I
neuron spikes due to its own drive while the input from the
E neuron arrives shortly thereafter, this scenario gives rise to
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FIG. 4. Network of two neurons and illustrations of the five possible scenarios for interactions between them. Panel (a) displays the neurons
(E: an excitatory neuron, I: an inhibitory neuron) and the couplings between them; their responses to inputs are governed by HE (ϕ, ε) and
HI (ϕ, ε), respectively. Panels (b) show the dynamics of the shifted phases ψE (red) and ψI (blue) in scenarios 1–5. The scenarios are arranged
according to the initial value of the phase difference �ψ [Eq. (42)], starting from large magnitude negative values.

an ING rhythm. In scenario 3, the E neuron spikes, followed
by the I neuron, which spikes before the input from the E
neuron arrives. Although the sequence of spiking of the E and
I neurons is reminiscent of PING, this scenario also gives rise
to an ING rhythm, since the I neuron does not spike due to
excitatory input from the E neuron, but again due to its own
drive. In scenario 4, again first the E neuron spikes, followed
by the I neuron. However, the I neuron now spikes due to the
excitatory input from the E neuron, which lets the I neuron
exceed the spike threshold. This scenario is thus typical for
PING.

B. Phase dynamics

We will now consider the interaction scenarios and their
impact on the phases in detail. To identify quantities related to
the E and I neurons, we endow them with an index E and I : In
particular, ϕE (ϕI ) and �E (�I ) are phase and phase threshold
of the E (I) neuron. To study neurons with different intrinsic
periods (�E �= �I ), we introduce new, shifted phase variables
ψE and ψI , which describe the remaining phases of the E and

I neurons to the threshold,

ψE = ϕE − �E, (40)

ψI = ϕI − �I . (41)

The neurons spike at ψE = 0 and ψI = 0, and the shifted
phases are thereafter reset to −�E and −�I . The remain-
ing times to the next spiking generated by purely intrinsic
dynamics are given by −ψE � 0 and −ψI � 0. We denote
the differences between the new, shifted phases, the standard
phases, and the phase thresholds (periods) of the neurons by

�ψ = ψE − ψI , (42)

�ϕ = ϕE − ϕI , (43)

�� = �E − �I , (44)

respectively. Equations (40) and (41) yield the relation

�ψ = �ϕ − ��. (45)

We will now derive the transition from �ψ before to �ψ̃

after the sequence of interactions for scenarios 1–5 and for
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a scenarios 5,1 pair. Without loss of generality, we assume
t = 0 at the start of each scenario.

C. Scenario 1

Scenario 1, where only the I neuron spikes, occurs for

�ψ � −τ. (46)

The phase ψI of the I neuron (henceforth “I phase”) and the
phase ψE of the E neuron (henceforth “E phase”) at the start
of the interaction sequence at t = 0 are

ψI = 0, (47)

ψE = �ψ. (48)

The interaction sequence in scenario 1 consists of sending and
receiving an I spike. The I neuron is reset after spiking. Thus,
it receives its own spike while having the phases [cf. Eq. (1)]

ϕI (τ ) = τ, (49)

ψI (τ ) = ϕI (τ ) − �I = τ − �I . (50)

After input processing and thus directly at the end of the
interaction sequence, the phases are

ϕ̃I = HI (τ, εI→I ), (51)

ψ̃I = HI (τ, εI→I ) − �I . (52)

The E neuron receives the I spike while having a phase ϕE (0) +
τ = �E + �ψ + τ . The phases of the E neuron directly after
the interaction sequence are thus

ϕ̃E = HE (�E + �ψ + τ, εI→E ), (53)

ψ̃E = ϕ̃E − �E = HE (�E + �ψ + τ, εI→E ) − �E. (54)

Equations (54) and (52) yield the phase difference after the
interaction,

�ψ̃ = HE (�E + �ψ + τ, εI→E ) − HI (τ, εI→I ) − ��︸ ︷︷ ︸
=:G(�ψ )

.

(55)

G maps the difference of the shifted phases before the interac-
tion sequence to the difference of the shifted phases thereafter.

Scenario 1 can only generate a regular oscillation (syn-
chronization between neurons of order 1:1 [71]) together
with scenario 5 (see the related paragraph below). However,
scenario 1 can repeat to give rise to a regular oscillation of
the I neuron, where the E neuron is suppressed. For such an
oscillation, �ψ is given by the solution of

G(�ψ ) = �ψ. (56)

This is because �ψ does not change between scenarios and
there is only one scenario repeating, so �ψ at its beginning and
ending must be the same. If a real-valued solution of Eq. (56)
exists, the system can generate the oscillation. Its frequency is
independent of �ψ and may be computed as follows: The I
neuron spikes at the beginning of the scenario and is reset. The
generated spike arrives at the I neuron at time τ and induces an
instantaneous change of the phase ϕI from τ to HI (τ, εI→I ).

To reach threshold and spike again, the I neuron needs the time
�I − HI (τ, εI→I ). The period of the oscillation is the sum of
the two times and the oscillation frequency is given by

f = [τ + �I − HI (τ, εI→I )]−1. (57)

In a “pure ING” rhythm, the εE→I connection is deleted.
While the E neuron may still spike, it does not influence the I
neuron, such that its dynamics are the same as if the E neuron
were suppressed. We can thus derive the oscillation frequency
of the pure ING rhythm in the same manner as above and it is
also given by Eq. (57).

D. Scenario 2 (a scenario leading to ING)

In scenario 2 the I neuron spikes, followed by the E neuron
within time interval τ ; cf. Fig. 4(b). This happens, if before the
interaction

−τ < �ψ < 0. (58)

The I and E phases at the start of the interaction sequence are

ψI = 0, (59)

ψE = �ψ, (60)

respectively. The interaction sequence consists of sending and
receiving an I and an E spike. First, at t = 0, the I neuron
sends a spike and resets, then the E neuron spikes and resets,
before the I spike arrives. The reset of the I neuron implies
that ϕI equals τ when it receives its own, self-inhibitory spike.
Since the E spike has a conduction delay τ as well, but is sent
−ψE = −�ψ after the I spike, the E spike arrives at the I
neuron at τ − �ψ , i.e., −�ψ after the self-inhibitory spike.
The I phase thus proceeds for −�ψ after the processing of
the I spike before the E spike arrives. This arrival also marks
the end of the interaction sequence. Taken together, the phase
ϕ̃I directly after the interaction sequence (i.e., directly after
receiving the E spike) reads with the interaction function HI

of the I neuron

ϕ̃I = HI (HI (τ, εI→I ) − �ψ, εE→I ), (61)

thus

ψ̃I = ϕ̃I − �I = HI (HI (τ, εI→I ) − �ψ, εE→I ) − �I .

(62)

We may assume HI (HI (τ, εI→I ) − �ψ, εE→I ) < �I ; i.e., the
I neuron does not spike upon arrival of the E spike, since a
regular oscillation where scenario 2 begins again at its very
end would require the E neuron to have an intrinsic period
smaller than or equal to 2τ , which we excluded (the duration of
scenario 2 is at most 2τ and the E neuron would need to reach its
original phase again after its reset despite the inhibitory input).
The E neuron is reset at the time t = −�ψ after the time of
the I neuron’s spike at t = 0. It therefore has the phase τ −
(−�ψ ) = τ + �ψ when the input from the I neuron arrives.
The I spike changes the phase of the E neuron to HE (τ +
�ψ, εI→E ), where HE is the transfer function of the E neuron.
Thereafter, the E neuron evolves freely (since εE→E = 0)
for a time −�ψ until the end of the interaction sequence at
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t = (τ − �ψ )+. The phases then read

ϕ̃E = HE (τ + �ψ, εI→E ) − �ψ, (63)

ψ̃E = ϕ̃E − �E = HE (τ + �ψ, εI→E ) − �ψ − �E. (64)

Taken together,

�ψ̃ = HE (τ + �ψ, εI→E ) − HI (HI (τ, εI→I ) − �ψ, εE→I ) − �ψ − ��︸ ︷︷ ︸ .

=:G(�ψ )

(65)

Our considerations result again in an iteration map G, which maps the difference of the shifted phases before the interaction
sequence to the difference of the shifted phases thereafter.

