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Many experiments have shown that the action potential propagating in a nerve fiber is an electromechanical
density pulse. A mathematical model proposed by Heimburg and Jackson is an important step in explaining
the propagation of electromechanical pulses in nerves. In this work, we consider the dynamics of modulated
waves in an improved soliton model for nerve pulses. Application of the reductive perturbation method on the
resulting generalized Boussinesq equation in the low-amplitude and weak damping limit yields a damped nonlinear
Schrödinger equation that is shown to admit soliton trains. This solution contains an undershoot beneath the
baseline (“hyperpolarization”) and a “refractory period,” i.e., a minimum distance between pulses, and therefore
it represents typical nerve profiles. Likewise, the linear stability of wave trains is analyzed. It is shown that
the amplitude of the fourth-order mixed dispersive term introduced here can be used to control the amount of
information transmitted along the nerve fiber. The results from the linear stability analysis show that, in addition
to the main periodic wave trains observed in most nerve experiments, five other localized background modes can
copropagate along the nerve. These modes could eventually be responsible for various fundamental processes in
the nerve, such as phase transitions and electrical and mechanical changes. Furthermore, analytical and numerical
analyses show that increasing the fourth-order mixed dispersion coefficient improves the stability of the nerve
signal.
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I. INTRODUCTION

One of the most important and challenging problems in
modern neuroscience is understanding the mechanism of ex-
citation transmission in neurons [1–28]. To explain the experi-
mental observation of the transmission of excitations of a given
form over a large distance without noticeable deformation, the
solitary-wave hypothesis has been successfully developed and
proposed [1,2]. Solitary waves have been studied in a neural
system, making it possible to describe the nonstationary-wave
processes of energy, momentum, and information transmission
through the neuron [1–10]. The idea of a neural signal being a
mechanical solitary wave is not new. During the propagation
of a neural signal, several mechanical or thermodynamical
changes in the neuron and axon have been observed and
demonstrated by cell swelling, heat release, changes in the
fluorescence of membrane probes, turbidity, and birefringence
[13–17]. In the early part of the 20th century, Wilke proposed
that a nerve pulse is a pressure wave, and that the action
potential is an epiphenomenon [18]. About 50 years later,
Katz came up with the hypothesis that a neural signal is a
single solitary pulse [19]. This solitary hypothesis gained more
attention in the early 2000s, when Heimburg-Jackson proposed
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a solitary model for a neural signal in the axon mediated by a
phase transition [1].

Solitons are localized and self-sustaining waves that can
propagate in a nonlinear dispersive medium without dissipat-
ing its energy [29,30], thus making them very useful in signal
transmission. These nonlinear waves have been observed in
many studies on neuronal systems. For instance, localized short
impulses were observed in a nerve model with a self-excitable
membrane [20]. Also, modulated waveforms were obtained
numerically from the time series of the membrane potential
derived from the dynamical mechanisms of waxing and waning
oscillations in thalamic relay neurons [21], while self-sustained
oscillations were reported in real neural tissue [22]. More
recently [10], the multiple scale expansion method was used
to show that the Hindmarch-Rose model of nerves includes
localized nonlinear excitation. All of these studies report on the
presence of nonlinear localized waves in a specific population
of linked neurons under proper assumptions. In the Heimburg
model of biomembranes and nerves, several forms of nonlinear
excitations for a neural signal have been proposed [1,6,23]. In
[1], an algebraic soliton solution for the nerve model traveling
with the sound velocity along the axon was obtained. Contreras
et al. [6] obtained analytically two forms of solutions for
the Heimburg model of nerves. They proposed that in the
gel state of the nerve, the Heimburg model includes bright
solitons, while in the liquid state it includes dark solitons.
They recently extended their work to obtain a compacton as a
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possible profile for a nerve’s signals [6]. Along the same lines,
Vargas et al. obtained numerically localized periodic wave
trains in the nerve model, thus explaining such nerve properties
as hyperpolarization, pulse trains, and refractory periods. This
provided a better explanation for the mechanism of periodic
soliton trains with an intrinsic minimal distance between
pulses of the order of about 5–10 pulse widths observed
experimentally in the nerve of a locust [5]. However, to the best
of our knowledge, a clear analytical picture describing these
phenomena has not yet been established. It is also important
to note that, in solid mechanics, the wave processes are fairly
well understood [24], and the main point in wave dynamics is
the concept of finite velocities—every excitation propagates
with a finite velocity determined mainly by the properties
of the medium [25]. This physical understanding has been
well-reflected in the modified soliton model. However, there
are still many questions to be answered, and research in this
field, which includes the nature and structure of nerve pulses,
is developing fast.

In the present study, an improved soliton model of
biomembranes and nerves is used to establish that in a low-
amplitude approximation, the dynamics of nerve impulses can
be described by the damped nonlinear Schrödinger equation
(DNLSE). Localized periodic wave trains will then be ob-
tained, and their stability will be studied. Recall that in the
cable model, as in the space clamp model, a constant low
current stimulus leads to the generation of a single action
potential. Higher current stimuli may generate infinite trains
of action potentials [26]. Thus modeling the activity response
to different neuronal geometries may shed light on the form-
function interaction as a possible mechanism for information
coding. Importantly, this type of solution is interesting in that
it is observed during most nerve experiments and it contains
nerve features such as wave trains, hyper-polarization, and a
refractory period. Note that the main structural feature in nerve
pulse dynamics is a stable solitary pulse of a characteristic
asymmetric profile [25]. However, the bell shape is generally
the one obtained by the linear stability analysis of this solution.
We show that this well-known bell solution can copropagate
with five other localized background modes. These modes
might be responsible for various nerve processes, such as
phase transitions and mechanical and/or electrical properties
observed as secondary effects during nerve propagation. These
background modes are also important in that they can be
explored as a signature in explaining certain neurological
diseases. Such diseases are characterized by an increase in
neuronal activities, which results in undesirable sensory or mo-
toric effects such as pain, abnormal muscle activity, spasticity,
migraine, etc. For instance, as the main mode of propagation
vanishes or minimizes during propagation along a nerve due
to instabilities, information can be transmitted in the nervous
system through background modes.

