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Dynamical effects of breaking rotational symmetry in counter-rotating Stuart-Landau oscillators
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Stuart-Landau oscillators can be coupled so as to either preserve or destroy the rotational symmetry that the
uncoupled system possesses. We examine some of the simplest cases of such couplings for a system of two
nonidentical oscillators. When the coupling breaks the rotational invariance, there is a qualitative difference
between oscillators wherein the phase velocity has the same sign (termed co-rotation) or opposite signs (termed
counter-rotation). In the regime of oscillation death the relative sense of the phase rotations plays a major role.
In particular, when rotational invariance is broken, counter-rotation or phase velocities of opposite signs appear
to destabilize existing fixed points, thereby preserving and possibly extending the range of oscillatory behavior.
The dynamical “frustration” induced by counter-rotations can thus suppress oscillation quenching when coupling
breaks the symmetry.
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I. INTRODUCTION

The collective behavior of ensembles of interacting os-
cillators has been of considerable interest in a number of
disciplines in both the natural as well as the social sciences
[1–4]. The nature of the collective behavior depends to a large
extent upon the dynamical properties of the individual units
as well as on the nature of the coupling [5]. It is known, for
instance, that different types of internal dynamics give rise
to different scenarios of synchronization [2,3,6]. Furthermore,
different types of coupling interactions lead to interesting
spatio-temporal behavior such as traveling wave solutions,
chimeric states, or glassy dynamics [7–9]. The coupling can
also destroy oscillations; this is the phenomenon of oscillation
quenching [10–15], namely, the suppression of oscillations as
a consequence of the coupling. When this occurs, oscillators
appear to drag each other towards a fixed point and reach
an equilibrium. This may happen when the coupling between
the oscillators stabilizes one of the previously unstable fixed
points, termed amplitude death (AD). Alternatively, a new
set of stable fixed points may be created, and this is termed
oscillation death (OD) [14].

A number of studies of coupled oscillator systems have
focused on the Stuart-Landau (SL) oscillator since it provides
a universal model for the dynamics in the vicinity of a
supercritical Hopf bifurcation [16]. The equation of motion
for this system can be written in the form

ż = (1 + iω − |z|2)z, (1)

where z is a complex variable and ω is the oscillation frequency.
Under the transformation z → zei�t , the form of the equation
remains unchanged, albeit with frequency ω → ω + �.

This rotational invariance may be preserved or destroyed
when two or more such oscillators are coupled, and in the
present work, our interest is in examining the dynamical

consequences of breaking rotational symmetry. We therefore
study the manner in which the relative phase velocity affects the
collective dynamics in coupled SL systems. For two coupled
oscillators, the phase velocities can either have the same sign,
in which case these are termed co-rotating, or can have opposite
signs, in which case they are counter-rotating [17]. When
rotational invariance is preserved, a suitable choice of � can
remove the distinction between co- and counter-rotation. When
rotational invariance is broken, though, the cases of co- and
counter-rotation act differently.

A number of commonly studied chaotic oscillator systems
possess discrete symmetries, and the effect of couplings that
keep or break these symmetries has also been studied in a
number of papers [12,18,19]. It is known that for a network of
nonlocally coupled identical SL oscillators with symmetry bro-
ken coupling shows various dynamical states such as amplitude
chimeras, amplitude cluster, frequency chimera, frequency
cluster states [18], and stable and transient multiclustered
patterns [19], as the coupling range is increased a novel pattern
termed chimera death was observed by Zakharova et al. [20].
Time-delayed coupling also breaks the rotational symmetry,
and similar phenomena of amplitude death are observed for two
ore more SL oscillators coupled via time delayed coupling [12].
Clustered chimera states exist in a ring of such oscillators [21],
and the lifetime of the chimeras can be significantly enhanced
by coupling delay [22]. It is interesting to note that competing
effects between attractive and repulsive couplings induce
spontaneous symmetry breaking in a homogenous system of
coupled oscillators [23].