Scenario 2 can repeat to give rise to regular oscillations. The underlying phase dynamics then satisfy

G(�ψ ) = �ψ. (66)

Solving for �ψ allows us to determine the dynamics. If the E and I neurons are both LIF neurons, Eqs. (66) and (20) yield

�ψ = ln

{
e−τ − e−HLIF (τ,εI→I ;�I )−��

2e−���(�E, εI→E )

±
√

[e−HLIF (τ,εI→I ;�I )−�� − e−τ ]2 + 4e−���(�E, εI→E )�(�I , εE→I )

2e−���(�E, εI→E )

}
− ��, (67)

where �(�, ε) is defined as

�(�, ε) := (
1 − e−�

)
ε. (68)

If the I neuron is the sine neuron, Eq. (39) has to be inserted for
HI in Eq. (65). We note that the I spike arrives at the I neuron
at the phase ϕI = τ , which is in the first branch of the inverse
rise function, ϕI = τ ∈ ]0,�I /2[, because we assume that the
intrinsic period of the neuron is longer than 2τ . The input thus
advances the phase and the first line of Eq. (39) will be used
to write out HI (τ, εI→I ). In contrast, the E spike can arrive at
a phase of the I neuron in the first branch ϕI ∈ ]0,�I /2[ or
in the second branch ϕI ∈ ]�I /2,�I [ or at ϕI = �I /2, so it
either delays or advances the phase or leaves it unchanged and
the first or second or third line of Eq. (39) applies to the outer
HI in HI (HI (τ, εI→I ) − �ψ, εE→I ), depending on the value
of HI (τ, εI→I ) − �ψ .

If a real-valued solution �ψ of Eq. (66) exists, the network
can generate a regular oscillation characterized by repeated
occurrence of scenario 2. The oscillation frequency can be
determined directly from the dynamics of the E neuron in
terms of �ψ . We start at the time when the E neuron spikes
and is reset. After a time τ + �ψ the inhibitory input from
the I neuron arrives; cf. Eqs. (63) and (64) and the paragraph
preceding them. The phase of the E neuron is changed to
HLIF(τ + �ψ, εI→E ; �E ) and it takes the E neuron the time
�E − HLIF(τ + �ψ, εI→E ; �E ) to spike again and complete
the period. Summing the two times up yields the oscillation
period and therewith the oscillation frequency of scenario
2 ING,

f (�ψ ) = [τ + �ψ + �E − HLIF(τ + �ψ, εI→E ; �E )]−1.

(69)

E. Scenario 3 (a scenario leading to ING)

In scenario 3, first the E neuron spikes and then the I neuron,
before the spike from the E neuron arrives. This scenario occurs

for

0 � �ψ < τ. (70)

The E neuron is leading, so the I and E phases at the start of
the interaction sequence read

ψI = −�ψ, (71)

ψE = 0, (72)

respectively. At time t = 0, the E neuron sends its spike and is
reset; at time �ψ , the I neuron sends its spike and is reset. The I
neuron thus receives the E spike while having a phase τ − �ψ

at time τ . Processing of the E spike by the I neuron yields
HI (τ − �ψ, εE→I ) and subsequent time evolution until the
receiving of the I spike by both the E and I neurons adds �ψ to
the phase. We may assume HI (τ − �ψ, εE→I ) + �ψ < �I

and thus exclude direct generation of a spike of the I neuron
because of the arrival of the spike from the E neurons, since
such a spike would break a regular oscillation. Accounting for
the I spike that arrives at the E and I neurons at time τ + �ψ ,
we obtain at the end of the scenario

ϕ̃I = HI (HI (τ − �ψ, εE→I ) + �ψ, εI→I ), (73)

ψ̃I = HI (HI (τ − �ψ, εE→I ) + �ψ, εI→I ) − �I , (74)

and

ϕ̃E = HE (τ + �ψ, εI→E ), (75)

ψ̃E = HE (τ + �ψ, εI→E ) − �E. (76)
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We conclude

�ψ̃ = HE (τ + �ψ, εI→E ) − HI (HI (τ − �ψ, εE→I ) + �ψ, εI→I ) − ��︸ ︷︷ ︸
=:G(�ψ )

. (77)

Scenario 3 can repeat to give rise to regular oscillations. As before, if a real-valued solution of

G(�ψ ) = �ψ (78)

exists, the network can generate the oscillations and the solution �ψ specifies the underlying phase dynamics. The oscillation
frequency can be determined directly from the dynamics of the E neuron in terms of �ψ . At the beginning of the
scenario, the E neuron spikes and at the end the E neuron’s phase is given by Eq. (75). It thus spikes again after a time
�E − HLIF(τ + �ψ, εI→E ; �E ) to complete the oscillation cycle. The period of the oscillation is the sum of the duration
τ + �ψ of the interaction sequence and the time to complete the cycle, such that the oscillation frequency is given by

f (�ψ ) = [τ + �ψ + �E − HLIF(τ + �ψ, εI→E ; �E )]−1. (79)

When the E and I neurons are LIF neurons, Eq. (78) yields

�ψ = ln

{
�(�I , εI→I ) + e−τ+�� − e−τ

2�(�E, εI→E )
±

√
[e−τ − �(�I , εI→I ) − e−τ+��]2 + 4�(�E, εI→E )�(�I , εE→I )e��

2�(�E, εI→E )

}
− ��,

(80)

where �(�, ε) is given by Eq. (68). Placing �ψ given in
Eq. (80) into Eq. (79) yields the frequency of the oscillation.

If the I neuron is the sine neuron, the E spike arrives at
the I neuron at a phase that is always within the first branch
of the inverse rise function, i.e., within ]0,�I /2[, because we
assume that the intrinsic period of the neurons is longer than
2τ . HI (τ − �ψ, εE→I ) in Eq. (77) is then explicitly defined
by the first line of Eq. (39) and the excitatory input delays the
phase of the I neuron. The I spike thus also always arrives at
the I neuron at a phase within the first branch and advances the
phase.

F. Scenario 4 (a scenario leading to PING)

In scenario 4, the E neuron spikes first, followed by the I
neuron, which spikes due to suprathreshold excitatory input
from the E neuron [cf. Fig. 4(b)]. We note that the scenario
does not occur if the I neuron is a sine neuron because sine
neurons cannot be suprathresholdly excited as the required
input strength would be infinite [cf. derivation of Eqs. (38)
and (39)]. In scenario 4 the E neuron spikes at t = 0, so the I
and E phases at the start of the interaction sequence, at t = 0,
read

ψI = −�ψ, (81)

ψE = 0, (82)

respectively. For scenario 4, �ψ must satisfy

τ � �ψ � �I + τ − HI (�I ,−εE→I ). (83)

The left-hand side inequality guarantees that the I neuron
does not spike before the E spike arrives. The right-hand
side inequality guarantees that the I neuron is at the time of
arrival of the excitatory input from the E neuron sufficiently
near the threshold to receive suprathreshold excitation: The E
spike arrives at time t = τ where the I neuron has phase ψI =
−�ψ + τ equivalent to ϕI = �I − �ψ + τ . The condition

that the received input is suprathreshold is then

UI (�I − �ψ + τ ) + εE→I � UI (�I ) = �V,I . (84)

We assume that UI (ϕ) is strictly monotonically increasing in
the relevant range near the threshold, such that U−1

I exists and
is strictly monotonically increasing. We can then apply it to
Eq. (84) maintaining the direction of the inequality:

�I − �ψ + τ � U−1
I (UI (�I ) − εE→I ),

= HI (�I ,−εE→I ). (85)

Isolating �ψ yields

�ψ � �I + τ − HI (�I ,−εE→I ), (86)

which is the right-hand side inequality of Eq. (83).
The scenario now unfolds as follows: The E neuron sends

its spike and resets and the I neuron receives the E spike
at t = τ . The excitatory input brings the I neuron above its
threshold, such that it spikes and resets subsequently. At t = 2τ

both neurons receive the I spike. Due to the suprathreshold
excitation the precise value of the I phase when the E spike
arrives is irrelevant for the final phase. When the I neuron
receives the self-inhibitory I spike at the end of the interaction
sequence its phase is always ϕI = τ , so

ϕ̃I = HI (τ, εI→I ), (87)

ψ̃I = HI (τ, εI→I ) − �I . (88)

Since the E neuron was reset at t = 0+ and evolves freely until
it receives the I spike at t = 2τ ,

ϕ̃E = HE (2τ, εI→E ), (89)

ψ̃E = HE (2τ, εI→E ) − �E. (90)
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The phase difference �ψ̃ after the interaction sequence thus
reads

�ψ̃ = HE (2τ, εI→E ) − HI (τ, εI→I ) − ��︸ ︷︷ ︸
=:G(�ψ )

. (91)

Scenario 4 can also repeat to give rise to regular oscillations.
The underlying phase dynamics then satisfy

G(�ψ ) = �ψ. (92)

Solving for �ψ yields

�ψ = ln

[
e−τ − �(�I , εI→I )

e−2τ − �(�E, εI→E )

]
− �� (93)

(both neurons are LIF neurons for the scenario to occur).
If the solution is real-valued, the network can generate the
oscillation. The oscillation period can be determined directly
from the dynamics of the E neuron. At the beginning of the
scenario, the E neuron sends a spike and is reset. The I spike
arrives after a time 2τ at the E neuron. The E phase at this point
is 2τ , which changes to HE (2τ, εI→E ). The E neuron will thus
spike next after a time �E − HE (2τ, εI→E ). Summing the two
times up yields the oscillation period and the frequency

f = [2τ + �E − HE (2τ, εI→E )]−1. (94)

Inserting Eq. (20) yields

f = {2τ + �E + ln[e−2τ − �(�E, εI→E )}, (95)

where � is defined in Eq. (68). We note that due to the
suprathreshold excitation of the I neuron, the frequency is
independent of �ψ in contrast to oscillations generated by
other scenarios.

