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Transient chaos can emerge in a variety of diverse systems, e.g., in chemical reactions, population dynamics,
neuronal activity, or cardiac dynamics. The end of the chaotic episode can either be desired or not, depending on
the specific system and application. In both cases, however, a prediction of the end of the chaotic dynamics is
required. Despite the general challenges of reliably predicting chaotic dynamics for a long time period, the recent
observation of a “terminal transient phase” of chaotic transients provides new insights into the transition from
chaos to the subsequent (nonchaotic) regime. In spatially extended systems and also low-dimensional maps it was
shown that the structure of the state space changes already a significant amount of time before the actual end of
the chaotic dynamics. In this way, the terminal transient phase provides the conceptual foundation for a possible
prediction of the upcoming end of the chaotic episode a significant amount of time in advance. In this study,
we strengthen the general validity of the terminal transient phase by verifying its existence in another spatially
extended model (Gray-Scott model) and the Hénon map, where in the latter case the underlying mechanisms can
be understood in an intuitive way. Furthermore, we show that the temporal length of the terminal transient phase
remains approximately constant, when changing the system size (Gray-Scott) or parameters (Hénon map) of the
investigated models, although the average lifetime of the observed chaotic transients sensitively depends on these
variations. Since the timescale of the terminal transient phase is in this sense relatively robust, this insight might
be essential for possible applications, where the ratio between the length of the terminal transient phase and the
relevant timescale of the dynamics may probably be crucial when a reasonable prediction (thus a sufficient time
before) the end of the chaotic episode is required.

DOI: 10.1103/PhysRevE.98.022215

I. INTRODUCTION

Chaotic dynamics can, in general, be distinguished between
persistent chaos and transient chaos, where in the first case the
dynamics is mathematically governed by a chaotic attractor.
In the latter case, a chaotic saddle is often the underlying
state space structure [1,2]. Chaotic transients appear in diverse
fields, e.g., in population dynamics [3], coupled FitzHugh-
Nagumo oscillators [4], NMR-lasers [5], complex networks
[6], cardiac dynamics [7], or may be relevant for plankton
blooms [8]. The transition between the chaotic regime and the
final attractor is of high interest for many reasons, in particular
regarding the potential control of the dynamics. Often, the up-
coming self-termination of the chaotic dynamics is not visible
in conventional observables a reasonable amount of time before
the transition. Due to the chaotic nature of the dynamics, also
data assimilation techniques aiming at predicting the dynamics
of chaotic systems are limited. Therefore, it is not clear whether
a prediction of the end of a chaotic episode is in principle
possible a (reasonable) amount of time before. However, in
Ref. [9] it was shown in spatially extended systems and low-
dimensional map that the transition from the chaotic regime
toward the (nonchaotic) attractor of the system is a process with
a finite length, called “terminal transient phase” (TTP), which
becomes manifest in a change of the state space structure.

*thomas.lilienkamp@ds.mpg.de

In this study, we investigate whether the TTP can be
observed also in other models and is therefore a robust
phenomenon of chaotic transients in general. In particular, we
investigate the spatially extended Gray-Scott model, and the
two-dimensional Hénon map. Furthermore, we are interested
how the length of the TTP changes if quantities like the system
size or model parameters are changed. This investigation is a
step toward a better understanding of the transition process
from the chaotic dynamics toward the final attractor and
promotes in this way the development of possible applications
in the future.

This article is structured in the following way: In the first
section we introduce the models discussed in this study (Gray-
Scott model, Hénon map, tent map). To clarify the procedure
which we use to determine the length of the TTP, the approach
is explained stepwise in the next section. We demonstrate in
the following part that a finite TTP exists also in the models we
investigate here, and we compare the length of the TTP to the
Lyapunov time. In the subsequent section we investigate how
the length of the TTP behaves under changes of the system
size (Gray-Scott model) and parameter changes (Hénon map
and tent map) and discuss our results in the last section.

