
PHYSICAL REVIEW E 98, 022211 (2018)

Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation
with a Kerr-type nonlinearity
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We investigate the nonlinear dynamics of (1+1)-dimensional optical beam in the system described by the
space-fractional Schrödinger equation with the Kerr nonlinearity. Using the variational method, the analytical
soliton solutions are obtained for different values of the fractional Lévy index α. All solitons are demonstrated
to be stable for 1 < α � 2. However, when α = 1, the beam undergoes a catastrophic collapse (blow-up) like
its counterpart in the (1+2)-dimensional system at α = 2. The collapse distance is analytically obtained and a
physical explanation for the collapse is given.
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I. INTRODUCTION

The self-focusing of an optical beam [1–3], typically caused
by the nonlinear optical Kerr effect, is a universal nonlinear
phenomenon which can be found in almost all optical fields.
It has attracted considerable interest from the pioneer age of
nonlinear optics to today’s latest applications, such as fiber
lasers and all-optical switches. For the (1+2)-dimensional
[(1+2)-D] Kerr nonlinear system, an optical beam can evolve
into spikes of infinite amplitude in a finite propagation dis-
tance. This phenomenon is called wave collapse (blow-up). In
the 1960s, Kelley [4] first predicted self-focusing and collapse
based upon the self-trapping phenomenon, which was found by
Askar’yan [5] and Chiao et al. [6]. Later it was experimentally
observed by Lallemand et al. [7,8] and analytically explained
by Vlasov et al. [9], who developed the method of moments
to determine the collapse distance. Wave collapse is a fun-
damental physical phenomenon and has been also observed
in plasma waves [10], Bose-Einstein condensates or matter
waves [11], capillary-gravity waves on deep water [12], and
even in astrophysics [13]. By now wave collapse has been
well established in the context of the nonlinear Schrödinger
equation (NLSE), which is a well-known model for all systems
mentioned above. Typically it must be in two or more spatial
dimensions and above a certain critical power to generate
a collapse. However, in the (1+1)-dimensional [(1+1)-D]
case it was recently numerically reported by Klein et al. that
wave collapse (blow-up) can also occur in the context of a
NLSE involving a fractional Laplacian of order 1/2 [14].
Here the main purpose of our study is to obtain the analytical
expressions of the collapse distance and the critical power.

The fractional Schrödinger equation (FSE) in quantum
mechanics was discovered by Laskin in 1999 [15–17]. This
general model further stimulated interest in exploring its math-
ematical properties [18,19]. Recently, Longhi proposed that
the FSE can describe the temporal dynamics of the transverse
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light field in a cavity [20]. It is commonly known that the spatial
dynamics of light field can be analogous to the temporal one
in mathematical analysis. The FSE, involving the first-order
derivative in the evolutional coordinate z instead of the time
t , has now been applied to explore the beam propagation
properties. Examples include the diffraction-free beams [21],
beams in an external harmonic potential [22,23] and in a
parity-time symmetric potential [24], and various families of
solitons [25–28]. In addition, Zhang et al. suggested that the
real physical system described by the FSE can be potentially
realized by the honeycomb lattice [29].

In this study, the features of a soliton in the FSE are
investigated analytically and numerically. The stability anal-
ysis is also given and confirmed by numerical simulations.
Interestingly, it is shown that the wave collapse would occur
when the Lévy index α = 1 [14]. The expressions for the
collapse distance and the critical power are obtained by the
variational method. Finally, the occurrence of a collapse is
explained physically.

II. FRACTIONAL SCHRÖDINGER EQUATION AND
ITS SOLITON SOLUTIONS

We consider the following (1+1)-D FSE:

i
∂

∂z
� − 1

2

(
− ∂2

∂x2

)α/2

� + |�|2� = 0, (1)

where the transverse coordinate x is scaled by the characteristic
width, and (−∂2/∂x2)α/2 represents the fractional Laplacian
with α (1 < α � 2) being the Lévy index. Equation (1) can
describe two different physical situations. In the first, based on
the light temporal dynamical theory developed in Ref. [20], z

represents time which is normalized to the round-trip transit
time in a cavity, and here |�|2� stands for a thin nonlinear
slab instead of a phase mask. In the second, similar to the
model in Refs. [14,22,23,27], z represents the propagation
distance scaled by the Rayleigh range, and Eq. (1) describes the
evolution of a paraxial beam �(x, z) in a Kerr medium. Here
we mainly discuss the latter situation. For α = 2, Eq. (1) is
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FIG. 1. Intensity profiles (a) and their Fourier spectra (b) of
solitons for w = 1 when α = 1.0, 1.4, and 1.8. Soliton power Ps

(c) and propagation constant β (d) versus Lévy index α for w =
0.5, 1.0, and 2.0 (curves: the analytical results obtained by the
variational method; symbols: the numerical results).

reduced to the well-known NLSE. It is easy to demonstrate that
the beam power P = ∫ |�(x, z)|2dx is conserved for Eq. (1).