The structure of this work is as follows: In Sec. II, we briefly
present the improved Heimburg-Jackson model and by using a
reductive perturbation analysis in the low-amplitude limit, we
examine modulated waves in the improved Heimburg-Jackson
model; these waves appear as damped nonlinear Schrödinger
solitons. In Sec. III, we obtain a bright solitary wavelike
solution and localized periodic wave trains in the system. In
Sec. IV, we examine the stability of localized periodic wave

trains. In Sec. V, we present a numerical analysis of the system.
We end the work with discussion and conclusion in Sec. VI.

II. THE HEIMBURG-JACKSON MODEL REVISITED

A. The model

There are a number of mathematical models used to describe
neural activity. These models include the Hodgkin-Huxley,
Hindmarch-Rose, FitzHugh-Nagumo, and Heimburg-Jackson
models. The Heimburg-Jackson model was recently improved
by Engelbrech et al. [4]. Therefore, the improved Heimburg-
Jackson model of nerve impulses is given by

∂2�ρA

∂t2
= ∂

∂x

((
c2

0 + α�ρA + β[�ρA]
2)∂�ρA

∂x

)

−H1
∂4�ρA

∂x4
+ H2

∂4�ρA

∂x2∂t2
, (1)

where the nerve axon is consider as a one-dimensional cylinder
with lateral density excitations moving along the coordinate x

and time t . �ρA = ρA − ρA
0 is the change in the area density

of the membrane as a function of x and t , ρA is the lateral
density of a membrane, and ρA

0 is the density of the membrane
at physiological conditions, and it is slightly above the melting
transition [1,5]. The parameters α and β describe the nonlinear
elastic properties of membranes. At temperature slightly above
the melting transition, the lipid membrane has negative values
for the parameter α and positive values for the parameter β

[5,9]. In fact, the ad hoc dispersive term (�ρA)xxxx introduced
to take into consideration the linear dependence of the pulse
propagation velocity on frequency in [1] leads to unbounded
velocities in higher frequencies, although the propagation of
nerve impulses is said to be confined at lower frequencies. To
avoid this anomalous dispersion, Engelbrech et al. [4] proposed
a more realistic dispersive mechanism by adding a fourth-order
mixed dispersive term (�ρA)t txx to the Heimburg-Jackson
model. The numerical simulation showed that the combine
terms satisfy the conditions for anomalous dispersion, and it is
closed to physical experiments.

Note that when H2 = 0, we have the Heimburg-Jackson
model. In this specific case (i.e., H2 = 0), it has been estab-
lished that although the KdV equation describing the nerve
pulse dynamics meets the required anomalous dispersion, the
velocity of the propagating density pulse is not bounded for
large values of the wave number [4]. This observation is in
conflict with what is described in the Heimburg-Jackson model
since all parameters defining the velocity remain finite [1].
The parameter H2 was therefore added to the model to resolve
this physically undesirable effect. Physically, the parameter
H2 represents the inertia of the lipid in the biomembrane,
while H1 represents the elasticity of the biomembrane, and
both parameters are related to the nonlinear wave speed v at
the high-frequency limit by H1 = v2H2 [4]. As pointed out in
[5,27], a real nerve is not isolated but is viscously coupled to the
surrounding fluids. Therefore, nerve compression, stretching,
and friction can lead to the damping of the nerve’s signal, hence
the need to include the damping term (�ρA)xxt in Eq. (1).
Thus, the equation describing the dynamics of a nerve impulse
in biomembranes and nerves, taking into account the effect of
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damping, is given by

∂2�ρA

∂t2
= ∂

∂x

((
c2

0 + α�ρA + β[�ρA]
2)∂�ρA

∂x

)

−H1
∂4�ρA

∂x4
+ H2

∂4�ρA

∂x2∂t2
+ ϑ

∂2

∂x2

(
∂�ρA

∂t

)
.

(2)

Equation (2) is a generalized Boussinesq equation with
quadratic nonlinearity for the propagation of nerve impulses
in a cylindrical biomembrane and nerve. For the data for
dipalmitoyl phosphatidylcholine (DPPC) vesicles in the low-
frequency case, Heimburg and Jackson obtained [1] c0 =
176.6 m/s, α = −16.6c0

ρA
0

, β = 79.5c2
0

(ρA
0 )2 , ρA

0 = 4.035 × 10−3 g
m2 ,

and H1 = 2.225 m4

s2 , assuming a bulk temperature of T =
45 ◦C. On the other hand, H2 = 10−6 m2 [4].

In [1], Heimburg and Jackson have demonstrated that if
the speed of the nonlinear waves is less than the speed
of sound c0, then the solitary-wave solution to the KdV-
like equation exists provided the nonlinearity balances the
dispersion. Furthermore, under the same assumption, it has
been established that if the speed of sound c0 is equal to the
speed of the propagating nonlinear waves v, then the soliton
model admits algebraic solitons, while for v �= c0 it is possible
to propagate subsonic and supersonic compactons [6]. Recall
that all these solutions do not take into consideration the form
of the main structural feature of nerve pulse dynamics. More
recently, an attempt at this was proposed considering the effect
of damping. It is demonstrated that if nonlinearity balances
damping, then the Heimburg-Jackson model admits breathing
soliton pulses, and under specific constraints these breathing
pulses are self-trapped and travel along the nerve fiber with a
constant profile even in the presence of damping [27]. In the
following, we will show analytically that the extended model
can propagate low-amplitude periodic wave trains observed
during neuronal experiments.