II. MODELS

A. Gray-Scott model

The Gray-Scott model [10] is a simple system of partial
differential equations which model a chemical reaction of
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FIG. 1. Exemplary episode of a chaotic transient based on sim-
ulations of the Gray-Scott model on a one-dimensional ring with
N = 120 elements. Variable ai (reactant A) is depicted for the
final part of this episode just before self-termination (at around
tterm = 4925 arb. units). The white bar depicts a rough estimate of
the length of the terminal transient phase, which is calculated based
on an average over many different trajectories, discussed later in this
manuscript.

the species U , V , and P : U + 2V → 3V , V → P . It can
exhibit diverse irregular spatiotemporal patterns [11] and its
features of transient chaos have been studied by Wackerbauer
et al. [12]. The model equations describe the evolution of the
concentrations ai and bi of the chemical species U and V in
element i, respectively [Eqs. (1) and (2)], where both variables
are diffusive (first terms, respectively):

∂ai

∂t
= D�ai + 1 − ai − μaib

2
i , (1)

∂bi

∂t
= D�bi + b0 − �bi + μaib

2
i . (2)

Our simulations were performed on a one-dimensional ring,
using a diffusion constant ofD=16, a spacing constant ofh=1
and a time constant of dt =0.005, where periodic boundary
conditions were used. The following choice of parameters was
used: μ = 33.7, � = 2.8, and b = 0. The one-dimensional
simulation domain was initialized with a = 1 and b = 0.
Chaotic dynamics was then induced by setting the b variable at
three blocks of each three nodes to one. The three blocks had a
minimal distance of 18 nodes. An example of a chaotic episode
and the following self-termination of the dynamics is shown in
Fig. 1. A periodic dynamic can be observed (with a period of
around 5 or 6 arb. units) interrupted by areas of various sizes
of a high concentration (e.g., around t = 4760), which after
their appearance decrease in their size and disappear.

B. Hénon map

The Hénon map [13] is a two-dimensional invertible map,
defined by Eqs. (3) and (4):

xn+1 = a + byn − x2
n , (3)

yn+1 = xn . (4)

In this study, we use b = 0.3 and varied the parameter a to
achieve transient chaos. Osinga [14] showed how a boundary
crisis bifurcation leads to transient chaos in this system
[14–16], where in a certain parameter regime, the chaotic
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FIG. 2. The terminal transient phase in the Hénon map. Subplots
(a) and (b) depict the boundary crisis bifurcation which enables the
transient dynamics. In (a) (a = 1.4), the attractor of the system (red)
is described by the unstable manifold of the fixed point P1, whereas
its basin is determined by the stable manifold of the fixed point P2. In
(b) (a = 1.428), the attractor has collided with its own basin. 〈T 〉pert

is shown in (c) for various perturbation amplitudes. Specific regions
of the state space (marked by (t1)–(t4) in (b) and (c)) are magnified in
subplot (d), each plot with a size of (0.1, 0.1). Trajectories pass these
regions before the self-termination. The distribution of the trajectories
before the collapse are marked in black in subplot (d), whereas the
distribution of the trajectories after the application of a perturbation of
strength � = 0.01 (corresponding to the purple line in (c)) is marked
in purple. The gray-shaded region denotes here the chaotic regime
of the state space. Trajectories which are perturbed toward the gray
region remain (at least for the moment) chaotic. Thus, by geometrical
considerations the overlap of the gray and the purple domains does
roughly estimate the probability, that a perturbation can prevent the
trajectory from the collapse.

attractor collides with the boundary of its basin. Figures 2(a)
and 2(b) depict such a transition. In subplot (a) for a = 1.4,
the chaotic attractor (red) can be determined by the unstable
manifold of a fixed point P1 [blue dot in (a)], whereas the
boundary of the basin of the attractor (green) is given by the sta-
ble manifold of a second fixed point P2. With a parameter value
of a = 1.428, the boundary crisis has taken place [Fig. 2(b)]
and the unstable manifold of P1 touches the stable manifold of
P2 at infinitely many points. Initial conditions (x0, y0) were
created by a homogeneous randomized distribution on the
two-dimensional domain −3 < x < 3 and −3 < y < 3.

C. Tent map

The tent map is a simple one-dimensional map, described by

xn+1 =
{

atentxn for x < 1
2

atent (1 − xn) for x � 1
2 ,

(5)
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with the parameter atent. When atent is increased above 1.0
(green dashed line), an “exit” from the chaotic regime is
formed. This exit window then enables the transient dynamics.
The terminal transient phase of the tent map can be determined
analytically, as discussed in Ref. [9].