G. Scenario 5

Scenario 5 [cf. Fig. 4(b)] is similar to scenario 1, with only
the E neuron spiking. It occurs for

�I + τ − HI (�I ,−εE→I ) < �ψ ; (96)

the phases of the I and E neurons at the start of the interaction
sequence are

ψI = −�ψ, (97)

ψE = 0, (98)

respectively. The E neuron sends a spike at the beginning of
the sequence, which is received by the I neuron at t = τ . Since
the I neuron does not spike, this marks the end of the scenario.
The phase ϕI of the I neuron at receiving is

ϕI = �I − �ψ + τ. (99)

After the receiving, at the end of the scenario the phases read

ϕ̃I = HI (�I − �ψ + τ, εE→I ), (100)

ψ̃I = HI (�I − �ψ + τ, εE→I ) − �I . (101)

The condition �I + τ − HI (�I ,−εE→I ) < �ψ implies
HI (�I − �ψ + τ, εE→I ) < �I , such that the I neuron does
not spike. The E neuron evolves freely after its reset at t = 0+,
so

ϕ̃E = τ, (102)

ψ̃E = τ − �E, (103)

which yields

�ψ̃ = τ − HI (�I + τ − �ψ, εE→I ) − ��︸ ︷︷ ︸
=:G(�ψ )

. (104)

H. Alternation between scenarios 5 and 1

In scenarios 2, 3, and 4 both neurons spike such that regular
oscillations must be generated by repeating a single scenario.
In contrast, scenarios 1 and 5 have to alternate to generate a
regular oscillation. In this section, we derive the phase-locking
equation and the frequency for this type of oscillation. Without
loss of generality, we assume that the spiking pattern begins
with scenario 5 and scenario 1 follows. �ψ at t = 0 has to
satisfy Eq. (96) for scenario 5 to occur. �ψ̃ after scenario 5
given in Eq. (104) has to satisfy Eq. (46) for scenario 1 to occur.
Thus, alternation between scenarios 5 and 1 occurs for

�I + τ − HI (�I ,−εE→I ) < �ψ, (105)

2τ − �� � HI (�I + τ − �ψ, εE→I ). (106)

Composing the maps Eqs. (104) and (55), we obtain

�ψ̃ = HE (�I + 2τ − HI (�I + τ − �ψ, εE→I ), εI→E ) − HI (τ, εI→I ) − ��︸ ︷︷ ︸ .

=:G2(�ψ )

(107)

Note that now we have two iterations of the map G, which
maps the difference of the shifted phases before scenario 5
to the difference between the shifted phases after scenario 1.
To determine the phase underlying the oscillation, we need to
solve

�ψ = G2(�ψ )

for �ψ . If a real-valued solution �ψ exists, the network can
generate the oscillations. Their frequency can be derived in

terms of �ψ : In the initial scenario 5, the E neuron spikes
at time t = 0. The phases ϕE and ϕI at the scenario’s end are
given by Eqs. (100) and (102), respectively. The duration of the
scenario is τ . Initializing scenario 1, the I neuron spikes after
a time �I − HI (�I + τ − �ψ, εE→I ). The output from the I
neuron arrives at the E neuron at the phase ϕE = 2τ + �I −
HI (�I + τ − �ψ, εE→I ) of the E neuron and causes it to jump
to HE (2τ + �I − HI (�I + τ − �ψ, εE→I ), εI→E ). The du-
ration of scenario 1 is τ as well. The E neuron needs a time
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�E − HE (2τ + �I − HI (�I + τ − �ψ, εE→I ), εI→E ) until
it spikes again and completes the oscillation cycle. The period
of the spiking pattern of alternation between scenarios 5 and
1 thus equals 2τ + �E + �I − HI (�I + τ − �ψ, εE→I ) −
HE (2τ + �I − HI (�I + τ − �ψ, εE→I ), εI→E ) and the os-
cillation frequency is

f (�ψ ) =[2τ + �E + �I − HI (�I + τ − �ψ, εE→I )

− HE (2τ + �I − HI (�I + τ

− �ψ, εE→I ), εI→E )]−1. (108)

V. REGULAR OSCILLATIONS

In this section we consider the regular oscillations generated
by the different scenarios. In a comparably straightforward
ING condition, the constant drive to the I neuron largely
exceeds the constant drive to the E neuron. This gives rise to
a periodic spike sequence by the I neuron, which completely
inhibits spiking of the E neuron. This type of ING rhythm
has been described extensively in the literature (cf., e.g.,
[53,54,56]). Alternatively, we can consider networks without
E to I coupling; they generate the same I dynamics even if
the E neuron continues to spike. Similarly well studied (cf.,
e.g., [54,56,72]) is the straightforward PING condition, where
a relatively large drive to the E neuron causes it to spike
periodically. These E spikes generate spikes in the I neuron,
which has small drive and would remain rather inactive without
the input from the E neuron. In this paper we will focus on
situations where ING and PING are in competition since both
the E and I neurons have comparably strong drives and all
relevant couplings are present. However, we will consider
the above-mentioned straightforward “pure ING” and “pure
PING” rhythms for comparison. As described in Sec. IV, there
are 5 possible scenarios for relative spiking of the E and I
neurons. These can—alone or in combination—give rise to
regular oscillations, more precisely to ING and PING rhythms.
Scenarios 2 and 3, in which the I neuron spikes due to its
intrinsic dynamics before the E input arrives, generate an ING
rhythm. Scenario 4, in which the spike of the I neuron is
generated by the input from the E neuron instantaneously upon
its arrival, generates a PING rhythm. An oscillation generated
by scenarios 5 and 1 in alternation should be interpreted as
PING rhythm, if the spike of the I neuron is generated shortly
after the input of the E neuron, i.e., if the input from the E
neuron basically generates the I spike. If the I spike occurs with
larger distance from the E spike, the character of the oscillation
becomes unclear. Because for the considered parameters our
simulations show spiking of the I neuron only shortly after the
E input (see Sec. VII for further discussion), for simplicity we
denote all scenarios 5,1 generated oscillations as PING in the
following.

A. Global iteration map

The local iteration maps derived in Sec. IV are valid for
�ψ within a certain range, where the corresponding scenario
occurs. To analytically identify regular oscillations we gather
the local iteration maps into a global, piecewise defined
iteration map G, which maps the difference of the shifted
phases �ψ to the difference of the shifted phases after the

next occurring interaction scenario. The global iteration map
consists of several sections, since the next interaction scenario
and thus the applicable map depend on the current difference
of the shifted phases [e.g., Fig. 4(b)]. Equations (46), (58),
(70), (83), and (96) specify the ranges, in which the different
scenarios occur, and thus the domains of the individual map
segments constituting G. Equations (55), (65), (77), (91), and
(104) give the corresponding maps. The regular oscillations
are reflected by fixed points of G (scenarios 2, 3, and 4) and
G2 (scenarios 5,1 in alternation).