As we see in the following section wherein we describe
the model of coupled SL oscillators and discuss the nature of
their interaction, linear forms of the coupling will preserve
the rotational symmetry. Nonlinear couplings often break
invariance, and we study some simple cases. We recover
the instance of coupling between dissimilar variables (termed
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conjugate coupling in earlier work [14]) as a special case and
present analytical and numerical results for the cases of co-
and counter-rotation in Sec. II for the rotational symmetry-
preserving as well as rotational symmetry-breaking cases. This
is followed by a discussion and summary in Sec. III.

II. COUPLED OSCILLATORS

Consider a system of two coupled SL oscillators

żk = (1 + iωk − |zk|2)zk + εgk (zk, zj ), (2)

where j, k = 1, 2, and j �= k. We take the frequencies ωk

to be distinct, ε is the coupling strength, and gk are coupling
functions. It is convenient to consider the system in coordinates
xk, yk with zk = xk + iyk , in which the equations of motion
read

ẋk = [
1 − (

x2
k + y2

k

)]
xk − ωkyk + εgkr ,

ẏk = [
1 − (

x2
k + y2

k

)]
yk + ωkxk + εgki,

(3)

with k = 1, 2, and gkr and gki denote the real and imaginary
parts of the coupling functions, gk .

In the absence of coupling, namely for ε = 0, the relative
signs of ω1 and ω2 are inconsequential: they can be made
identical or different by transforming to a common rotating
frame zk → zke

i�t and by suitably choosing �, the sign
of effective frequency (ωk + �) can be made positive or
negative. Clearly, rotational symmetry is preserved if under
this transformation the coupling function also transforms in
the same way, namely, gk → gke

i�t .
Below we discuss both types of coupling and contrast the

dynamics that results when the phase velocities have similar or
opposite signs, namely the cases of co- and counter-rotation.

A. Symmetry-preserving case

In this section we consider two different coupling schemes
which preserve rotational symmetry in the coupled SL system.
The most commonly considered case is of linear coupling
between the oscillators:

ż1 = (1 + iω1 − |z1|2)z1 + ε(z2 − z1),

ż2 = (1 + iω2 − |z2|2)z2 + ε(z1 − z2). (4)

Separating into real and imaginary parts, one can rewrite the
above equations as

ẋi = [
1 − (

x2
i + y2

i

)]
xi − ωiyi + ε(xj − xi ),

ẏi = [
1 − (

x2
i + y2

i

)]
yi + ωixi + ε(yj − yi ) (5)

with i, j = 1, 2, and j �= i.
The origin (x∗

1 , y∗
1 , x∗

2 , y∗
2 ) = (0,0,0,0) ≡ zc in the cou-

pled system is an equilibrium. Around this fixed point, the
linearized dynamics is given by δż = |J |zc=0δz, where δz =
(δx1, δy1, δx2, δy2)T and the Jacobian matrix is

|J |z∗ =

⎛
⎜⎝

1 − ε −ω1 ε 0
ω1 1 − ε 0 ε

ε 0 1 − ε −ω2

0 ε ω2 1 − ε

⎞
⎟⎠. (6)
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FIG. 1. Lyapunov exponents of the system coupled through sim-
ilar variables [Eq. (5)] are plotted as function of coupling strength
ε with lines (solid, long-dashed, short-dashed, and dotted lines for
LE1,2,3,4, respectively), along with the real part of the eigenvalues λ

[filled circle, Eq. (7)] and � [open triangles, Eq. (13)].

The stability of the origin is determined by the eigenvalues
λ of J , which can easily be shown to be

λ = 1 − ε ∓
√

ε2 − �ω2

4
∓ iω̄, (7)

where mismatch �ω = ω2 − ω2 and average frequency ω̄ =
(ω1 + ω2)/2. The real and imaginary parts of the eigenvalues
are

Re(λ) = (1 − ε), if ε � �ω

2

= (1 − ε) ∓
√

ε2 − �ω2

4
, if ε >

�ω

2
(8)

and

Im(λ) = ∓
√∣∣∣∣ε2 − �ω2

4

∣∣∣∣ ∓ ω̄, if ε � �ω

2

= ∓ω̄, if ε >
�ω

2
. (9)