III. DETERMINATION OF THE AVERAGE
LIFETIME AND THE TTP

A. Average Lifetime 〈T〉IC

The average lifetime is an important quantity which can be
used to characterize the chaotic transients which we investigate
in this study. It can be determined by creating many initial
conditions, which show chaotic dynamics. In this study, 10 000
initial conditions were used for each model. When evolving the
initial conditions for a certain amount of time, some fraction
of the initial 10 000 trajectories have self-terminated and do
not show chaotic behavior anymore.

In the case of the Gray-Scott model, the collapse of the
chaotic dynamics was defined when the mean of the variable
ai, averaged over the whole simulation domain was above
a threshold 1

N

∑
i ai > 0.99. In the case of the Hénon map,

trajectories that leave the chaotic regime run through specific
regions in the state space. After passing a small domain around
(x, y) ≈ (−1.91, 1.8) [Fig. 2(d) (t3)], the trajectories diverge
to negative infinity [Fig. 2(d) (t4)]. Thus, the range in time
when trajectories terminated could in a first step be identified,
when they pass the mentioned regions in state space. The exact
definition of the point of termination was then chosen as the
beginning of the divergence to negative infinity [one step after
passing (x, y) ≈ (−1.91, 1.8)].

The quantity NCh(t ), with NCh(t = 0) = 10 000 describes
the number of initial conditions, which exhibit chaotic dynam-
ics at time t . Typically, this quantity decreases exponentially
NCh(t ) ∼ exp(−κ t ), with the escape rate κ which is approxi-
mately inverse to the average lifetime κ ≈ 1

〈T 〉 . In this way, the
average lifetime 〈T 〉IC can be determined via fitting NCh(t ) and
extracting κ . For the determination of 〈T 〉IC, the amount of time
equal to 500 time units (Gray-Scott model) were discarded. The
subscript IC emphasizes that the average lifetime is determined
here based on different initial conditions. This procedure is also
discussed in Refs. [1,7].

The average lifetime 〈T 〉IC depends both, on the choice of
parameters of the respective model (e.g., Hénon map), and also
on the size of the system (Gray-Scott model). This dependence
will also be discussed in the next sections.

B. The length of the TTP

The terminal transient phase is the central quantity in-
vestigated in this study, which was introduced in Ref. [9].
The procedure of determining the length of the TTP of a
system which exhibits chaotic transients can be divided into
the following steps:

(1) Choose a (reference) trajectory s(t ) and determine the
point in time of self-termination tterm.

(2) Determine the state of the chosen trajectory, at a specific
time step tstep before self-termination, s(tterm − tstep).

(3) Apply single perturbations (of a chosen ampli-
tude/strength �) to the state s(tterm − tstep). The number of

independent perturbations is determined by the dimensionality
d of the system. This results in d perturbed states.

(4) Evolve these perturbed states until each trajectory has
self-terminated.

(5) Measure the lifetimes Ti of the perturbed trajectories,
where i ∈ {1, ..., d}, starting from the point in time, when the
perturbations were applied.

(6) Calculate the mean lifetime, averaged over all perturbed
trajectories 〈T 〉pert = 1

d

∑
i Ti. Remember that this quantity

corresponds to the specific point in time tterm − tstep, and a
specific state of the original (reference) trajectory s(tterm −
tstep).

(7) Repeat steps (2)–(6) by choosing other points in time
before self-termination (multiples of tstep), thus going stepwise
back in time.

Typically, when perturbing the reference trajectory at
points close to its self-termination, 〈T 〉pert is close to zero.
Thus, almost no perturbation can prevent the upcoming self-
termination. If perturbations are applied further away from the
self-termination of the reference trajectory, 〈T 〉pert typically
increases (on average), and at some point it will saturate at the
average lifetime 〈T 〉IC based on different initial conditions. At
this point, the state does not show a significant correlation to
the upcoming self-termination anymore (regarding the applied
finite perturbations). The temporal length starting from the
point in time where 〈T 〉pert saturates at 〈T 〉IC until the self-
termination of the reference trajectory, is denoted as the length
of the TTP.

Since, in general, 〈T 〉pert based on only one trajectory
fluctuates, it is necessary to repeat the procedure above with
more than one reference trajectory and average 〈T 〉pert over
these trajectories, where time is normalized regarding the
points in time of self-termination of each trajectory. In these
cases, 〈T 〉pert includes the average over lifetimes of perturbed
trajectories which are related to a specific reference trajectory,
and a subsequent average over different reference trajectories.