B. Phased locked oscillations in networks
with type I E and I neurons

Figure 5(a) shows an example of an ING rhythm (scenario
2) in a network of two type I LIF neurons in standard phase
representation (cf. Sec. II). In this scenario, the I neuron (blue
trace) spikes just before spiking of the E neuron (red trace)
such that the inhibition from the I neuron to the E neuron
arrives after spiking of the E neuron. Figure 5(c) shows the
global iteration map G for the same network parameters. The
panel displays the segments of the graph of G in different
colors to highlight the five scenarios [see Fig. 4(b) for the color
labels]. The phase differences �ψ that satisfy G(�ψ ) = �ψ

are fixed points, which may be stable (if the absolute value of
the slope of the iteration map at the fixed point is less than 1) or
unstable (if the absolute value of the slope is larger than 1). The
only fixed point for G in Fig. 5(c) is at the intersection of the
magenta segment (scenario 2) with the diagonal (black, slope
1) near �ψ = −0.2. It is stable. Figure 5(e) shows the iteration
map after two periods, i.e., G2(�ψ ) := G(G(�ψ )). The thick
segment coloring of the curve indicates the scenarios occurring
in the first iteration [same as in panel (c)], while the thin curves
highlight the scenarios in the second iteration. In both maps
Figs. 5(c) and 5(e) the fixed point near �ψ = −0.2 (repeated
scenario 2) is the only one. It is stable and corresponds to the
ING rhythm displayed in panel (a). This fixed point is robust
against variations in the drive to the E and I neurons and to
changes in parameter values for synaptic connectivity.

Figure 5(b) shows an example of a PING rhythm (scenario
4) in a network with two type I LIF neurons in standard phase
representation. The spike from the E neuron causes excitation
of the I neuron above its spiking threshold, followed by a spike
and reset of the I neuron. The global iteration map G is shown
in Fig. 5(d). There is a fixed point near �ψ = 0.6 where the
red segment (scenario 4) crosses the diagonal. The segment
is horizontal (slope zero). This means that the fixed point is
stable and that the entire range of initial phase differences �ψ

between roughly 0.4 and 0.9 is mapped to it exactly. This can
also be directly seen from Eq. (91): The right-hand side is
independent of �ψ , such that the piece of the iteration map
maps any initial relative phase in its domain to the same value.
The second iteration map is shown in Fig. 5(f); we find only
the same fixed point as in the first iteration map.

C. Phased locked oscillations in networks
with type I E and type II I neurons

As explained in Sec. IV F, networks with the type II sine I
neuron cannot generate scenario 4. We therefore illustrate the
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FIG. 5. ING and PING dynamics in a network of two type I (leaky integrate-and-fire) neurons. (a) ING dynamics (scenario 2) in phase
representation. The panel shows ϕE (red) and ϕI (blue) versus time. Spikes are highlighted by upward vertical lines starting at the threshold.
(b) PING dynamics (scenario 4) with suprathreshold excitation. (c) Iteration map G with network parameters as in (a). Pieces of the map
originating from different scenarios are highlighted by different colors [scenario 1: yellow, 2: magenta, 3: cyan, 4: red, 5: green; cf. frame
colors in Fig. 4(b)]. There is a stable fixed point near �ψ = −0.2 corresponding to the ING rhythm in (a). (d) Iteration map G with network
parameters as in (b). The stable fixed point near �ψ = 0.7 corresponds to the PING rhythm in (b). Panels (e) and (f) show the second iteration
maps G2, where the thick coloring of the segments indicates the first iteration also appearing in (c) and (d) and the thin coloring indicates the
second. Parameter settings: εI→E = −0.5, εE→I = 0.1, εI→I = −1.0, and τ = 0.4; the drives to the I and E neurons are 1/�I = 0.495 and
1/�E = 0.43 for (a) and 1/�I = 0.495 and 1/�E = 0.52 for (b).

dynamics of networks with an excitatory type I LIF neuron
and an inhibitory type II sine neuron with different scenarios
than the dynamics of networks with two type I LIF neurons.
We choose a scenario 3 ING rhythm and a scenarios 5,1 PING
rhythm. We note that we observe for the considered parameters
fixed points of G in the domain of scenario 2; the purple curve
(scenario 2) crosses the diagonal near �ψ = −0.2 in Fig. 6(c)
and near �ψ = −0.3 in Fig. 6(d). However, the fixed points
are unstable, as the absolute value of the slope of the iteration
map G is greater than 1 there. Consequently, the fixed points
do not correspond to stable oscillations.

Figure 6(a) shows the ING dynamics generated by scenario
3. While the E neuron spikes just before sending of the I spike,
as argued above this scenario does not belong to the class of
PING, because spiking of the I neuron is not triggered by the
E spike. The global iteration map G is displayed in Fig. 6(c);
it has a stable fixed point near �ψ = 0.2 in the domain of
scenario 3 (intersection of the cyan curve with the diagonal).
The results for the second iteration map are shown in Fig. 6(e)

with the same stable fixed point near �ψ = 0.2 (repeated
scenario 3).

Figure 6(b) shows phase dynamics that are generated by
alternation of scenarios 5 and 1. We can clearly classify this
pattern as PING, since excitation from the E neuron brings the
I neuron close to its threshold, which results in spiking of the I
neuron shortly thereafter. Figure 6(d) depicts the first iteration
map G, which does not have a stable fixed point. In contrast,
the second iteration map G2 [Fig. 6(f)] has two stable fixed
points, reflecting the period 2 orbit that generates the PING
oscillation. They are located near �ψ = 0.6 and �ψ = −0.7
and correspond to alternating scenarios 5 and 1 and the phase
dynamics Fig. 6(b).

VI. PING-ING INTERACTIONS IN NETWORKS
OF TWO OSCILLATORS

We saw in the previous section that for suitable parameter
values, our networks can generate either ING or PING rhythms.
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FIG. 6. ING and PING dynamics in a network of a type I (leaky integrate-and-fire) E neuron and a type II (sine) I neuron. (a) ING (scenario
3) and (b) PING (combination of scenarios 5 and 1) dynamics in phase representation. (c) and (d): Iteration maps G for the same network
parameters as used in (a) and (b), respectively. The stable fixed point near �ψ = 0.2 in (c) corresponds to the ING rhythm in (a). The other
fixed point near �ψ = −0.2 is unstable and corresponds to an unstable scenario 2 ING rhythm. (d) There is no fixed point of the first iteration
map G corresponding to the PING dynamics shown in panel (b), since they consist of a sequence of two scenarios and thus appear as a period
2 orbit in the iterations of G. The unstable fixed point near �ψ = −0.3 in (d) corresponds to an unstable scenario 2 ING rhythm. Pieces of the
map generated by different scenarios are highlighted by different colors as in Fig. 5, panels (c) and (d). (e) and (f): The second iteration maps
G2. The period 2 orbit of the PING rhythm in (b) is reflected by two fixed points in the second iteration map (f), in the domains of scenarios
1 and 5. Parameter settings: εI→E = −0.2, εE→I = 0.5, εI→I = −0.42, and τ = 0.4; the drives to the I and E neurons are 1/�I = 0.5 and
1/�E = 0.63 for (a) and 1/�I = 0.5 and 1/�E = 0.85 for (b).

In the following, we analyze how PING and ING rhythms
compete to generate the network oscillation and how networks
may switch from one rhythm to another when the values of the
external drives change. We use “pure ING” and “pure PING”
rhythms generated by reduced two-neuron networks, which do
not allow for the generation of the other rhythm as reference.
This allows us to better understand the competition of PING
and ING rhythms in the full network, which could in principle
generate both rhythms. We express the external drive given to
each neuron both for the LIF and sine neuron by the inverse of
the period, i.e., by 1/�E and 1/�I , since—in contrast to the
LIF neuron—the sine neuron does not have an explicit external
driving current variable.

A. Pure PING and pure ING networks

In “pure ING” networks the only excitatory input to the I
neuron is the external drive, since the synaptic strength of the
projection from the E to the I neuron is set to zero (cf. also
[58]). The frequency of the pure ING rhythm is determined

by the I drive and the self-inhibitory input with strength εI→I

arriving a time τ after reset of the I neuron; the frequency is
explicitly given by Eq. (57).

In “pure PING” networks, the I drive is sufficiently small
such that the I neuron has a much lower intrinsic period than the
E neuron. The circuit has a sufficiently strong projection from
the E to the I neuron that each E spike brings the membrane
potential of the I neuron above the threshold and elicits a spike
just as in scenario 4. The frequency of the pure PING rhythm
is determined by the E drive and the inhibitory input εI→E that
arrives after an interval 2τ after reset of the E neuron. The
frequency is explicitly given by Eq. (95).