B. The nonlinear amplitude equation

Equation (2) is a nonlinear partial differential equation,
and it is difficult to handle using linear methods or direct
numerical simulation. To find the solution of this equation,
we must first obtain a useful and manageable equation by
simplifying it while preserving the essential features of the
system. This can be done using perturbation analysis. Some
of these perturbation methods include regular perturbation
analysis, the Stokes-Poincaré frequency-shift method, and
the method of multiple scale expansion. The multiple-scale-
expansion method is more robust in that it can work for a
wide range of problems [10,27,29,30]. The main idea behind
it is to introduce fast and slow variables into the equation.
If we assume a low-amplitude oscillation of the density of the
membrane, i.e., �ρA = εu (ε � 1), and a weak damping such
that ϑ → ε2ϑ , Eq. (2) can then be written as

∂2u

∂t2
= c2

0
∂2u

∂x2
+ ∂2

∂x2

(
εαu2

2
+ ε2βu3

3

)

−H1
∂4u

∂x4
+ H2

∂4u

∂x2∂t2
+ ε2ϑ

∂2

∂x2

(
∂u

∂t

)
. (3)

This equation has different solutions under different con-
straints. Using the tanh method and the harmonic balanced
method, it has been established that such an equation admits
both kink and bell-shaped solitons [31,32]. The equation can
be transformed to obtain a modified form of the KdV-Burgers
equation by means of the reductive perturbation method
[27,33]. Here, we apply the method of multiple scale expansion
and proceed further by making a change of variables according
to the new time and space scales as Xi = εix and Ti = εi t . It
should be noted that the main reason for employing this method
is to find a solution �ρA(x, t ) depending on these new sets
of variables as a perturbation series of functions. Thus, we
should obtain a perturbation series of operators from these
independent variables as

∂

∂t
= ∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
, (4)

∂

∂x
= ∂

∂X0
+ ε

∂

∂X1
. (5)

Accordingly, we can express the solution u in the form

u = Aeiθ + A∗e−iθ + ε(Be2iθ + B∗e−2iθ ), (6)

where the amplitudes A and B as well as their respective
corresponding complex conjugates A∗ and B∗ are functions
of (T1, T2, and X1); θ = (kX0 − ωT0), where k is the normal
mode wave number and ω is the angular velocity of the wave.

By substituting Eqs. (4), (5), and (6) into the low-amplitude
improved Heimburg-Jackson model (3) and grouping terms in
order of perturbation ε0, ε1, and ε2, the following results are
obtained:

At the zeroth-order of approximation ε0, annihilation of
terms in e±iθ gives the dispersion relation of the form

ω = ±
√

c2
0k

2 + H1k4

1 + H2k2
. (7)

As expected, this is indeed a dispersion relation of a continuous
model. Obviously, this axonal dispersion is related to the
system parameters H1 and H2. From Eq. (7), we can define
two important quantities related to wave dynamics: the phase
velocity cp and the group velocity cg , respectively, given by

cp =
√

c2
0 + H1k2

1 + H2k2
(8)

and

cg = c2
0k + 2H1k

3 + H1H2k
5

ω(1 + H2k2)2
. (9)

The velocity is bounded and approaches the value
(H1/H2)−1/2 as the wave number approaches infinity, which
means that short waves do propagate in the improved
Heimburg-Jackson model. This is not the case for the
Heimburg-Jackson model in which H2 = 0 (Fig. 1). Similar
results have been obtained by Engelbrecht et al. [4] by
substituting a harmonic wave form in the linearized version
of Eq. (1). It was also shown that an anomalous dispersion
relation is possible if and only if H2 < H1.
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FIG. 1. The evolution of signal velocities against wave number:
(a) Phase velocity for the Heimburg-Jackson (HJ) and the improved
Heimburg-Jackson (IHJ) models. (b) The group velocity for HJ and
IHJ H1 = 2.26 m4/s2 and c0 = 176.6 m/s. For the IHJ model, both
the group and the phase velocity of the solitary wave have upper and
lower cutoff speeds, thus the speeds are bounded.

Furthermore, at first-order perturbation, terms of order e±2θ

give the relationship between the amplitudes A and B as

B = α(1 + H2k
2)

6
(
H2c

2
0 − H1

)
k2

A2, (10)

while at the second-order approximation ε2, an annihilation
of terms in e±iθ gives the damped nonlinear Schrödinger
equation:

i
∂A

∂T2
− P

2

∂2A

∂X2
1

+ Q|A|2A + iRA = 0, (11)

with coefficients P , Q, and R, respectively, given by

P = 4ωcgkH2 + ω2H2 − c2
g − c2

0 − 6H1k
2

ω(1 + H2k2)
, (12)

Q = α2(1 + k2H2) − 6k2β
(
H1 − H2c

2
0

)
12ω

(
1 + H2k2

)(
H1 − H2c

2
0

) , (13)

and

R = k2ϑ

2ω(1 + H2k2)
. (14)
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FIG. 2. Coefficients of the DNLS equation as a function of the
wave number. (a) Nonlinear parameterQ, (b) dispersion coefficient P ,
(c) damping coefficient R, and (d) product PQ. The other model pa-
rameters are c0 = 176.6 m/s, α = −16.6c0/ρ

A
0 , β = 79.5c2

0/(ρA
0 )2,

ϑ = 0.05, H1 = 2.225 m4/s2, and ρA
0 = 4.035 × 10−3 g/m2. Ac-

cording to Benjamin-Feir instability, plane waves are unstable for
positive values of PQ. Thus plane waves with wave numbers in
the range 0.4 < k < 6 and 0.6 < k < 17.2 are unstable for inertia
parameters H2 = 4 and 0.5, respectively.

The above damped nonlinear Schrödinger (DNLS) equation
(11) is a canonical and universal equation that is of major
importance in continuum mechanics, plasma physics, and
optics. From a fundamental point of view, the DNLS equation
permits us to investigate a traveling-wave profile characterized
by an abrupt rise to the excited state and a drop back down to
the refractory state, and periodic pulse generation observed in
the soliton theory for nerves and experimentally in the locust
femoral nerve [5]. Recent results on neural models clearly
indicate that information encoding and transmission in the
form of an electromechanical wave traveling along the axon
can also emerge in the form of modulated structures [10,12,27].