IV. TTP IN THE GRAY-SCOTT MODEL
AND THE HéNON MAP

A. Gray-Scott model

Using the procedures discussed in the last section, we
investigated a typical trajectory of the Gray-Scott model with
N = 120 elements (example from Fig. 1).

The analysis is shown in Fig. 3. In a first step, the average
lifetime 〈T 〉IC of chaotic transients [sketched as the dashed
gray line in Fig. 3(a)] was determined based on 10 000
initial conditions. 〈T 〉pert was then determined for various
perturbation strengths (� ∈ [1.0, 0.1, 0.01, 0.001]), shown
in Fig. 3(a) in different colors. As mentioned before, when
the point in time when the perturbations are applied is close
to self-termination of the reference trajectory (here at around
tterm = 4925 arb. units, marked by the black arrow), 〈T 〉pert

is close to zero. When going back in time, however, 〈T 〉pert

increases and saturates at some point at 〈T 〉IC. In contrast to
(for example) the Fenton-Karma model (discussed in Ref. [9]),
the point in time of this saturation depends on the amplitude
� of the perturbation. By applying a perturbation with a
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FIG. 3. The terminal transient phase in the Gray-Scott model.
An exemplary trajectory (self-termination at approximately tterm =
4925) is investigated in subplot (a). 〈T 〉pert is shown for different
perturbation strengths in different colors. As a comparison, the first
variable averaged over the whole domain 〈a〉i does not show obvious
indications for the upcoming self-termination a significant amount of
time in advance. In (c) 〈T 〉pert is sketched for a fixed perturbation
strength of � = 0.1, averaged over 50 trajectories, where time is
normalized such that self-termination happens at t = 0. The temporal
length of the TTP can in this way be estimated (TTP ≈ 60 arb. units).
The length of the TTP is sketched as the black bar, where the end of
the TTP is determined by the end of the chaotic dynamics (t = 0),
and the beginning can be roughly estimated as the point, where 〈T 〉pert

saturates at 〈T 〉IC. Snapshots of the first variable ai of the trajectory
discussed in subplot (a) are shown in black in subplots (d), (e),
and (f) [corresponding to three points in time t1, t2, and t3, which
are additionally marked as black vertical lines in subplot (a)]. The
transient times Ti corresponding to perturbations applied at the ith
element of the system at the respective point in time are shown in
blue in (d), (e), and (f), for the three points in time, respectively.
Connected regions in the i space are visible, where the transient
lifetimes that correspond to perturbations are close to zero (e.g., at
t2 around 10 < i < 30). These regions constitute an increasing part
of the whole space, as the point in time when the perturbations are
applied comes closer to the point of self-termination of the original
trajectory.

larger amplitude, the chance of preventing the upcoming self-
termination is higher.

This analysis demonstrates that the state space structure
in the vicinity of the reference trajectory changes already a
finite amount of time before its self-termination. Nevertheless,
this “transition” is not visible in conventional variables, as,
for example, the spatial mean 〈ai〉i [shown in Fig. 3(b)]. The
temporal length of this transition zone can be estimated by
the distance from the point in time where 〈T 〉pert saturates
at 〈T 〉IC and the time of self-termination. As stated before,
the saturation point depends on the strength of the applied
perturbations. For an estimate of the length of the TTP we
chose here a perturbation strength of � = 0.1 and determined
〈T 〉pert for 50 trajectories [average shown in Fig. 3(c)]. Based
on this expression, one can estimate the length of the TTP
(regarding the specific perturbation strength) of around TTP ≈
60 arb. units.

Investigating the spatial distribution of lifetimes Ti (the
lifetime of the trajectory which originates from perturbing
the reference trajectory at the node i) provides a first insight
into the underlying mechanism. Ti is shown for the example
trajectory [Fig. 3(a)] in Figs. 3(d), 3(e) and 3(f) in blue for three
different points in time t1, t2, and t3 before self-termination.
The points in time are additionally marked in Fig. 3(a) with
black vertical lines. The black lines in Figs. 3(d), 3(e) and
3(f), respectively, show snapshots of the state variable ai at
the respective points in time. The lifetimes Ti depend in an
irregular pattern on the spatial position i, which is typical for
a chaotic dynamic. Furthermore, spatially connected regions
establish with a lifetime close to zero (e.g., at t2 around i = 15),
which grow over time such that at t3 Ti is nonzero only in a
spatially confined region.