B. Analysis of PING-ING interactions in networks
with type I E and I neurons

We first study interactions between PING and ING rhythms
for networks with two type I LIF neurons. The drives to the
I neuron (I drive expressed by 1/�I ) and to the E neuron (E
drive expressed by 1/�E) vary; see Fig. 7. The blue surface
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FIG. 7. Transitions between PING and ING in a network of two type I (leaky integrate-and-fire) neurons. The blue and red surfaces or
curves show the oscillation frequencies of pure ING and pure PING rhythms, respectively. The green surfaces or curves show the frequency
of oscillations in the full two-neuron network. Panel (a) displays the frequency of network oscillations versus the E and I drives (measured by
intrinsic period−1). Termination of a surface in (a) occurs at parameters 1/�E and 1/�I where the highlighted network type does not yield any
regular rhythm anymore. Panels (b) and (c) show cross sections of the surfaces given in (a). The drive at the I neuron (b) or at the E neuron (c)
increases from left to right while the other drive is kept fixed. Light green curves show the frequency of the full network ING rhythm while dark
green curves show the frequency of the full network PING rhythm. Parameter settings: εI→E = −0.5, εE→I = 0.1, εI→I = −1.0, and τ = 0.4;
in (b) the drive to the E neuron is 1/�E = 0.495 and in (c) the drive to the I neuron is 1/�I = 0.495.

in Fig. 7(a) shows the frequency of rhythmic spiking of the
I neuron in pure ING networks. The red surface in Fig. 7(a)
shows the frequency of rhythmic spiking of the E neuron in
pure PING networks as a function of the E drive only. The
green surface in Fig. 7(a) shows the frequency of rhythmic
spiking for the full network schematically drawn in Fig. 4(a).
The frequencies of the pure ING (blue surface) and of the full
network (green surface) are not shown for some combinations
of 1/�I and 1/�E ; these combinations do not elicit regular
rhythms for scenarios 2, 3, and 4 and alternation of scenarios
5 and 1 for the displayed network type. Regular ING rhythms
with suppressed E neuron (scenario 1 alone) are not generated
either. The intersection of the surfaces in Fig. 7(a) with a plane
of constant E drive (1/�E = 0.495) is shown in Fig. 7(b) and
with a plane of constant I drive (1/�I = 0.495) in Fig. 7(c).

Figure 7(b) shows that for the range of comparably small I
drive 1/�I the rhythm of the full network is PING [scenario

4; dark green line in Fig. 7(b)]. The spiking pattern of the
rhythm is the same as the spiking pattern of the pure PING
rhythm; cf. Fig. 5(b) for an example. The red line (pure PING)
and the green line (PING for the full network) in Fig. 7(b)
thus overlap. The rhythm of the full network is PING, because
the E neuron recovers from the inhibition sooner than the I
neuron does and the E spike elicits spiking of the I neuron
at its arrival. This also implies that when the full network
generates PING, its frequency is higher than the frequency of
full network ING; otherwise the I neuron will spike by its own
dynamics and consequently the full network generates ING.
Equation (95) shows that the frequency of this PING rhythm
(and the PING fixed point of the iteration map) does not depend
on the I drive 1/�I . When the I drive increases, there is a
bifurcation and a (stable) scenario 3 ING solution appears near
1/�I = 0.52 (light green curve): This ING solution lasts till
near 1/�I = 0.56, after which it switches to (stable) scenario 2
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ING. The frequency of the full-network ING rhythm increases
with 1/�I . It stays higher than the frequency of pure ING
because the nonzero εE→I provides an additional excitatory
input to the I neuron and increases the frequency of the
rhythm. Interestingly, we find coexistence of PING and ING
and bistability; cf. the range 0.52 � 1/�I � 0.53 in Fig. 7(b).
As 1/�I increases further, the PING rhythm (dark green line)
vanishes. If the network was oscillating in PING mode before,
it will change to an ING rhythm and the oscillation frequency
will increase in a jumplike manner.

The reason for the vanishing of the PING mode is as
follows: With increasing I drive, |ψI | (the phase distance to
the threshold �I ) at arrival of the E spike becomes smaller
until the I neuron reaches �I by its intrinsic dynamics at
E-spike arrival. Beyond this point, there is no PING rhythm,
as the I neuron spikes before E-spike arrival. The bifurcation
point is at the crossing of the pure PING line (red) and the
pure ING curve (blue): Since the I neuron reaches threshold
from its own drive simultaneously with the E-spike arrival,
the value of εE→I becomes irrelevant. At this bifurcation
point, any input will generate suprathreshold excitation and
be completely canceled due to the I neuron’s reset such that
also the oscillation frequencies of pure PING (large εE→I ) and
pure ING (εE→I = 0) agree.

Taken together, we observe that the PING frequency is
insensitive to changes in 1/�I , while the ING frequency
increases with the drive. The PING rhythm vanishes when its
frequency drops below that of the pure ING rhythm and the
ING rhythm vanishes when its frequency drops below that of
the PING rhythm. Since the ING rhythm of the full network
has higher frequency than the pure ING rhythm, we have a
region of coexistence. When the full network generates ING, its
frequency is always higher than the frequency of full network
PING. This is due to the fact that in ING the inhibition arrives
at an E phase less than 2τ and thus [Fig. 2(c)] has a smaller
phase-delaying impact than in PING, where it arrives at 2τ or
later. We note that the slope of the light green curve is larger
than the slope of the dark green line. In other words, the ING
frequency is more sensitive to a change of the I drive 1/�I

than the insensitive PING frequency.
Figure 7(c) shows the frequency of rhythms as we fix 1/�I

and vary 1/�E . For small E drive [e.g., 0.42 � 1/�E � 0.46
in Fig. 7(c)], the ING rhythm governs the dynamics of the
full network: With our network parameters, it is the scenario 2
ING rhythm for 0.42 � 1/�E � 0.44 and the scenario 3 ING
rhythm for 0.44 � 1/�E � 0.46 (present for 0.44 � 1/�E �
0.47). As in Fig. 7(b), in Fig. 7(c) the full network ING rhythm
(εE→I > 0, light green) has a higher frequency than the pure
ING rhythm (εE→I = 0, blue line) since the nonzero excitatory
input from the E neuron advances the spiking of the I neuron.
The higher the E drive, the earlier does the E spike arrive in the
period of the I neuron and the smaller is its excitatory effect
due to the I neuron’s PRC and transfer function [Fig. 2(c)].
The frequency of the ING rhythm thus slightly decreases with
increasing E drive.

The absence of a PING rhythm for small E drive, where the
pure ING frequency is higher than the pure PING frequency,
can be understood from Eqs. (95) and (57), which specify
the pure PING and pure ING frequencies, respectively. Equa-
tion (95) implies that the pure PING frequency is determined by

the interval between spikes of the E neuron, which is subject
to the inhibition εI→E arriving at E phase 2τ . According to
Eq. (57), the pure ING frequency is determined by the interval
between spikes of the I neuron subject to the inhibition εI→I .
In a full network generating PING, the inhibition arrives at
E phase 2τ or later, if the excitation of the I neuron is not
suprathreshold. Since the delaying effect of the inhibition
increases the larger the E phase is at its arrival, the spiking
interval of the full network E neuron is larger or equal to that
in the pure PING network. For the full network to generate
PING, the spiking interval of the E neuron subject to inhibition
εI→E must at least be shorter than the spiking interval of the
I neuron subject to inhibition εI→I (the spiking interval in the
pure ING network), since the additionally arriving excitation
εE→I further decreases the spike interval of the I neuron.
When already the frequency of pure ING is higher than that of
pure PING, this necessary condition is violated and the PING
rhythm is excluded.

As the E drive increases, the pure PING frequency starts
to exceed the pure ING frequency [in Fig. 7(c) near 1/�E =
0.46] and the full network becomes able to generate a PING
rhythm. In the subsequent parameter region, the full network
can generate either PING or ING depending on the initial state
of the neurons. As the E drive increases further, the ING rhythm
disappears [near 1/�E = 0.47 in Fig. 7(c)]. This is because the
phase advance of the I neuron due to the E spike becomes too
small compared to the decreasing interval between spikes of
the E neuron [Fig. 7(c): the light green curve meets the dark
green one]. We note that the (negative) slope of the light green
curve is smaller in absolute value than the (positive) slope of
the dark green curve. In other words, the PING frequency is
more sensitive to a change of the E drive 1/�E than the ING
frequency.

C. Analysis of PING-ING interactions in networks
with type I E and type II I neurons

We will now analyze interactions between PING and ING
rhythms for networks with type I LIF E and type II sine I
neurons for varying I and E drives; see Fig. 8. As in Fig. 7,
the blue surface or curves in Fig. 8 represent the frequency of
the pure ING rhythm, red stands for the pure PING rhythm,
and green for full network rhythms. The frequency of the pure
ING rhythm is again given by Eq. (57). The pure PING rhythm
assumes spiking of the I neuron at time τ after spiking of the
E neuron. The frequency of the pure PING rhythm is thus
again given by Eq. (95). As mentioned above (Sec. III B), the
sine I neuron without an external constant drive cannot reach
the threshold for finite value of εE→I ; it can nevertheless get
close, such that the temporal distance between E and I spike
is approximately τ . We need to keep this point in mind when
comparing pure PING and full network PING.