As indicated in Fig. 2, the coefficient of the fourth-order
mixed term H2 strongly affects the nonlinear coefficient Q

[Fig. 2(a)], the dispersion coefficientP [Fig. 2(b)], the damping
coefficient R [Fig. 2(c)], and more importantly the product
PQ [Fig. 2(d)]. All these parameters are plotted as a function
of the wave number k for different values of H2. According
to the Benjamin-Fair instability condition [54], plane waves
are unstable if the product PQ > 0 and stable if PQ < 0.
In Fig. 2(d), it is seen that, for H1 = 0.5, plane waves are
unstable for 0.6 < k < 17.2; however, when the value of H2 is
larger, i.e., H2 = 4, the instability region decreases, and the
plane waves are now unstable for 0.4 < k < 6. This result
is important in the sense that stability plays a crucial role in
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providing information on the local structure of the system. On
the other hand, it is a crucial property of a wave profile in a
neural network, since it determines whether such a pattern can
be observed experimentally or utilized for diagnostic purposes
[28]. Thus, in addition to setting a bound velocity for high
frequency as predicted in [4], H2 also improves the stability of
the nerve signal. More importantly, the sign of PQ determines
the nature of the solutions of Eq. (11). If PQ is positive, then
Eq. (11) is said to admit a stable envelope soliton solution
that has a vanishing amplitude as |X1| → ∞, and corresponds
to a small-amplitude breathing pulse. However, if the product
PQ is less than zero, then a dark (envelope hole) soliton will
propagate with finite amplitude as |X1| → ∞ [27]. Thus, one
expects to find in the nerve spatially localized nerve impulses
for any wave carrier whose wave number is in the positive
range of PQ.

III. THE DNLS EQUATION SOLUTIONS

Integrable and partially integrable inhomogeneous nonlin-
ear Schrödinger equations have recently gained much pop-
ularity among mathematicians and physicists. While mathe-
maticians are more concerned with developing methods for
solutions to the equation, physicists focus their interests on
special solutions that may fully describe and represent certain
physical phenomena, which in our case is the structure of a
nerve. Special solutions of extreme importance in the context
of the present work are solitary-wave solutions, otherwise
called solitons [10,27–29]. In this section, we focus on the
well-known single-envelope soliton solution, and on periodic
soliton trains. They are quite important in describing certain
natural phenomena observed in the nervous system.

In the absence of damping (i.e., R = 0), Eq. (9) is simply a
nonlinear Schrödinger equation. For the negative dispersion
coefficient P and the positive nonlinear coefficient Q, the
NLSE admits a modulated, localized envelope wave solution
[27,29,30] in the form

A = A0 sech

{
X1 − vT2

L

}
e{kX1±ω(k)T2}, (15)

where L is the “hyperbolic secant” envelope width, and
ω(k) and k are the modulation frequency and wave number,
respectively. In this case, i.e., the DNLS equation, the question
is what becomes of this soliton when R is nonzero. Several
perturbation approaches have been developed to answer this
question [34–38]. The perturbation technique developed for
solitons includes the adiabatic perturbation method, the per-
turbed inverse scattering method, the Lie-transform method,
and the variational method [39]. All these methods assume that
the functional form of the soliton remains intact in the presence
of a small perturbation, but the four soliton parameters change
with time T2 as the soliton propagates along the fiber. Thus, the
soliton solution to the damped nonlinear Schrödinger equations
becomes

A = A0(T2)sech{A0(T2)[X1 − k(T2)]}e{iφ(T2 )−iσ (T2 )}. (16)

The T2 dependences of A0, k, φ, and σ are determined through a
set of four coupled ordinary differential equations for these four
parameters obtained by injecting Eq. (16) into Eq. (11). In [40],
using the variational approach, it was shown that for R < 1,

only the soliton amplitude A0 and the phase φ are affected
by the losses. Motivated by this result, and by the fact that
we assume a very weak damping in the perturbation analysis,
i.e., ϑ → ε2ϑ , the damped nonlinear Schrödinger equation
can be transformed into an integrable equation by using the
transformation A = ψ exp(−RT2) [41,42] in Eq. (11), and one
obtains

i
∂ψ

∂T
− P

2

∂2ψ

∂X2
+ γ |ψ |2ψ = 0, (17)

where γ = R0Q, with R0 = |e−2{RT2}| denoting a normalized
function. For simplicity of notation, we have also set T = T2

and X = X1. It should be emphasized here that for R � 1,
R0 ≈ 1. The transformation ensures that only the amplitude
and the phase of the solution are affected. It is noteworthy that
Eq. (17) is the nonlinear Schrödinger equation. By setting

ψ (T ,X) = �(X − ueT )ei{X−σT } (18)

and for positive P , Eq. (17) can be transformed to a first-order
integral equation [43]:

(�′)2 = −P − 2σ

P
�2 + γ

P
�4 + C, (19)

where C is the constant of integration, σ is the carrier speed,
and ue = −P is the envelope speed. The constant C is
important in determining the profiles of the temporal amplitude
�(Z = X − ueT ). To this extent, depending on the value of C,
we can determine two types of profiles for the neural signal:
a single soliton signal, which has been widely obtained both
numerically and analytically under certain conditions [1,4–7],
and soliton trains, which have been obtained numerically and
experimentally [5]. Thus, in the following subsections, we ex-
amine these forms of solutions and discuss the conditions under
which each solution is obtained, as well as their biological
implications.

A. Single-envelope soliton signal of the DNLSE of the system

More recently, by addind a small frictional term to the soli-
ton model for nerves, breathing-type solitary-wave solutions
were obtained [27]. Nevertheless, it is important to present
the single-mode soliton solution. This will be compared later
to the results derived in the form of a soliton train structure,
which is one of the main focuses of the present work. For a
localized profile, we expect a rapid evanescence of the wave
outside its spatial bandwidth such that the constant C tends
to zero [44–47]. Accordingly, this implies that the solution to
Eq. (19) is obtained as

�(Z) =
√

P − 2σ

γ
sech

{√
2σ − P

P
(Z)

}
. (20)

Thereby, the solution of the DNLSE is given by

A =
√

P − 2σ

γ
sech

{√
2σ − P

P
(Z)

}
e{i(X−σT )−RT }. (21)

It is important to note that the primary reason why we employ
the multiscale analysis is to obtain low-amplitude modulated
waves of the improved Heimburg-Jackson model (3), and this
solution is given by Eq. (6). As a consequence, by substituting
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FIG. 3. (a) A typical single solitonlike signal predicted by
Eq. (22); (b) the intensity of the change in the area density pulse
|�ρA|2, corresponding to the square of the modulus of the evolution
of a one-soliton waveform given by the change in the area density
�ρA. The parameters of the system are H1 = 2.26 m4/s2, H2 =
10−3 m2, and c0 = 176.6 m/s, ϑ = 0.05, k = 0.03, ε = 0.08, and
σ = 100. The single-envelope soliton solution has an undershoot
beneath the baseline that represents the nerve signal phenomenon
of hyperpolarization. It also propagates without changing its form,
which is a typical characteristic of a solitary wave.