That means, when the reference trajectory comes closer to
its self-termination, less perturbations can significantly change
the trajectory and prevent the upcoming self-termination. In
this way, probing the vicinity of the reference trajectory with
small perturbations reveals a specific structure of the state
space and suggests the picture of high-dimensional tubes which
determine the dynamics at the “exits” of the chaotic regime. As
a remark, using spatially localized perturbations (correspond-
ing to orthogonal coordinate axes) enabled the observation
of the spatially connected regions discussed above. Using the
more general choice of arbitrary n balls as perturbations (which
we actually use in the next section in the case of the Hénon
map) would have made this insight considerably more difficult.

To emphasize the conceptual difference between the inves-
tigations shown in this study (using small but finite perturba-
tions) and the concept of a Lyapunov analysis, we compare
the length of the TTP with the Lyapunov time tL = 1/λ1

(with λ1 the largest Lyapunov exponent, computed during the
chaotic transients) which we computed for the system of N =
120 nodes. The difference between the TTP ≈ 60 arb. units
and the Lyapunov time of tL ≈ 5.08 arb. units underlines that
the information obtained by our analysis provides additional
insight into the state space structure.

B. Hénon map

The second model we investigate here is the two-
dimensional Hénon map. Since it is lower dimensional than,
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e.g., the spatially extended system of the Gray-Scott model
discussed before, possible mechanisms can be understood
in a more intuitive way. As stated before, transient chaotic
dynamics can be induced via a boundary crisis bifurcation by
adjusting the parameter a [Figs. 2(a) and 2(b)]. Using 10 000
initial conditions, the average lifetime 〈T 〉IC of the transients
was determined as described before.

〈T 〉pert was determined by applying perturbations to 10 000
trajectories. The perturbations are two-dimensional (x, y), in
random directions, but with a constant perturbation amplitude
�. In Fig. 2(c) 〈T 〉pert is shown for different amplitudes. The
terminal transient phase can also be recognized in this model,
with a length of approximately TTP ≈ 12 steps (concerning
a perturbation strength of � = 0.01), which is significantly
larger than the Lyapunov time of tL ≈ 2.3 steps.

Furthermore, we found that all trajectories are passing
relatively small areas in the state space before their termi-
nation. These regions of the state space [marked by (t1)–(t4)
in Fig. 2(b)] are magnified in Fig. 2(d). Trajectories pass
these regions at 9 (t1), 8 (t2), 6 (t3), and 1 (t4) steps before
self-termination, respectively [also marked as vertical dashed
lines in Fig. 2(c)]. In the enlarged maps of the state space
[Fig. 2(d)], the distribution of the states of 10 000 trajectories
is depicted in black. Although the chaotic attractor does not
exist anymore here, the stable manifold of the fixed point P2

still determines the boundary between chaotic (gray-shaded)
and nonchaotic domains of the state space. The area colored in
purple sketches the region where the trajectories are distributed
after a perturbation of amplitude � = 0.01 [corresponding to
the purple line in subplot (c)]. The behavior of 〈T 〉pert can be
understood here using an intuitive geometrical picture: The
overlap of the purple area (perturbed trajectories) and the
gray-shaded region of the state space (chaotic regime) is a
good approximation for the amount of trajectories that remain
after the perturbation inside the chaotic regime (prevention
of the collapse). This is in particular plausible for the case
n = −1 [(t4), thus trajectories which are one step away from
self-termination], where only few trajectories can be perturbed
back toward the chaotic regime. Also, the difference of 〈T 〉pert

between different perturbation amplitudes at n = −9 (t1),
thus trajectories which will self-terminate in nine steps) is
reasonable in this picture when referring to subplot (d, t1):
perturbations of size � = 0.01 (purple curve) can shift a
significant amount of the trajectories back to the chaotic
regime, however, if the perturbation strength decreases (e.g.,
� = 0.001) perturbations are too small to overcome the dis-
tance of most of the trajectories (black) to the (former) basin
boundary (green), thus, they cannot be perturbed toward the
chaotic regime again and self-termination is almost certain.
This dynamic is reflected in the difference of 〈T 〉pert at t1
between a perturbation amplitude of � = 0.001 and � = 0.01
[orange and purple line in Fig. 2(c), respectively].