The stability is determined by the largest real part of the
eigenvalues, and this turns out to be independent of ω̄: thus for
both co- and counter-rotations, the regions of negative Re(λ)
are unaltered, and the parameter windows for which AD is
observed in the system are unchanged. From Eq. (8) it can be
seen that the critical values of ε that bound the region of AD
are εA = 1, and εB = 1

2 (1 + �ω2/4), as marked in Fig. 1.
We examine the system by transforming Eq. (5) to polar co-

ordinates, taking θi = arctan(yi/xi ) and ri =
√

x2
i + y2

i , i =
1, 2. The dynamics is governed by

ṙ = r (1 − ε − r2) + εr cos φ,

φ̇ = �ω − 2ε sin φ,
(10)
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where r1 = r2 = r , φ = (θ2 − θ1), and �ω = (ω2 − ω1). Sta-
tionary solutions for the above equation,

r∗2 = 1 − ε ±
√

ε2 −
(

�ω

2

)2

,

φ∗ = arcsin

(
�ω

2ε

)
(11)

will exist for ε � �ω/2. Note that the individual frequencies
θ̇1,2 in this state are given by θ̇1,2 = ω1,2 ± �ω/2, i.e., θ̇1,2 =
ω̄, implying that the oscillators are moving with the same
collective frequency ω̄. Hence for co-rotating oscillators (when
ω̄ �= 0), these solutions correspond to the oscillations with a
constant amplitude and a constant phase difference, namely, the
phase-locked or synchronized motion with frequency ω̄. These
oscillations are suppressed in the counter-rotating system since
the frequency is ω̄ = 0.

The stability is governed by the eigenvalues of the Jacobian
matrix [obtained from Eq. (10)]:

H =
(

1 − ε − 3r∗2 + ε cos φ∗ −εr∗ sin φ∗
0 −2ε cos φ∗

)
. (12)

Since H is upper triangular, the eigenvalues �1,2 are given
by the diagonal elements, and using Eq. (11) one gets

�1 = −2(1 − ε) ∓ 2
√

ε2 − �ω2/4 = −2(1 − ε) − 2εC,

�2 = ∓2
√

ε2 − �ω2/4 = −2εC, (13)

where C = cos φ∗ = ±(1 − �ω2/4ε2)
1/2

. There are two
branches of eigenvalues corresponding to the positive and
negative values of the quantity C. When C < 0, �2 is always
positive, indicating that the solution is always unstable. How-
ever, when C is positive, the solutions are stable when

ε > 1
2 (1 + �ω2/4), (14)

and the resulting dynamics are synchronized oscillatory motion
for co-rotating oscillators.

Lyapunov exponents (LEs) of the coupled system Eq. (5)
are shown in Fig. 1 along with the real parts of the eigenvalues,
namely, Eqs. (8) and (13) for the case of co-rotating oscillators,
namely, ω1 = 12 and ω2 = 8. These quantities are same for
counter-rotating oscillators with equal amount of mismatch
�ω = 4, ω̄ = 0. In the coupling interval εA = 1 � ε � εB =
1
2 (1 + �ω2/4) the origin is stable since Re(λ) < 0 (shown by
blue circles). Furthermore, the solutions described in Eq. (11)
stabilize at ε = 1

2 (1 + �ω2/4) = 2.5 when Re(�) (shown by
triangles) is less than zero. These correspond to phase-locked
periodic solutions (Psync) with frequency ω̄ in the co-rotating
case whereas nonoscillatory solutions (ω̄ = 0) for the counter-
rotating case.

This analysis can be directly verified through simulations.
Trajectories in phase space and the corresponding time series
are plotted in Fig. 2 for the co-rotating case at select values
of ε (marked by arrows in Fig. 1). For small ε, in Fig. 2(a),
systems show incoherent oscillatory behavior. For 1 < ε < 2.5
the origin is stable and one has amplitude death, so in Fig. 2(b)
the trajectories eventually go to the origin. Finally, in Fig. 2(c),
one has phase-locked behavior.
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FIG. 2. For similar-variable coupling and co-rotating oscillators
[Eq. (5)], shown in left panel is the behavior of the system in phase
space (xi, yi plane) at different coupling values. Trajectories of two
oscillators are shown by solid-red and dotted-blue lines, respectively.
The starting point of the two trajectories is shown by open boxes,
and the final states are shown by filled circles. Corresponding time
series of variables x1,2 are plotted on the right panel using solid-red
and dotted-blue lines. Panels (a)–(c), respectively, correspond to the
behaviors at different coupling values ε = 0.5, 2.25, 3.5, as marked
in Fig. 1.