In contrast to the case of networks with type I E and I
neurons, the full network with type I E and type II I neurons
generates a stable oscillation with a frequency between those of
pure ING and pure PING rhythms. Furthermore, our analysis
reveals an unstable oscillation (scenario 2) generated by the
full network, with a frequency that is much higher than the
stable one for our parameters. For smaller I drive [lower
1/�I ; see Fig. 8(b)] the full network generates a PING rhythm
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FIG. 8. Transitions between PING and ING in a network of a type I (leaky integrate-and-fire) E neuron and a type II (sine) I neuron. The
blue and red surfaces or curves show the oscillation frequencies of pure ING and pure PING rhythms, respectively. The green surfaces or curves
show the frequency of oscillations in the full two-neuron network. Panel (a) displays the frequency of network oscillations versus the E and I
drives (measured by intrinsic period−1). Panels (b) and (c) show cross sections of the surfaces given in (a): The drive of the I neuron (b) or of
the E neuron (c) increases from left to right while the other drive is kept fixed. The light green (b) or the dark green (c) curves are continued by
black dashed lines with the curves’ average slope to allow a better comparison to the slopes of the other curves. The light green surface with
comparably high frequencies in (a) and the related light green curves in (b) and (c) correspond to a scenario 2 unstable ING rhythm, while the
light green surface and curves with lower frequency correspond to a scenario 3 stable ING rhythm. Dark green shows the frequency of the full
network PING rhythm (scenarios 5, 1 in alternation). Parameter settings: εI→E = −0.2, εE→I = 0.5, εI→I = −0.42, and τ = 0.4; in (b) the
drive to the E neuron is 1/�E = 0.74 and in (c) the drive to the I neuron is 1/�I = 0.5.

[alternating scenarios 5 and 1; dark green curve in Fig. 8(b)].
Its frequency is higher than the pure ING frequency; this is
due to the fact that in the PING rhythm the E spike arrives
in the second part of period of the sine neuron, i.e., between
]�I /2,�I [, and it thus has an excitatory effect. Since the E
spike brings the I neuron only close to its threshold �I , the
next spike time still depends on the I drive: The larger the
drive, the shorter the time that the I neuron needs to reach the
threshold after the E-spike arrival. Since this time is always at
least slightly larger than zero, the full network PING frequency
is lower than the pure PING frequency.

As we increase the I drive further, the full network switches
from operating in PING mode to ING mode [scenario 3; light
green curve in Fig. 8(b); the switch occurs near 1/�I = 0.5].

As for networks of two type I neurons [cf. Fig. 7(b)], the
rate of change of ING frequency is higher than that of PING
frequency; the ING frequency is more sensitive to a change
of the I drive 1/�I than the PING frequency [compare the
dark green curve with the black dashed line in Fig. 8(b)]. The
ING rhythm [light green curve in Fig. 8(b)] appears, in contrast
to the case of two type I neurons, at the same point where the
PING rhythm vanishes. The latter happens where the frequency
of the pure ING rhythm becomes higher than that of the pure
PING rhythm. This can be understood as in the case of two
type I neurons, since the excitatory input in the full network
PING also advances the phase of the type II I neuron. The full
network ING frequency is smaller than the pure ING frequency
because in the full network there is an additional input from the
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E neuron. This causes a phase delay since the E spike arrives
at an early phase in the spiking cycle of the type II sine neuron.

The frequency of the full network at the transition point
where it switches from PING to ING is the same as the
intersecting pure ING (blue curve) and pure PING (red line)
frequencies. This is because at the transition point, the I neuron
spikes just before the E spike arrives and the E spike meets the I
neuron at a phase near zero. It therefore has a negligible effect
on the phase of the sine I neuron [cf. Fig. 1(d)] and the full
network behaves like the reduced ING network. Further, the I
neuron’s spiking and thus its effect on the E neuron is the same
as in the pure PING network. So the frequencies of the full and
the pure PING network are also the same.

For decreased E drive [see Fig. 8(c)], the I drive imposes an
ING rhythm, which governs the dynamics of the full network,
just as for networks of two type I neurons. However, as in
the case of large I drive [Fig. 8(b)], for the network with
the type II I neuron, we observe that the ING frequency is
lower than the pure ING frequency since the E spike has a
phase-delaying effect on the I neuron. The full network ING
frequency is higher than the pure PING frequency since the
I spike in the full network ING rhythm always arrives at an
E phase less than 2τ and it thus has less inhibitory effect.
When the E drive increases, there is again a transition without
a coexistence region. Beyond it, the full network assumes a
PING rhythm (alternation of scenarios 5 and 1). The slope of
the light green curve (ING frequency) is lower than that of
the dark green curve (PING frequency) [cf. light green curve
and black dashed line in Fig. 8(c)]; that is, as for networks of
two type I neurons, the PING frequency is more sensitive to
a change of the E drive 1/�E than the ING frequency. Near
the right-hand side of the transition point, the E spike arrives
when the I neuron is near threshold. The E spike therefore
brings the I neuron’s phase very close to the phase threshold
�I , which explains why the frequency of the PING rhythm is
close to the frequency of the pure PING rhythm. The PING
frequency always lies below the pure PING frequency since it
still takes some time for the I neuron to reach threshold after
input from the E neuron. Thus, its inhibition does not arrive
at the E neuron’s phase 2τ but later and has a larger delaying
impact.

VII. SUMMARY AND DISCUSSION

In this study, we investigate the interaction between ING
and PING oscillations using an analytical approach for a simple
neuronal network. In this network, two neural oscillators, an
excitatory (E) and an inhibitory (I) neuron, are reciprocally
connected and, additionally, the I neuron has self-inhibition.
The E neuron mimics a synchronized group of pyramidal
cells, while the I neuron represents a synchronized group of
interneurons.

An important aspect of this model is the type of neurons
(type I versus type II). Most results on the type of firing and on
the PRC of pyramidal cells in the literature suggest that pyrami-
dal cells in different brain areas belong to the category of type
I neurons [73–75] (see, however, [76–78]). We adopt this view
and model the E neuron as a (type I) leaky integrate-and-fire
neuron. We review the derivation of the phase representation
for this model, in particular, the derivation of the transfer

function H , which maps the phase of the neuronal oscillator
before synaptic input to the phase after synaptic input. A full,
general derivation of the phase representation for type I neurons
was provided in a previous study (see [65]). The appropriate
choice of interneuron phase response curve type is less clear.
Oscillation-relevant interneurons can be either of type I [79]
or type II [62] depending on the brain area. Therefore, we
consider both options in our study: We model the I neuron as
a type I leaky integrate-and-fire neuron or as a type II sine
neuron. The interactions between the neurons are modeled by
Dirac delta pulses, which induce a jump in the voltage of the
receiving neuron by an amount that is described by the strength
of the synaptic connection and independently of the voltage. In
the present study we show how to derive the phase dynamics
for such neural oscillators, if they have an iPRC of type II. In
particular, for our type II sine I neuron, we derive the voltage
dynamics and the full phase representation from its iPRC.
The chosen iPRC shows a change from negative to positive as
typical for type II neurons. Concretely, we use the (inverted)
sine iPRC of a normal form oscillator of the Hopf bifurcation
(cf. [68]). Using the phase description we can provide a full
theoretical analysis of the dynamics of a network model with
an E neuron and an I neuron of arbitrary type and arbitrary
details of the dynamics.

Our results are also relevant for single oscillator studies,
since they allow us to investigate how different an oscillator
model is from a model expressible by one-dimensional voltage
dynamics with voltage-independent inputs. As an example,
we consider the classical radial isochron clock [1,5,80]. In
this model, a point circulates on its attractor cycle in the
x, y plane. Synaptic inputs cause deviations from the stable
attractor cycle. Assuming that the radial deflection after an
input quickly relaxes back while the change in the angular
variable remains, this model reduces to a phase oscillator. For
infinitesimal inputs, the resulting phase response is given by
a sine iPRC. However, comparing the PRC with that in our
study reveals a difference in the series expansion of the synaptic
strength ε from second order on; see the Appendix.