Eqs. (21) and (10) into (6) we obtain a solitonlike wave solution
to the improved Heimburg-Jackson model as

�ρA(x, t ) = 2εD0 sech

{√
2σ − P

P
ε(x − εuet )

}

× cos(Kx − �t )

+ 2
ε2kα(1 + k2H2)

3k2
(
H2c

2
0 − H1

)D2
0

× sech2

{√
2σ − P

P
ε(x − uet )

}

× cos2(Kx − �t ), (22)

where � = ω − ε2σ , K = ε + k, and D0 =
√

P−2σ
γ

exp{−Rε2t}.
It should be emphasized here that a similar solution has

been obtained for H2 = 0 [27]. Figure 3(a) is a graphical
representation of a typical single solitonlike signal predicted

by Eq. (22). The intensity |�ρA|2 of the change in the area
density pulse corresponding to the square of the modulus of
the evolution of a one-soliton waveform given by the change in
the area density �ρA is given in Fig. 3(b). This profile has an
undershoot beneath the baseline, i.e., hyperpolarization, thus
representing a typical nerve profile [5,27]. However, periodic
trains as observed in most nerve experiments cannot be model
using this solution. In the following subsection, we will analyze
a periodic solution for the system.

B. Periodic solution of the NLSE of the system

The single soliton solution obtained so far cannot success-
fully explain all the nerve’s features, i.e., refractory periods and
pulse trains. In the following section, we will seek an analytical
solution that is capable of describing these features. It should be
noted that, while Eq. (22) describes a single-envelope soliton
signal, elliptic solitons are specific nonlinear nerve signals
characterized by a periodic structure made up of a large number
of localized signals (bright- or dark-profile solitons), arranged
so as to form a “periodic lattice” of pulses [43–47]. Elliptic
solitons can be generated via modulational instability (MI)
[54]. MI is a phenomenon whereby a continuous wave signal
becomes unstable in a nonlinear structure as the input signal
increases [27].

When the constant of integration C in Eq. (19) is nonzero
and negative, the power of the wave is reduced and the energetic
conditions become detrimental to the stability of a single pulse.
However, we can still find nonlinear solutions to the amplitude
viz. [43–47]

�(Z) =
√

P − 2σ

γ (2 − κ2)
dn

{√
2σ − P

P (2 − κ2)
(Z), κ

}
, (23)

where dn is the Jacobi elliptical δ function of modulus κ (0 <

κ < 1). As a consequence, the solution of the DNLS equation
becomes

A =
√

P − 2σ

γ (2 − κ2)
dn

{√
2σ − P

P (2 − κ2)
(Z), κ

}
e{i(X−σT )−RT }.

(24)

Again, by substituting Eqs. (24), and (10) into (6), we obtain
the solitary-wave solution to the improved Heimburg-Jackson
model as

�ρA(x, t ) = 2εD0dn

{√
2σ − P

P (2 − κ2)
ε(x − εuet ), κ

}

× cos(Kx − �t )

+ 2
ε2kα(1 + k2H2)

3k2
(
H2c

2
0 − H1

)D2
0

× dn2

{√
2σ − P

P (2 − κ2)
ε(x − uet ), κ

}

× cos2(Kx − �t ), (25)

where � = ω − ε2σ , K = ε + k, and D0 =
√

P−2σ
γ (2−κ2 )

exp{−Rε2t}.
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FIG. 4. Evolution of soliton trains in the system for different
values of modulus κ: (a) κ = 0, (b) κ = 0.88, and (c) κ = 1 for H1 =
2.26 m4/s2, H2 = 10−3 m2, and c0 = 176.6 m/s, ϑ = 0.05, k = 0.03,
ε = 0.08, σ = 100, and t = 0.01. The soliton trains are separated
from each other, which describes a nerve signal phenomenon of the
refractory period. At κ < 1, the power of the wave is reduced and the
energetic conditions are detrimental to the stability of a single pulse
leading to a periodic soliton train.

Figure 4 illustrates the evolution of periodic wave trains
describes by Eq. (25) for different values of the modulus
of the elliptic function κ . It should be noted that for κ = 1,
the periodic solution describes a single pulse [Fig. 4(c)] that
is similar to the single-pulse profile (Fig. 3) described by
Eq. (22). Most importantly, the solution (25) is more general
and contains the solution (22) as a limiting case.

Also, we should note that Eq. (24) corresponds to the
solution of the system when the second order of perturbation
in Eq. (25) is set to zero. Thus, we can write for the first order
of perturbation the solution to the system as

�ρA(Z) = D1 dn

{
Z

Z1

}
cos(θ1), (26)

where

Z1 =
√

P (2 − κ2)

2σ − P
ε (27)

and

D1 = 2R1ε

√
P − 2σ

γ (2 − κ2)
, (28)

with R1 = exp{−Rε2t} representing the decay rate while
Z = x − εuet and θ1 = Kx − �t . Here, the dn function is
a periodic function of its argument Z, and it has recently
been established that this function corresponds to a periodic

FIG. 5. The maximum amplitude of the train waves as a function
of H2 and κ . The other parameters are H1 = 2.26 m4/s2, c0 =
176.6 m/s, ϑ = 0.05, k = 0.03, ε = 0.08, σ = 100, and t = 0.01.
The parameter space presents an initial increase in the amplitude for
very small values H2 and then an exponential decay as H2 increases.

time-multiplexing of identical sech-type pulses to form a
solitonic crystal of finite period Z2 = 2K (κ )Z1, where K (κ )
is the elliptic integral of the first kind [43]. Also, it should
be noted that when κ = 0, the “dn” function is a “cw” field,
and when κ = 1, the function reduces to the “sech” function
as illustrated in Fig. 4. Since the period Z2 tends to infinity
in this later regime, the “dn” function can indeed readily be
regarded as a train of pulses with a finite temporal separation
between them. Similar results have been obtained numerically
in the Heimburg-Jackson model and experimentally using the
locust femoral nerve by Vargas et al. [5]. They demonstrated
that the refractory period as well as the pulse trains and
hyperpolarization in the soliton model appear as a consequence
of the conservation of mass and the overall length of the nerve.
An experimental demonstration with a locust femoral nerve
depicts periodic patterns. These periodic pulses manifested
themselves in the locust’s nerve as pulse “doublets,” and they
display a constant distance of five to ten pulse widths even when
measured under different conditions. It should be noted that
an individual pulse width is 1–2 mm (or 1–2 ms). Moreover,
similar pulse doublets and triplets have been observed in
crayfish motor neurons [5].