Note that coupling the oscillators via

ż1 = (1 + iω1 − |z1|2)z1 + ε
1

z̄2
,

ż2 = (1 + iω2 − |z2|2)z2 + ε
1

z̄1
(15)

will also preserve rotational symmetry. In terms of real and
imaginary parts, this can be written as

ẋi = [
1 − (

x2
i + y2

i

)]
xi − ωiyi + εxj

x2
j + y2

j

,

ẏi = [
1 − (

x2
i + y2

i

)]
yi + ωixi + εyj

x2
j + y2

j

. (16)

Shown in Fig. 3 are the three largest LEs for this instance
of coupling. The amplitude death region is absent here, and
the largest exponent is zero. We find that the exponents are
same for co– and counter-rotating oscillators. A phase-locked
state is observed in co-rotating oscillators above the coupling
value εB (indicated in the figure). Here the synchronized
frequency is given by ω̄. As counter-rotations are defined
to be the oscillators with equal frequency magnitude and
opposite directions, this oscillatory dynamics is suppressed for
counter-rotating oscillators as ω̄ = 0.

A variety of nonlinear functional forms of coupling preserve
rotational invariance, such as the coupling terms

Pn+1(z1, z2)

Pn(z1, z2)
or

Pn(z∗
1, z

∗
2 )

Pn+1(z∗
1, z

∗
2 )

,

where Pn is a homogeneous polynomial of degree n. More
complex coupling terms that will preserve rotational invariance
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FIG. 3. Lyapunov exponents (LE1,2,3,4 are plotted with solid,
long-dashed, short-dashed and dotted lines, respectively) of the
coupled system for symmetry preserving coupling case [given in
Eq. (15)] as a function of ε with ω̄ = 10.

can be devised, such as

c1z1 + c2z2

c3(z1z
∗
2 + z2z

∗
1 )

or
c3(z1z

∗
2 + z2z

∗
1 )

c1z
∗
1 + c2z

∗
2

,

where ci are real numbers, and other generalizations that
include higher order polynomials in the numerator and
denominator.

B. Symmetry-breaking cases

Here we study some simple examples of coupling functions
that do not preserve rotational invariance. When two SL
oscillators are coupled through a quadratic diffusive-type term,
the equations of motion become

ż1 = (1 + iω1 − |z1|2)z1 + ε(z2 − z1)2,

ż2 = (1 + iω2 − |z2|2)z2 + ε(z1 − z2)2,
(17)

which in terms of real and imaginary parts can be written as

ẋi = [
1 − (

x2
i + y2

i

)]
xi − ωiyi + ε[(xj − xi )

2 − (yj − yi )
2],

ẏi = [
1 − (

x2
i + y2

i

)]
yi + ωixi + 2ε(xj − xi )(yj − yi ). (18)

The Jacobian at the fixed point zc = (x∗
1 , y∗

1 , x∗
2 , y∗

2 ) =
(0, 0, 0, 0) is

|J |z∗ =

⎛
⎜⎝

1 −ω1 0 0
ω1 1 0 0
0 0 1 −ω2

0 0 ω2 1

⎞
⎟⎠, (19)

with eigenvalues

λi = 1 ∓ iωi. (20)

Thus the origin in the coupled system is always unstable.
One can obtain the phase diagram as a function of the

parameters ε and �ω as shown in Fig. 4(a). The labels P and
OD correspond to oscillatory and oscillation death regions,
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FIG. 4. (a) Different dynamical states observed in the system
as a function of ε and �ω for co-rotating nonlinearly coupled SL
oscillators, Eq. (18) (symmetry-breaking case). The dynamics is either
periodic (P) or there is oscillation death (OD). (b) Lyapunov exponents
(LEs) of the coupled system as a function of coupling strength ε for
�ω = 2.

respectively, for co-rotating nonlinear diffusively coupled SL
oscillators. The line (enclosing the OD region) indicates the
largest LE-changing sign. The details of the different transi-
tions as [indicated in Fig. 4(a)] are depicted in Fig. 4(b) where
the LEs of the coupled system Eq. (18) are shown.