To theoretically investigate oscillations in our two-neuron
networks, we first provide a basic framework by deriving the
five relevant scenarios for the change of phase differences upon
interactions of the E and I neurons (see Fig. 4). This allows us
to construct various modes of synchronization [71] between
the two oscillators by concatenating and repeating scenarios
and determining whether this results in periodic dynamics. For
example, scenarios 5 and 1 can be concatenated in alternation
to obtain 1:1 synchronization between the E and I oscillators.
For our study, we focus on 1:1 synchronization because both
the population of interneurons and the population of pyramidal
cells display increased activity only once per gamma cycle
[81,82].

When our two-neuron network operates in PING mode, the
output of the E neuron elicits the spiking of the I neuron.
This happens in scenario 4 and it can happen in the mode
of alternating scenarios 5 and 1. The interpretation of a mode
with repeating scenario 4 as PING is straightforward, due to
the suprathreshold excitation of the I neuron. In contrast, the
interpretation of modes of alternating scenarios 5,1 requires
some caution. Such modes should be interpreted as PING,
if the E neuron nearly excites the I neuron to spike, i.e., if
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the E neuron’s spike brings the I neuron so close to threshold
that it spikes shortly thereafter. In the considered parameter
region around the crossing of the pure PING and the pure
ING network oscillation frequencies, this is the case in all
our simulations of scenarios 5,1 rhythms: The I neuron spikes
less than 0.1T after the E spike arrives, where T is the
period of the rhythm. For simplicity, we therefore refer to
the scenarios 5,1 rhythm as PING throughout the present
article. A comparison with experimental findings corroborates
our interpretation: Ref. [83] demonstrates that in PING the
discharge probability of the CA3 pyramidal cells in the gamma
cycle (T ≈ 18.9 ms) reaches its maximum 3.1 ms before the
maximal discharge probability of the CA3 interneurons. The
latency of a monosynaptic connection is approximately 1.3
ms [84,101], so the discharge probability of the interneurons
reaches a maximum 1.8 ms (=3.1 ms − 1.3 ms) after the arrival
of the inputs. This temporal difference is about (1.8/18.9) ≈
0.1 of the oscillation period T .

We find that when the full network operates in PING mode,
its frequency is more sensitive to changes of the external drive
to the E neuron than to changes of the external drive to the I
neuron [see Fig. 7, panels (b) and (c), and Fig. 8, panels (b)
and (c)]. When the full network operates in ING mode, the
frequency more strongly depends on the external current given
to the I neuron.

Our theoretical study also shows that the qualitative relation
of the frequency of the full network and the frequencies of pure
ING oscillations (εE→I = 0) and of pure PING oscillations (no
or negligible I drive) depends on whether the I neuron belongs
to the category of type I or type II. When the I neuron is a type
I LIF neuron, the frequency of the full network is above the
pure ING and pure PING frequencies or equals the pure PING
frequency. The former can be understood from the fact that the
excitatory output from the E neuron to the I neuron advances
the phase of the type I I neuron and therefore shortens the cycle
and increases the frequency. In contrast, when the I neuron
is a type II sine neuron, the frequency of the full network is
between the frequencies of pure ING and pure PING. This can
be understood from the fact that the excitatory input from the
E neuron delays the phase of the I neuron when the spike from
the E neuron arrives early in the phase of the I neuron. This
increases the cycle duration and thus decreases the frequency.

Throughout the article, the type I neurons in our networks
are LIF neurons. We have likewise explored networks with two
type I quadratic integrate-and-fire (QIF) neurons [5] in phase
representation (cf. Sec. II). In these networks with the QIF
E neuron and QIF I neuron, we observe the same qualitative
frequency relations as in networks of two LIF neurons, if the
pure ING frequency is higher than the pure PING frequency:
The frequency of the full network is slightly above the pure
ING frequency. However, when the pure PING frequency is
higher than the pure ING frequency, the full network frequency
of coupled QIF neurons is below the pure PING frequency.
This is because in the pure PING rhythm we assume that the
excitatory input excites the I neuron to spike immediately at
its arrival. For a QIF I neuron, this would require an infinitely
large excitatory coupling strength. Since in the full network
the coupling strengths are finite, the QIF I neuron cannot reach
threshold instantaneously at spike arrival, in contrast to a LIF
neuron. Consequently, the QIF I neuron spikes later in the

cycle and the full network frequency is lower than the pure
PING frequency.

When we compare the results of the two-neuron networks,
which contain two LIF or one LIF and one sine neuron, to
the results from simulations in a large network of biologically
more detailed pyramidal cells and interneurons, the latter show
similar qualitative relations [58]: The frequency of the full
network with type I interneurons is slightly above the frequency
of pure ING and of pure PING, while the frequency of the full
network with type II interneurons can be in between. However,
the full network PING frequency of the two-neuron network
with the type II I neuron is intermediate between the pure ING
and pure PING frequencies [cf. Fig. 8, panels (b) and (c)], while
it is slightly above for the large networks (cf. Fig. 7, panels (b)
and (c), in Ref. [58]). The key to understanding this discrepancy
is the net value of the excitatory output from the E neuron (or
from the population of the pyramidal cells) to the I neuron
(or to the population of the interneurons). In the pure PING
two-neuron network the coupling is assumed to be so strong
that the E spike excites the I neuron to spike immediately,
while in the full two-neuron network the I neuron’s phase
still needs to slightly increase to reach threshold. This causes
the frequency of pure PING to be higher than that of the full
network. However, the net values of the excitatory outputs in
both large-network topologies are approximately the same.
With additional drive to the interneurons in the full large
network, its frequency is thus higher than that of the pure PING
large network. Another discrepancy between the results for
the two-neuron network and the results for the large networks
in Ref. [58] concerns network bistability. The phase iteration
map of two-neuron networks with type I LIF E and I neurons
has two stable fixed points (one corresponding to ING and one
corresponding to PING) for parameter values near the crossing
of the pure ING and pure PING frequencies, giving rise to
bistability between ING and PING; see Fig. 7, panels (b) and
(c). In contrast, the simulations of the large network reveal
only one oscillation frequency near the crossing. Presumably,
this is due to noise added to the input to the neurons in
the large network. This gives rise to slightly different firing
frequencies of the network’s neurons, which may together
obscure the bistability into a gradual transition between ING
and PING. A second fixed point also occurs for the phase
iteration map of the two-neuron network with the type II I
neuron; cf. Figs. 6 and 8. It is unstable and corresponds to
an unstable oscillation with higher frequency. In contrast, the
large network simulations again reveal only one frequency. An
obvious explanation is that the employed simulations cannot
generate unstable oscillations due to noise. Although the results
based on the two-neuron networks and the large networks
[58] yield differences in some detail, the general picture is
similar. In particular, the stable rhythm of the full network is
usually realized by the one of ING or PING that generates
the higher frequency. That is, the mechanism that generates
the higher frequency “wins” in the sense that it determines the
frequency of the full network. In the two-neuron network this
is also the rhythm that generates the higher frequency in the
corresponding pure networks. The rough explanation is that the
higher frequency generating mechanism absorbs the resources
necessary to maintain a rhythm: A neuron will generally spike
earlier due to recruitment into a higher frequency rhythm and is
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then not able to spike again to contribute to the lower frequency
one. However, our analytical approaches in the present article
allow for more detailed analyses; see Sec. VI.

Most studies with a large impact on the field using two-
neuron (oscillator) networks were conducted either for purely
inhibitory networks [85–92] or purely excitatory networks
[85,90,92–96]. Studies for two-neuron networks, in which
one is excitatory and another is inhibitory, are less common
and many of them are in different contexts [42,74,97–99].
Börgers and Kopell [56] presented a study related to ours, but
without coupling delays and assuming that εE→I is always
suprathreshold. The article reports that when the intrinsic
frequency of the I neuron is higher than the frequency of
the PING network rhythm, the latter is destroyed via phase
walk-through, which results in an irregular oscillation (the I
neuron spikes more than once per cycle).

Our study considers both type I and type II I oscillators
as well as a finite coupling delay. The consideration of
the frequency aspect yields an intriguing dependence of the
frequency changes when changing external drive, on the phase
response curve of the oscillators as presented in Sec. VI.

Unlike other methods for studying the two-neuron network,
our method does not focus on determining the mode of the
phase locking directly but based on fundamental interaction
scenarios, which can be used to construct different modes of
locking under the assumption that the phase difference between
the two oscillators changes only when either an input arrives
or a phase is reset; the assumption is valid in our study because
the connections are modeled by Dirac delta pulses. By this, we
consider fast postsynaptic current (PSC) kinetics that ignores
a PSC’s rise and decay. Van Vreeswijk et al. [85] and others
[100] have shown that the duration of the PSCs relative to the
interval of spiking is important. Since the time constant of the
synapses relevant to gamma oscillations is on the order of a few
milliseconds [52,101–103], which is short against the period
of gamma oscillations (around 20 ms), modeling the PSCs as
delta pulses seems reasonable. The assumption that the choice
of Dirac delta pulses does not affect the central conclusions
of our study is also corroborated by our comparisons with
biologically more detailed, larger scale networks [58].