Furthermore, the characteristic “knee” visible in Fig. 2(c)
for n � −7 and perturbation strengths of � � 0.01 can be
understood using geometrical considerations. For n < −7, the
decrease of 〈T 〉pert is determined by the change of the curvature
of the boundary [e.g., t1 and t2 in Fig. 2(d)]. For n � −7,
the trajectories are located close to rather straight boundaries
[e.g., t3 in Fig. 2(d)] where the curvature does not change
significantly anymore for increasing n. In the final phase

(n � −5), the trajectories depart (approximately orthogonally)
from the boundary [e.g., t4 in Fig. 2(d)], which causes the final
decrease of 〈T 〉pert.

The geometrical considerations that provide an intuitive
understanding of the mechanism which underlies the formation
of the TTP in the Hénon map can be used to interpret the
state space structure also in the high-dimensional models, as
the Gray-Scott model. Connected regions where perturbations
do not significantly change the reference trajectory anymore
[see Figs. 3(d), 3(e) and 3(f)] are growing in size when
converging to the point of self-termination. This behavior
suggests, that similar geometrical or topological structures
found in the Hénon map are also present in the state space
of high-dimensional models as, for example, the Gray-Scott
model.

V. SCALING PROPERTY OF THE LENGTH OF THE TTP

In this section we investigate how the length of the TTP
depends on (i) the system size and (ii) choice of parameters
of the respective model. For this purpose, we (i) vary the
number of elements of the one-dimensional ring of Gray-Scott
simulations and we (ii) modify parameter a of the Hénon map,
which was adapted in Ref. [14] to cause the boundary crisis.

In the first case we determine the average lifetime 〈T 〉IC

of chaotic transients for a various number of elements N

([120, 130, 140, 150, 160]) and find that 〈T 〉IC is increasing
exponentially with the system size [black dots in Fig. 4(b)].
This behavior can be observed in a whole group of spa-
tially extended systems which exhibit chaotic transients (e.g.,
Ref. [17]), called type-II transient turbulence [18] or type-II
supertransients [1].

In the Hénon map the average lifetime 〈T 〉IC depends sen-
sitively on the choice of parameter a [black dots in Fig. 4(d)].
Indeed, below a ≈ 1.4269212 the boundary crisis does not
happen and persistent chaos can be observed. Reducing param-
eter a from above this bifurcation point increases the average
lifetime 〈T 〉IC until the dynamics is governed by a chaotic
attractor. This dependence of the transient lifetime on a critical
parameter p has been investigated in the vicinity of a critical
point pcrit for various systems, e.g., in Refs. [19,20], where it
was shown that

〈T 〉IC ∼ (p − pcrit )
−γ , (6)

with a critical exponent γ , which is γ = 2 in the case of the
Hénon map. This transition from transient chaos to persistent
chaotic dynamics has, however, not been reported for the
Gray-Scott model where the average lifetime merely grows
exponentially.

Regarding this sensitive dependence of the timescale of
〈T 〉IC on the spatial size of the system and the choice of pa-
rameters, we are interested how the temporal length of the TTP
scales under this conditions. Beyond calculating the average
lifetime of chaotic transients [black dots in Figs. 4(b) and
4(d), respectively, for the Gray-Scott model and the Hénon
map], the length of the TTP was determined for each system
size and choice of parameter a, respectively, using a fixed
perturbation amplitude of � = 0.1 (Gray-Scott model) and
� = 0.01 (Hénon map). 〈T 〉pert (normalized by the respective
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FIG. 4. The scaling property of the length of the TTP. In subplot
(a), 〈T 〉pert is shown (normalized to 〈T 〉IC) for varying system size
(indicated by the color) for the Gray-Scott model. Each curve is
calculated based on 50 trajectories. The dependence of 〈T 〉IC on
the system sizes is depicted in subplot (b), separately (in black). To
compare the length of the TTP for different system sizes, the point in
time is determined for each curve where 〈T 〉pert reaches 75% of 〈T 〉IC.
This quantity TTP75 is shown in (b) for each system size. The same
analysis has been performed for the Hénon map in subplots (c) and (d),
where 〈T 〉pert and 〈T 〉IC have been determined for varying parametera.
The gray-shaded region in subplot (d) indicates the parameter regime
where the chaotic dynamics is persistent. In the Gray-Scott model and
the Hénon map, the average lifetime of chaotic transients depends
sensitively on the system size (b) or the parameter a (d), respectively.
However, the length of the TTP measured by TTP75 does not change
significantly.