Representative trajectories are shown in Fig. 5 with ω1 = 1
and ω2 = 3. Initially the motion is periodic as shown in
Fig. 5(a) and as ε is increased, the largest LE becomes
negative, corresponding to oscillation death. Trajectories lead-
ing to the fixed point are shown Fig. 5(b), and on further
increasing ε oscillations revive as shown in Fig. 5(c). Note
that the periodic motion before OD region is unsynchro-
nized, while subsequent to OD, the periodic motion is phase-
synchronized.

There is a significant contrast in the behavior of counter-
rotating oscillators. The coupled oscillators show only oscil-
latory motion, and OD does not occur for this case. The LEs
of the coupled system Eq. (18) shown in Fig. 6 for �ω = 2
(ω1 = 1 and ω2 = −1) suggests that oscillatory dynamics is
revived for counter-rotating oscillators. Details of the tra-
jectories are shown in Fig. 7, where the system is shown
to have either incoherent or phase-synchronized oscillatory
motion.
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FIG. 5. For nonlinear symmetry-breaking coupling [Eq. (18)] and
co-rotating oscillators, shown in the left panel is the behavior of the
system in phase space (xi, yi plane) at different coupling strengths.
Trajectories of two oscillators are shown by solid-red and dotted-blue
lines, respectively. The starting point of the two trajectories are shown
by open boxes, and the final states are shown by filled circles.
The corresponding time series of variables x1,2 are plotted in the
right panel. Panels (a)–(c), respectively, correspond to the behavior
at coupling strength ε = 0.75 (periodic and unsynchronized), 1.55
(oscillation death), and 2.0 (periodic and phase synchronized) as
marked in Fig. 4(b).

A second example of symmetry breaking that we consider
is the coupling of two SL oscillators as follows:

ż1 = (1 + iω1 − |z1|2)z1 + ε(iz̄2 − z1),
(21)

ż2 = (1 + iω2 − |z2|2)z2 + ε(iz̄1 − z2),

which in terms of real and imaginary parts can be written as

ẋi = [
1 − (

x2
i + y2

i

)]
xi − ωiyi + ε(yj − xi ),

ẏi = [
1 − (

x2
i + y2

i

)]
yi + ωixi + ε(xj − yi ). (22)
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FIG. 6. Lyapunov exponents (LEs) of the system (LE1,2,3,4 are
plotted with solid, long-dashed, short-dashed, and dotted lines, re-
spectively) as a function of the coupling strength ε for counter-rotating
nonlinearly coupled SL oscillators, Eq. (18) (symmetry-breaking
case).
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FIG. 7. For nonlinear symmetry-breaking coupling [Eq. (18)] and
counter-rotating oscillators, shown in left panel is the behavior of the
system in phase space (xi, yi plane) at different coupling strength.
Trajectories of two oscillators are shown by solid-red and dotted-
blue lines, respectively. The starting point of the two trajectories is
shown by open boxes, and the final states are shown by filled circles.
The corresponding time series of variables x1,2 are plotted on the
right panel. Panels (a)–(c), respectively, correspond to the periodic
behaviors at different coupling strength ε = 0.75, 1.55, and 2.0 as
marked in Fig. 6.