Another property of soliton trains that is of importance is
the maximum amplitude of the wave. This property can be used
to predict the evolution of the wave with system parameters,
and the corresponding structures are usually called bifurcation
diagrams [48–51]. Indeed, we should recall that the argument
of the dn function has a maximum value K (κ ) corresponding
to

√
1 − κ2 [52]. From this analysis, the maximum amplitude

of the signal [�ρA(t )]max from Eq. (25) is given by

(�ρA)max = 2εD0

√
1 − κ2

+ 2
ε2kα(1 + k2H2)

3k2
(
H1 − H2c

2
0

)D2
0 (1 − κ2), (29)

where D0 =
√

P−2σ
γ (2−κ2 ) exp{−Rε2t}.

The maximum (�ρA)max as a function of κ and H2 is
shown in Fig. 5. As can been seen in Fig. 5, the maxi-
mum amplitude increases linearly at small values of H2 and
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decreases exponentially for relatively large values of H2, i.e.,
H2 > 0.0002. It is instructive to stress that, analogous to
the information dimension, the Lyapunov exponents, and the
Kolmogorov-Sinai entropy [53], the maximum value of the
density pulse can be related to the optimal information that
can be transmitted in the nerve. Hence, the maximum threshold
value of (�ρA)max = 645 corresponding to the inertia param-
eter H2 = 0.0002 can be considered as the upper bound for the
information production in the system. As a consequence, H2

can be used to control the amount of information transmitted
along the nerve fiber. It also characterizes the maximum
compressibility of the membrane, which leads to the changes
across the nerve cell membranes that convey information
from one point to another in the nervous system. These sorts
of changes are particularly important for the appearance of
temporal patterns of action-potential activity and relating those
patterns to stimulation by other inputs, or to specific behavioral
events.

IV. STABILITY ANALYSIS OF THE SOLITON TRAINS

In the previous section, we obtained localized periodic wave
trains in the improved Heimburg-Jackson model. To discuss
the stability of this solution, one must superimpose a small
perturbation on this solution and analyze the evolution of the
perturbation. Note that stability analysis is an important is-
sue related to the study of nonlinear dynamical systems because
it provides an effective way of testing the robustness of the
soliton trains against small perturbation in the amplitude [54].
Because of the complexity of many physical problems, stability
analysis is applied in a diverse manner. In this case, according
to the linear stability analysis, the solution is considered to be
of the form

A = {A0(X1) + εA1(X1)}e(iσT2−RT2 ), (30)

where ε is a small parameter that separates the solution trains
and the perturbation A1(X1). After introducing this perturbed
solution Eq. (30) into the DNLS equation (11), it is found that
the solution and the perturbation obey the following equations
at various orders of ε:

Order ε0,

P

2

∂2A0

∂X2
1

− R0QA3
0 + σA0 = 0. (31)

Order ε1,

P

2

∂2A1

∂X2
1

− 3R0QA2
0A1 + σA1 = 0. (32)

From Eq. (31), the solution at zeroth-order (ε0) can be
obtained by using the Jacobi elliptic dn function expansion
method [43] as described previously, and it is given by

A0(X1) =
√

2σ

γ (2 − κ2)
dn

{√
−2σ

P (2 − κ2)
(X1 − X0)

}
, (33)

which is also a solution to Eq. (17).
As far as Eq. (32) is concerned, the divergence of the

solution A0 can only be prevented by finding the exact solution
to Eq. (32) in A1. To obtain this solvability condition, we first
use the transformation Y = λ(X1 − X0) in (33) and substitute
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FIG. 6. Wave profiles of the five bound states A1j (j =
1, 2, 3, 4, 5) for κ = 0.98 (a)–(e) and their corresponding profiles
for κ = 1 (f)–(j). The other parameters are H1 = 2.26 m4/s2, c0 =
176.6 m/s, ϑ = 0.05, k = 0.03, ε = 0.01, σ = 100, and t = 0.01.

in Eq. (32), and the solvability condition of Eq. (32) can be
expressed in term of Lamé’s equation of the second kind as

∂2A1

∂Y 2
+ (h(κ ) − 6κ2 sn2(Y, κ ))A1 = 0, (34)

where h(κ ) = 6Pλ2+2σ
Pλ2 , with λ =

√ −2σ
P (2−κ2 ) , and sn is another

Jacobi elliptic function. Equation (34), which is sometimes
referred to as a secular equation, has solutions A1 that can
copropagate in the nerve without influencing the system’s
dynamics. Thus the solution to the system will be stable if
we can find the function A1(Y ) such that Eq. (34) is satisfied.
If there is no function A1(Y ) that satisfies Eq. (34), then the
solution A = A0 + εA1 will no longer be a solution to the
DNLSE Eq. (11), thus the solution A0 will be unstable, or in
other words, perturbed.