The results of this study are relevant for in vitro and in
vivo experimental studies, since they imply that a seemingly
straightforward interpretation of an observed rhythm as ING
or PING has to be done with care. Our findings highlight
that frequent firing of the pyramidal cells does not necessarily
imply that the network is dominated by PING. Similar spike
patterns can be generated both by ING and by PING rhythms.
In particular, the network can generate ING rhythms, where
the pyramidal cells spike before the interneurons (scenario 3).

Various experiments show shifts of the frequency generated
by cortical circuits when the influence of the excitatory input
on the interneurons decreases due to optogenetic silencing of
the local pyramidal cells in vivo [104] or applying an antagonist
of fast excitatory synaptic coupling in vitro [105]. One might
guess that if the cortical circuits produce oscillations whose
frequency changes when one decreases the local excitatory
input, the oscillations are likely to be PING because the
oscillations depend on the excitation-inhibition loop. However,
our studies in the two-neuron networks and in larger networks
[58] suggest that knowing only that the frequency changes

when removing the local E to I inputs εE→I (by silencing
pyramidal cells or disabling fast excitatory synaptic inputs) is
not enough to determine whether the cortical circuits operate
in either PING or ING mode. We also need to know the type of
the interneurons and the direction of change of the frequency
to gain information about the operation mode.

Overall, we provide a mathematical framework to construct
phase oscillators that can be described by a single voltage
variable with voltage-independent input, based on basically
any smooth infinitesimal phase response curve. Furthermore,
we construct iteration maps characterizing the dynamics of
two-neuron networks. We use them to analyze how regular
PING and ING oscillations in the two-neuron networks inter-
act. Our results show that the winning mechanism (either PING
or ING) is the one with the higher frequency in the full and
pure networks. Except for possible small coexistence regions
it will suppress the other one since it absorbs all “resources”
(neurons ready to spike) available to maintain a rhythm.
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APPENDIX: COMPARISON OF OUR SINE NEURON WITH
THE RADIAL ISOCHRON CLOCK

The radial isochron clock (RIC) or Andronov-Hopf oscilla-
tor (e.g., [1,5,80]) is the normal form of oscillating systems near
Hopf bifurcations. It is a two-dimensional dynamical system
with the unit cycle as attractor. The dynamical equations for
the radial and angular state variables are

dr

dt
= �r (1 − r2), (A1)

dϕ

dt
= 1, (A2)

with sufficiently large parameter � such that deflections in the
radial direction are quickly eliminated and input pulses meet
the system practically on the limit cycle. In contrast, angular
perturbations remain; see Eq. (A2). The oscillator spikes and
is reset when its angle reaches � = 2π from below. One can
now posit that inputs cause a deflection into the direction of
the x coordinate,[

cos(ϕ)
sin(ϕ)

]
→

[
cos(ϕ) + ε

sin(ϕ)

]
; (A3)

see [5,80]. Note that by this definition an input cannot cause
the oscillator to cross threshold, as it changes the state parallel
to it. Assuming that we are and stay in the first quadrant,
the angle changes as ϕ → arctan( sin(ϕ)

ε+cos(ϕ) ). Since the angular
deflection is conserved while the radial variable relaxes to one,
the phase after the input is HRIC(ϕ, ε) = arctan( sin(ϕ)

ε+cos(ϕ) ). If
we do not stay within the first quadrant, we need to extend the
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definition,

HRIC(ϕ, ε) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
arctan

(
sin(ϕ)

ε+cos(ϕ)

)
, for ϕ ∈ ]0, π [ and cos(ϕ) + ε > 0,

arctan
(

sin(ϕ)
ε+cos(ϕ)

)
+ π, for cos(ϕ) + ε < 0,

arctan
(

sin(ϕ)
ε+cos(ϕ)

)
+ 2π, for ϕ ∈ ]π, 2π [ and cos(ϕ) + ε > 0,

(A4)

with the appropriate continuations at the borders. The first
derivative with respect to ε reads

∂HRIC(ϕ, ε)

∂ε
= − sin(ϕ)

1 + 2ε cos(ϕ) + ε2
. (A5)

Equation (A5) specifies in linear approximation the change of
the current phase HRIC(ϕ, ε), in terms of the already received
input ε and the initial phase ϕ. This is conceptually related to
Eq. (23). It is distinct from a differential equation for the current
phase, which specifies the change of the current phase in terms
of the current phase [like Eq. (31)] and, if nonautonomous (see
below), the independent variable, i.e., where the right-hand side
would be a function of HRIC(ϕ, ε) and ε. For ε = 0 Eq. (A5)
yields the iPRC. Since

∂HRIC(ϕ, ε)

∂ε

∣∣∣∣
ε=0

= − sin(ϕ), (A6)

the neuron is a sine neuron. It is, however, not the same sine
neuron as ours; see Sec. III B. The transfer function of our
sine neuron can be obtained via the autonomous differential
equation

∂Hsine(ϕ, ε)

∂ε
= Z(Hsine(ϕ, ε)) = − sin[Hsine(ϕ, ε)],

(A7)

with initial condition Hsine(ϕ, 0) = ϕ; cf. Eq. (31). The right-
hand side of the equation does not depend on ε and is
therefore uniquely specified by the iPRC. Solving Eq. (A7)
using separation of variables yields for a neuron with period
� = 2π

Hsine(ϕ, ε)

=
{

2 arctan
[
tan

(
ϕ

2

)
e−ε

]
, for ϕ ∈ ]0, π [,

2 arctan
[
tan

(
ϕ

2

)
e−ε

] + 2π, for ϕ ∈ ]π, 2π [,
(A8)

with appropriate continuations; cf. Eq. (39). The first derivative
[e.g., computed from Eq. (A7)] then explicitly reads

∂Hsine(ϕ, ε)

∂ε
= − sin[Hsine(ϕ, ε)]

= − sin
{

2 arctan
[
tan

(ϕ

2

)
e−ε

]}
= − 2eε tan

(
ϕ

2

)
e2ε + tan

(
ϕ

2

)2 , (A9)

which agrees only for ε = 0 with Eq. (A5). We may conclude
that HRIC(ϕ, ε) does not obey the autonomous differential

FIG. 9. Comparison of Hsine(ϕ, ε) (green) with HRIC(ϕ, ε) (blue) for different values of ε. Panels (a), (b), (c), and (d) show the transfer
functions for ε = 0.3, 0.8, 1, and 1.1, respectively.
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equation Eq. (31), but a nonautonomous one, where the right-
hand side depends explicitly on the independent variable ε

and which reduces to the iPRC at ε = 0. Graphically speak-
ing, consider a small input piece dε̃ of a total input ε. dε̃

arrives after the input piece ε̃ of ε has already been received.
Then the impact of dε̃ does not only depend on the phase
ϕ(ε̃) = HRIC(ϕ, ε̃) reached due to ε̃ but also explicitly on ε̃

itself.
The series expansions in ε of HRIC(ϕ, ε) and Hsine(ϕ, ε)

around zero differ from second order on (they agree by
definition up to first order),

HRIC(ϕ, ε) = ϕ − sin(ϕ)ε + 1
2 sin(2ϕ)ε2

− 1
3 sin(3ϕ)ε3 + O(ε4), (A10)

Hsine(ϕ, ε) = ϕ − sin(ϕ)ε + 1
4 sin(2ϕ)ε2

− 1
12 [sin(3ϕ) − sin(ϕ)]ε3 + O(ε4). (A11)

Equations (31) and (A7) allow us to compute expressions for
the higher order derivatives and thus Taylor coefficients of its
solution by differentiating both sides and replacing derivatives
appearing on the right-hand side using the original equa-
tion. We note that as second derivative we obtain ∂2H (ϕ,ε)

∂ε2 =
Z′(ϕ)Z(ϕ), which implies a second order Taylor coefficient
1
2 [sin(ϕ) cos(ϕ)] = 1

4 sin(2ϕ) as present in Eq. (A11) but not
in Eq. (A10). Figure 9 illustrates the increasing discrepancy
of HRIC(ϕ, ε) and Hsine(ϕ, ε) for increasing ε. For ε = 1,
HRIC(ϕ, ε) has a singularity (at ϕ = π ) and beyond a discon-
tinuity.
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