The coupling term thus involves the difference of “dis-
similar” variables, which in earlier works has been termed
conjugate coupling [14,24–26]. In this case also the origin
(denoted zc) is a trivial fixed point, and the Jacobian matrix
is

|J |zc=0 =

⎛
⎜⎝

1 − ε −ω1 0 ε

ω1 1 − ε ε 0
0 ε 1 − ε −ω2

ε 0 ω2 1 − ε

⎞
⎟⎠. (23)

The eigenvalues of the Jacobian at the origin in this case are
given by

λ = 1 − ε ∓
√

ε2 − ω̄2 ∓ i
�ω

2
, (24)

the real and imaginary parts being

Re(λ) = (1 − ε), if ε � ω̄

= (1 − ε) ∓
√

ε2 − ω̄2, if ε > ω̄ (25)

and

Im(λ) = ∓
√

|ε2 − ω̄2| ∓ �ω

2
, if ε � ω̄,

= ∓�ω

2
, if ε > ω̄. (26)

In contrast to the earlier case of coupling through similar
variables, in the conjugate coupling case the real part of the
eigenvalues and hence the stability of the fixed point is af-
fected by the case of counter-rotating oscillators. Since ω̄ = 0,
Re(λ) = 1, and thus the fixed point at the origin is never stable.
For co-rotating oscillators (both identical or mismatched) the
origin stays stable between the critical coupling values εA = 1
and εB = 1

2 (1 + ω̄2) [Fig. 8(a)].
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FIG. 8. Lyapunov exponents (LEs) for conjugate coupling
through dissimilar variables [Eq. (22)] (LE1,2,3,4 are plotted with
solid, long-dashed, short-dashed, and dotted lines, respectively) as
a function of coupling strength ε, along with the real part of the
eigenvalues of the Jacobian λ [filled circle, Eq. (25)], � [open
triangles, Eq. (31)] for (a) mismatched co-rotating �ω = 4, ω̄ = 4
and (b) counter-rotating �ω = 4, ω̄ = 0 oscillators.

The equations for amplitudes and phases in polar coordi-
nates now become

ṙi = ri

(
1 − ε − r2

i

) + εrj sin(θi + θj ),

θ̇i = ωi + ε
rj

ri

cos(θi + θj ), i, j = 1, 2, i �= j. (27)

In the variable θ = (θ1 + θ2) symmetric solutions with
r1 = r2 are given by the equation of motion

ṙ = r (1 − ε − r2) + εr sin θ,
(28)

θ̇ = 2ω̄ + 2ε cos θ,

with the steady-state solution

r∗2 = 1 − ε ±
√

ε2 − ω̄2,

θ∗ = arccos(−ω̄/ε). (29)

Thus stationary solutions exist for ε � ω̄, with the frequen-
cies of the individual oscillators given by θ̇1 = −�ω/2 and
θ̇2 = +�ω/2.

When the co-rotating oscillators are mismatched, �ω �= 0,
this represents a dynamics with equal amplitudes r∗ and
counter-oscillations (denoted PCO [27]) in individual oscil-
lators (θ̇1 = −θ̇2) and corresponds to mixed synchroniza-
tion [17,27]. The stability of such solutions [Eq. (29)] can be
estimated as before from the corresponding Jacobian

H =
(

1 − ε − 3r∗2 + ε sin θ∗ −εr∗ cos θ∗
0 −2ε sin θ∗

)
, (30)

the eigenvalues of which are

�1 = −2(1 − ε) ∓ 2
√

ε2 − ω̄2,

�2 = ∓2
√

ε2 − ω̄2. (31)
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FIG. 9. Trajectories in the phase space (left panel) and corre-
sponding time series of variable x1,2 (right panel) are plotted at
different coupling values (a) ε = 0.5, (b) ε = 6, and (c) ε = 10 for
conjugate coupling and mismatched co-rotating oscillators system
�ω = 4, ω̄ = 4. Trajectories of two oscillators are shown by solid-red
and dotted-blue lines, respectively. The starting point of the two
trajectories is shown by open boxes, and the final states are shown
by filled circles.

The stability condition for these solutions is given by

ε > 1
2 (1 + ω̄2). (32)

Note that for co-rotating oscillators the critical value of the
coupling where these solutions [Eq. (29)] become stable is the
point where origin loses it stability.

In the numerical simulations below, for the co-rotating
oscillators we have taken ω̄ = 4 and �ω = 4, and for counter-
rotating oscillators we consider ω̄ = 0 with �ω = 4, respec-
tively. The LEs of the system [Eq. (22)] and real part of the
eigenvalues, Eq. (25) and (31) are shown in Fig. 8 for the
two cases of (1) co-rotating oscillators and (2) counter-rotating
oscillators.