Lamé’s equation, which has been widely studied
[43–47,55], is an eigenvalue problem, and it possesses both dis-
crete and continuous modes, all describing background modes
of the localized periodic profile A0. This background wave
has five distinct localized modes A

j

1 (Y ) (j = 1, 2, 3, 4, 5) (see
the Appendix). By transforming into original coordinates, i.e.,
A1j = A

j

1e
(iσT2−RT2 ), we plotted the five bound-state modes

for two values of κ (κ = 0.98 [Figs. 6(a)–6(e)] and κ = 1
[Figs. 6(f)–6(j)]). These five bound-state solutions thus rep-
resent other profiles that can be obtained in the nerve. For
instance, Figs. 6(g) and 6(h) represent a typical transverse
profile obtained numerically in [4,56], while Figs. 6(i) and 6(j)
represent a dark soliton profile obtained analytically in [6], and
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it was explained that this profile of the nerve is possible at the
fluid state. By contrast, Fig. 6(f) is the bright soliton profile and
describes longitudinal propagation of a soliton in the gel state
[1,6]. The five bound states can therefore be considered as the
solitonlike structure that acts on the fluid motions in the elastic
neuronal cells and fibers. They are thus the informational code
structure releases in the form of impulses or pressure waves
transmitted, and they cause the voltage changes across the
nerve membrane, which are also well known to be the action
potential. The above possible ensemble of waves emerging
from these analyses demonstrates the complexity in signal
propagation within neural systems. The propagation of the
action potential is possible only in one of these modes, and
it is mainly specified by the physical conditions. Following
this, the behavior of biomembranes and nerves is an excellent
example of the generation of multisolitons, which is interesting
in the sense that it can be used to explain the enlarged capacity
of communication channels existing in the nervous system.
Indeed, as observed in Ref. [43], the formation of fundamental
pulses in the NLSE is governed mainly by the balance of
nonlinearity and the anomalous group-velocity dispersion. In
this case, higher-energy pulses will split into identical lower-
energy multisolitons (background modes) with exactly the
same physical properties. Thus, the concept of background
electromechanical neuronal impulses can be helpful to the
understanding of other points of neurophysiology or neuronal
diseases. For example, the propagation of these modes might be
responsible for the structural changes of plasma proteins with
coagulation phenomena or even for ruptures of the neuronal
membranes, leading to diseases such as tangles and plaques,
which are found, in particular, in senile and presenile dementia
[57,59]. These plaques evolve from background modes that
induce ruptures of neuronal cells or neuronal processes. They
are created at an older age, and they reduce the resilience
of the neuronal membranes, causing a reduced axoplasmic
transport [57].

It is relevant to stress that the linear stability analysis
provides a very efficient way of probing soliton stability, and
particularly its shape invariance under translation. This issue
has been investigated at length for single pulse and dark-soliton
signals [58]. For single-soliton signals, the linear stability
analysis of the wave equation (11) leads to an eigenvalue
problem for which the discrete spectrum consists of three
localized modes with nonzero temporal modulation. From a
physics standpoint, these localized modes describe internal
oscillations in the structure of the soliton signal that propagate
with the signals. Because of their nonzero energies, they can be
associated with radiation-carrying excitations in the propagat-
ing pulse background. From Figs. 6(g)–6(j), the single-pulse
signal possesses three distinct localized modes, including a
single-pulse, a symmetric two-pulse, and an asymmetric two-
pulse bound state [45–47]. One of the three localized modes
is precisely the translational mode, while the two others are
related to localized excitations in the internal structure of the
pulse due to its interaction with small-amplitude noise.

V. NUMERICAL EXPERIMENT

The results presented so far are just approximate because
they were obtained after some hypotheses and considerations,

that is, the results are from the DNLS Eq. (11) rather than
from the initial equation of motion (1). Furthermore, in order
for these solutions to be reliable, it is always necessary to carry
out direct numerical analysis. For this reason, the lifetime of the
solutions determined above is an important parameter because
only long-lived excitations can be detected experimentally. For
the numerical integration, the Fourier-transform (FT) -based
pseudospectral method (PSM) is used [4,60,61]. Note that
the discrete FT based on the PSM with a hyperbolic sech
function as an initial condition was also employed to solve
the generalized Boussinesq Eq. (1) in [4]. Following this,
before applying the PSM, one needs to ensure that the equation
under consideration must be in a specific form, with only a
time derivative on the left and spatial derivatives on the right
[4,60,61]. By applying this method as proposed in [4], Eq. (1)
is reduced to the following two first-order coupled differential
equations:

∂�ρA

∂t
= F−1

(
F (φ)

1 + H2k2

)
(35)

and

∂φ

∂t
= c2

0F
−1((ik)2F (�ρA))

×F−1

(
α

(ik)2

2
F ((�ρA)2) + β

(ik)2

3
F ((�ρA)3)

)

−H1F
−1((ik)4F (�ρA)) + νF−1

(
F (φ)

1 + H2k2

)
,

(36)

where F and F−1 are the FT and inverse FT, respectively. In
what follows, the simulation is performed with a step size of
N = 200 and an initial Jacobi dn function solution given by

�ρA = 10−4 dn

(√
Λ

(2 − κ2)
x, κ

)
cos

( x

10

)

+ 10−5dn2

(√
Λ

(2 − κ2)
x, κ

)
cos

(x

5

)
(37)

and

φ = 10−3sn

(√
Λ

(2 − κ2)
x, κ

)

× cn

(√
Λ

(2 − κ2)
x, κ

)
cos

( x

100

)
, (38)

where Λ is a constant. The other parameters use for the simula-

tion are H1 = 2.25, ϑ = 1.25, α = −16.6 c2
0

ρA
0

, β = 79.5 c2
0

(ρA
0 )2 ,

c0 = 176.6, dt = 0.001, ρA
0 = 4.035 × 10−3, κ = 0.20, and

Λ = 1.6 × 10−3.
Now let us examine the effect of the fourth-order mixed

derivatives H2 on the soliton trains. Figure 7 presents the time
evolution of periodic soliton trains for three different values of
the dispersive coefficient H2. Accordingly, we observed that
the number of soliton trains decreases as H2 increases. Our
numerical calculations also indicate that H2, which physically
represents the inertia of the lipid membrane, determines the
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FIG. 7. Time evolution of periodic-soliton trains for different
values of the dispersive coefficient H2. Parts (a) and (d) correspond
to H2 = 0.4, (b) and (e) correspond to H2 = 0.7, while (c) and (f)
correspond to H2 = 0.9. The Jacobi elliptic function modulus is
κ = 0.4.

localization of energy in the system. For large values of H2,
the power of the wave increases, and the energetic conditions
favor the propagation of more localized soliton trains.