average lifetime 〈T 〉IC) is shown for each system size in
Fig. 4(a) (Gray-Scott model) and each choice of parameter
a in Fig. 4(c) (Hénon map).

To achieve a reasonable comparison of the length of the
TTP between the different cases, we measured the point
in time when 〈T 〉pert reaches 75% of the average transient
lifetime 〈T 〉IC (denoted as TTP75). With this approach we
reduce the influence of fluctuations of 〈T 〉pert, which originate
from the finite number of reference trajectories investigated (50
in the case of Gray-Scott model, 10 000 in the case of the Hénon
map). TTP75 is sketched in Figs. 4(b) and 4(d), respectively, as
gray dots. Small variations can be observed, dependent on the
system size (Gray-Scott model) and the parameter a (Hénon
map), respectively, but no clear trend is visible. That means,
although the average lifetime of both systems changes by
orders of magnitude, the length of the TTP remains relatively
constant.

Despite these empirical investigations, in the tent map the
change of the length of the TTP due to parameter changes
can be determined analytically. As described in Ref. [9], the
transient lifetime depends on the only parameter of the map
atent, where for 0 < atent � 2 persistent chaos can be observed
whereas for atent > 2 the chaotic dynamics is transient within
the unit interval (0, 1).

The following considerations regarding the analytical de-
termination of the TTP in the tent map have been discussed in

FIG. 5. The TTP in the tent map. 〈T 〉pert (normalized to 〈T 〉IC)
is shown in subplot (a) for different perturbation strengths [based on
Eq. (7)] and a fixed parameter atent = 2.001. In subplot (b), the average
lifetime 〈T 〉IC is sketched in black for a varying parameter atent . Also,
the length of the TTP which is determined based on Eq. (10) for a fixed
perturbation strength of � = 0.0001 is depicted as the gray dashed
line. The gray-shaded region indicates the regime where the chaotic
dynamics is persistent.

Ref. [9]. Here, 〈T 〉pert can be determined analytically:

〈T 〉pert (n,�) = 〈T 〉IC min

(
�

L(n)
, 1

)
, (7)

L(n) = (atent − 2)/a−n
tent, (8)

with n ∈ [−1,−2,−3, . . . ]. Using Eq. (7), 〈T 〉pert can be
determined for different perturbation amplitudes (sketched
(normalized to 〈T 〉IC) in Fig. 5(a), with atent = 2.001).

Consequently, the length of the TTP is defined by the
following equation:

�

L(n)
= 1, (9)

which results in the dependence between n and atent,

nTTP(atent ) = − logatent

atent − 2

�
. (10)

Based on Eq. (10), the length of the TTP is sketched in
Fig. 5(b) (gray dashed line) for a perturbation amplitude of
� = 0.0001 together with 〈T 〉IC (which was calculated based
on 10 000 initial conditions). Initial conditions were chosen
randomly from the unit interval (0, 1). The self-termination
of the chaotic dynamics was defined, when a value >1 was
reached.

Similar to the analysis of the Hénon map, the transient
lifetime increases as the parameter atent approaches the “bound-
ary” between persistent and transient chaos (at atent = 2). Also
here, the average lifetime 〈T 〉IC can be described close to
atent = 2 by Eq. (6) with γ = 2.

At the same time, the length of the TTP drops significantly
in this region. Since it grows logarithmically with increasing
atent, for larger atent it will not change dramatically.