In the co-rotating case the origin is stable between εA = 1
and εB = 1

2 (1 + ω̄2) = 8.5 since in this region, Re(λ) [shown
by blue circles in Fig. 8(a)] is negative. For counter-rotations
[Fig. 2(b)], the origin remains unstable for the whole range
since Re(λ) = 1. Furthermore the solutions described in
Eq. (29) stabilize at ε = 1

2 (1 + ω̄2) = 8.5 (for co-rotations)
and ε = 0.5 (for counter-rotations), when Re(�) (shown by
triangles) crosses zero and becomes negative. These solutions
correspond to the dynamics with equal amplitudes but fre-
quencies of opposite signs, namely, counter-oscillations (PCO):
θ̇1 = −θ̇2 in both cases (a) and (b). Trajectories in phase
space and time series for one of the variables are shown in
Fig. 9 (co-rotating with mismatched frequencies) and Fig. 10
(counter-rotating oscillators) at selected values of ε that are
marked in Fig. 8.

Therefore, whenever SL oscillators are coupled so as to
break rotational symmetry, co- and counter-rotating oscillators
will have contrasting dynamical behavior.

III. SUMMARY

Our interest in the present work has been in analyzing the
dynamical consequences of symmetry breaking in coupled

022212-6
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FIG. 10. Trajectories in the phase space (left panel), and cor-
responding time series of variable x1,2 (right panel) are plotted at
different coupling values (a) ε = 0.5 and (b) ε = 6 for conjugate
coupling in counter-rotating system �ω = 4, ω̄ = 0. Trajectories
of two oscillators are shown by solid-red and dotted-blue lines,
respectively. The starting point of the two trajectories is shown by
open boxes, and the final states are shown by filled circles.

oscillator systems with co- and counter-rotations. We have ex-
amined here the example of coupled Stuart-Landau oscillators:
these have continuous symmetry, the equation of motion being
invariant under a rotational transformation.

When coupled, the rotational invariance can be preserved
or broken, and here we show that there are subtle effects that
depend on the details of the coupled oscillators. In particular,
oscillators with phase velocities that have opposite sign,
namely, counter-rotating oscillators behave differently from
the case when the velocities have the same sign (co-rotation).

A well-known phenomenon that occurs in coupled SL (and
other) oscillator systems is that of oscillation death, when
the coupled oscillators drive each other to a situation when
neither oscillates. This occurs when the coupling stabilizes
an otherwise unstable fixed point, or the coupling creates
a new stable fixed point. In counter-rotating systems when
the symmetry is broken, the regime of oscillation death is
suppressed.

We believe that the present results have wide applicability.
The SL system is representative of the generic behavior near
a Hopf bifurcation, and therefore this is a good model for
a typical nonlinear oscillator. The SL system is related not
only to the Ginzburg-Landau equation but also describes
the general two-dimensional solution of the Navier-Stokes
equations [28,29], and thus this model applies to wide variety
of situations. In addition, the sign of the phase velocity can
be of relevance in several instances such as cyclic flows
in plasma [30], atmospheric and oceanic currents [31], and
biological media [32]. In such cases the interaction of units
with oscillations in the same or opposite directions can be
of relevance [33–35]. Motion in opposing directions can
significantly modify the resulting behavior, particularly af-
fecting the nature of synchronization [17,36] and oscillation
quenching. This needs special consideration in the context
of designing control strategies in order to lead the system
to a specific desired state using various internal or external
parameters.

Apart from oscillation quenching, counter-rotations may
also effect the nature of synchronization giving rise to a new
type of “mixed synchronization” [17], where one can observe
positive and negative correlations simultaneously in different
variables of the system. Recent studies have drawn attention
to the significance of including sense of directions in the
motion and its possible effects on the dynamics [17,36–39].
However, further investigation is required to analyze the
combined effects of counter-rotations in the systems with
symmetry-breaking coupling, especially when other factors are
also considered such as time delay or dimensionality. These
and similar questions are being addressed in our ongoing
work [40].
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