Going ahead with our investigation, and as predicted by
analytical results, κ also greatly affects the nature of the soliton
profile, as can be seen in Fig. 8, where the evolution of the
soliton trains is presented. Accordingly, Fig. 8 shows that
soliton trains are not favorable as κ turns toward 1. More
importantly, it should be mentioned that in [5], Vargas et al.
transform the soliton wave equation for nerve dynamics into
a classical wave equation comprised of kinetic and potential
energy terms, and the integration constant C resulting from
this transformation plays a critical rule in the evolution of
the periodic pulses. However, in the present case the resulting
NLSE obtained from the perturbation method admits similar
periodic pulses. From Fig. 8, we observe that for 0 � κ < 1,
soliton trains are propagated along the nerve fiber, while for
κ = 1 a single solitary pulse travels along the nerve. Thus,
one can easily conclude that the Jacobi elliptic modulus κ

determines the localization of energy along the nerve.

VI. DISCUSSION AND CONCLUSION

The key feature of the soliton theory for biomembranes
and nerves is a localized pulse with constant entropy, i.e.,
without net heat exchange with the environment. Since the
soliton theory is of a thermodynamic nature, any change in
a thermodynamic variable that has the potential to move the
membrane through its transition is also able to generate a pulse.
This includes pulse generation by changes in temperature,
voltage, lateral pressure, pH, calcium concentration, etc. In the
soliton theory, a 2D sound propagating along the membrane

FIG. 8. Time evolution of periodic-soliton trains for different
values of the Jacobi elliptic function modulus κ . Here, (a) and
(d) correspond to κ = 0.0, (b) and (e) correspond to κ = 0.98, while
(c) and (f) correspond to κ = 1. The dispersive coefficient is taken as
H2 = 0.1.

plane, described by lateral compressibility and a correlated
change in density, is considered. By assuming an infinitely long
axon that is quasi-one-dimensional, meaning that the thickness
of the nerve is negligible compared to the length of the pulse,
and that the density perturbation is of a longitudinal nature,
Heimburg and Jackson considered the action potential as a
1D electromechanical pulse. The pulse consists of a locally
compressed region in which the membrane is transiently
pushed through its melting transition while releasing waves
by spatial confinement [1,2,5]. The dynamical equation for the
density pulses is a generalized Boussinesq-like equation with
damping.

The soliton model is a true theory for a nerve pulse,
based on the assumption of small friction. It describes why
the pulse propagates and what its physical features are [27].
In contrast, El Hady and Machta considered a mechanical
change caused by voltage pulses, but they did not explain
from where a voltage-pulse originates [56]. By assuming a
particular functional form of the trans-membrane voltage as
in the Hodgkin-Huxley model, they deduced changes in the
curvature and membrane thickness. In their calculations, the
mechanical changes are side effects that do not couple back
to the voltage changes from their description of mechani-
cal changes. In the soliton theory, however, voltage change,
mechanical changes, and temperature are just three different
aspects of one phenomenon. Here, we have considered an
improved soliton model for biomembranes and nerves, and
it has solitary-wave excitations. In the low-amplitude limit
and for weak damping, we used a multiple-scale analysis and
established that the motion of nerve impulses is governed
by the damped nonlinear Schrödinger equation (DNLS). The
mixed fourth-order dispersion, which is physically related
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to the inertia effects of the membrane structure, introduced
important modifications in the nonlinear coefficient Q, the
dispersion P , and damping parameters R. The phase and group
velocity of the nerve signal are bounded due to the presence
of the inertia term. Also, it is shown that in the improved
Heimburg-Jackson model, these velocities converge to some
maximum value ( H1

H2
)−1/2 as the wave number becomes very

large, as described in [4]. This is not the case for the Heimburg-
Jackson model. It was also noted that as H2 increases, soli-
ton trains become more localized, and H2 can be used to
control the amount of information transmitted along a nerve
fiber.

Assuming a very weak damping, i.e., R � 1, a suitable
transformation was used to change the nonintegrable damped
nonlinear Schrödinger equation to a nonlinear Schrödinger
equation. A single soliton signal as well as periodic wave
trains of the nerve were obtained under specific conditions. It
is shown that for a Jacobi elliptic function modulus of κ = 1,
the nerve profile is a single soliton signal, and it is similar to
the case obtained classically. The soliton train profile contains
important features, such as hyperpolarization, a refractory
period, and pulse trains, thus it can be used to model a neural
signal. Linear stability analysis of the wave trains was also
considered, and it was shown that in addition to the main
localized periodic structure propagating along the nerve, five
other bound-state modes can copropagate with it. In this way, it
is suggested that these background modes may be responsible
for some important nerve processes during neural activity, such
as the flexoelectrical property of the cell membrane [62], ATP-
induced reverse charge-transfer acceleration through helical
proteins of the cell membrane [63,64], and more generally
phase transitions involving the cell membrane [1,64]. Linear
stability analysis might also be useful in explaining certain
neural diseases, such as plaques and tangles in the brain [57].
Numerical analysis was also carried out to verify the analytical
predictions.
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APPENDIX

Bound-state solution of the Lamé equation

The five localized modes of the Lamé equation are given by

A1
1(Y ) = A1

1(κ )cn(Y )dn(Y ), σ 1
1 = {5 − κ2} |P |λ2

2
, (A1)

A2
1(Y ) = A2

1(κ )cn(Y )sn(Y ), σ12 = {2 − κ2} |P |λ2

2
, (A2)

A3
1(Y ) = A3

1(κ )sn(Y )dn(Y ), σ 3
1 = {5 − 4κ2} |P |λ2

2
,

(A3)

A4
1(Y ) = A4

1(κ )

{
sn2(Y ) − 1 + κ2

3κ2
−

√
1 − κ2(1 − κ2)

3κ2

}
,

σ 4
1 =

{
2 − κ2 +

√
1 − κ2(1 − κ2)

2

}
|P |λ2

2
, (A4)

A5
1(Y ) = A5

1(κ )

{
sn2(Y ) − 1 + κ2

3κ2
+

√
1 − κ2(1 − κ2)

3κ2

}
,

σ 5
1 =

{
2 − κ2 −

√
1 − κ2(1 − κ2)

2

}
|P |λ2

2
, (A5)

where A
j

1 (κ ) (j = 1, 2, 3, 4, 5) are their respective constant
amplitudes.
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