If the underlying mechanism which causes the appearance
of the TTP based on the state space structure is comparable to
the Hénon map, the dependence of the length of the TTP on pa-
rameter changes (here controlling the “distance” to the regime
of persistent chaos) should also be similar. From this perspec-
tive, the drop of TTP75 in Fig. 4(d) around a = 1.427 could be
an indication for comparability. However, we could not verify
this conjecture, or validate a general scaling behavior.
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VI. CONCLUSION

In this study we investigated the terminal transient phase
of chaotic transients in a spatially extended domain of the
Gray-Scott model, and the two-dimensional Hénon map. A
terminal transient phase of finite size could be determined in
both models, emphasizing the generality of this phenomenon
(additional to the Fenton-Karma model [21], the Morris-
Lecar network [22], and the tent map, discussed in Ref. [9]).
Furthermore, we showed that the temporal length of the
TTP is substantially longer than the Lyapunov time. This
underlines that the approach of probing the state space with
small but finite perturbations provides different insight into the
structure of the state space than the Lyapunov approach, which
characterizes the evolution and impact of infinitesimally small
perturbations, only. The terminal transient phase is a robust
feature occurring in many systems (of various complexity and
dynamics) which exhibit chaotic transients. So far, it cannot
be understood using “conventional” methods from nonlinear
dynamics (e.g., Lyapunov analysis). For a dynamical system
like the tent map where all local Lyapunov exponents are
the same (homogeneous stretching behavior) the Lyapunov
exponent(s) characterize(s) the growth rate of the exit sets
(as long as the size of these sets does not exceed some
limit of the linear approximation underlying the concept
of Lyapunov exponents). In the general case, where local
Lyapunov exponents may fluctuate (significantly) the link
between (globally averaged) Lyapunov exponents and the local
stretching properties of the exit sets is not so obvious. If the
exit sets are distributed on the chaotic saddle in a way such that
the average of the local stretching at the exit sets is close to the
value of the (global) Lyapunov exponents then the Lyapunov
exponents might be used to characterize the lengths of the TTP.
However, whether and when this condition is fulfilled is not
clear a priori.

We furthermore investigated how the length of the TTP
depends on parameter changes and system size variations,
which in the models discussed in this study resulted in a
significant shift of the average transient lifetime of the chaotic
transients. In the Gray-Scott model, a change of the length of
the TTP could not be detected, although the average lifetime of
the chaotic transients increased by orders of magnitude when
increasing the size of the spatial domain. Also in simulations
of the Hénon map, changing a model parameter did not notably
affect the length of the TTP. However, analytical investigations
of the tent map indicated a parameter dependent length of
the TTP that decreased logarithmically when approaching the
parameter value of persistent chaos (atent = 2). Whether the un-
derlying mechanisms of the TTP in the tent map and in the
Hénon map are comparable is nevertheless not clear.

Additional to the analytical considerations regarding the
emergence of the TTP in the tent map, the appearance of the
TTP in the Hénon map can at least be understood geometrically
by observing trajectories in the state space. In particular, the
boundary between the chaotic and the nonchaotic regime in
the state space could be determined, and the shape or curva-
ture of the boundary in the vicinity of trajectories improves
the understanding for the underlying mechanism. Spatially
connected regions of perturbations which cannot prevent the
upcoming self-termination in simulations of the Gray-Scott
model suggest that the change of the state space structure which
causes the creation of the TTP may be comparable.

Since the timescale of the length of the TTP may be essential
in applications, the fact that the temporal length of the TTP
does not depend sensitively on the choice of parameters or the
size of the system (at least in the models studied here) could
be practically relevant. In particular when one is interested
in predicting the upcoming self-termination, the length of the
TTP needs to be compared to the relevant timescale of the
specific system. For example, the terminal transient phase of
the transient chaotic dynamics of spiral waves as a model
for ventricular fibrillation should be equal or larger than the
intrinsic timescale of the system, which is here the spiral
period. If the length of the TTP does not (or only weakly)
depend on the system size or parameters, a prediction of
self-termination of the chaotic dynamics in the heart could
in principle be possible, based on the features of the terminal
transient phase.

The end of the transients regarding the models we inves-
tigated so far was mainly abrupt, thus, the transient lifetimes
could be determined in a rather straightforward manner. In
general, determining the end of transient dynamics can be
nontrivial. To investigate cases of nonabrupt self-termination
(for example, if the attractor is reached via weakly damped
oscillations) suitable criteria are required for determining the
moment in time when the attractor is reached, like those
presented and investigated by Kittel et al. [23] for the general
problem of quantifying reaching times.
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