Note that Eq. (1) admits a scale transformation, i.e., if
�(x, z) is a solution of Eq. (1), then � ′ = ηα/2�(ηx, ηαz),
with a free parameter η, is also a solution. We look for station-
ary solutions of Eq. (1) in the form, �(x, z) = ψ (x) exp(iβ0z),
where β0 is the propagation constant of the soliton. The profile
ψ (x) is real and satisfies

−1

2

(
− ∂2

∂x2

)α/2

ψ + ψ3 = β0ψ. (2)

Using the scale invariance, its soliton solutions form a family
described by

�(x, z) = ηα/2ψ (ηx) exp(iηαβ0z). (3)

The parameter 1/η is a characteristic size of the beam in the
x direction and proportional to the beam width w. Thus, the
propagation constant β = ηαβ0 is proportional to ηα or w−α ,
while the soliton power Ps is proportional to ηα−1 or w1−α .
Therefore, for a fixed α, solitons with different widths or
propagation constants can be scaled to an identical profile.

When α = 2, Eq. (1) has a stable sech-form soliton solu-
tion [30]:

�(x, z) = η sech(ηx) exp(iη2z/2). (4)

For other α values, we did not find the precise analytical soliton
solutions. Therefore, we numerically solve Eq. (2) using the
accelerated imaginary-time evolution method [31]. Typical
intensity profiles of solitons for beam width w = 1 and the
corresponding spectra are presented in Figs. 1(a) and 1(b),
respectively. Here we define the soliton rms width w as

w2 = 2

[∫
x2|�(x, z)|2dx

P
−

(∫
x|�(x, z)|2dx

P

)2
]
. (5)

We note that either the soliton intensity or its spectrum gives
a sech-like solution as α tends to 2. When α approaches 1, the
soliton has a Lorentz-like profile, whose spectrum is evidently
close to the exponential-decay shape, as shown in Fig. 1(b).
For a fixed α, the relations of Ps ∝ w1−α and β ∝ w−α are
validated by our numerical results, which are fitted by the
curves in the form of power-law function.

Now we use the variational method [32] to study the
nonlinear dynamics of the FSE. For simplicity, we assume a
trial solution in the Gaussian form:

�(x, z) = A(z) exp[ib(z)] exp

{
− x2

2w2(z)
[1 + iC(z)]

}
,

(6)

where A is the amplitude, b is the phase of amplitude, w is
the beam width, and C stands for the normalized phase-front
curvature, the so-called spatial chirp of the beam. Using the
Lagrangian density function for the FSE given in Ref. [33],
and following the standard procedures of the variational
method [32], we find the evolutionary equations for the
parameters A, b, C, and w:

dA

dz
= AαC

2
√

πwα
�α (1 + C2)(α/2)−1, (7)

db

dz
= 5

√
2

8
A2 + (α − 2)(C2 − 1) − 4

4
√

πwα
�α (1 + C2)(α/2)−1,

(8)

dC

dz
= A2

√
2

− α√
πwα

�α (1 + C2)α/2, (9)

d(A2w)

dz
= 0, (10)

where �α = �( α+1
2 ) and �(·) is the gamma function. Equation

(10) implies the invariant quantity of the beam power P ≡√
πA2w during propagation. For a stationary soliton solution,

we have

A2 =
√

2

π
α�αw−α, (11)

Ps =
√

2α�αw1−α, (12)

β = 2α − 1

02
√

π
�αw−α, (13)

and C = 0, where β = b/z is the propagation constant. Note
that here the relations of Ps ∝ w1−α and β ∝ w−α are obtained
again.

We plot the curves of soliton power Ps and propagation
constant β as functions of the Lévy index α in Figs. 1(c) and
1(d) for different beam widths, comparing with the numerical
results. The discrepancy between the analytical (curves) and
numerical results (symbols) is relatively small for large α,
especially for the soliton power Ps , while that becomes larger
when α decreases to 1. The main reason for this discrepancy
is that the profiles of Gaussian trial solution are more similar
to the sech types than the Lorentz ones.

We also investigate the stabilities of solitons by a standard
linear-stability analysis. We consider the perturbed stationary
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FIG. 2. Simulations of solitons with (a) 1% random-noise per-
turbations for α = 1.2, (b),(c) a 1% increased initial amplitude for
α = 1.2 and α = 1.0, and (d) a 4% decreased initial amplitude for
α = 1.0.

solution form as

�(x, z) = {ψ (x) + [u(x) + v(x)] exp(λz)

+ [u∗(x) − v∗(x)] exp(λ∗z)} exp(iβz), (14)

where u(x), v(x) � 1, and λ is the eigenvalue of perturbations.
Inserting this perturbed solution in Eq. (1), we obtain the linear-
stability eigenvalue problem,

i

[
−1

2

(
− ∂2

∂x2

)α/2

v − βv + ψ2v

]
= λu, (15)

i

[
−1

2

(
− ∂2

∂x2

)α/2

u − βu + 3ψ2u

]
= λv, (16)

which can be numerically solved by the Fourier collocation
method [34]. Except for the case of α = 1, all solitons contain
purely imaginary eigenvalues and thus are stable.

This prediction is confirmed by performing numerical
simulations of Eq. (1) based on the split-step Fourier method.
The numerical solutions added with 1% random-noise pertur-
bations are used as incident profiles. The example of stable
propagation is presented in Fig. 2(a). We also performed
numerical simulations with a 1% increased initial amplitude.
When 1 < α � 2, we find that the beam undergoes a stable
oscillation and behaves like a breather [see Fig. 2(b)]. The on-
axis intensity initially increases and then undergoes sine-like
oscillations, as shown in Fig. 3(a).

FIG. 3. Normalized on-axis intensities versus the propagation
distance for different α values when the solitons with a 1% increased
initial amplitude. Here I0 = I (0). The inset in (b) shows the intensity
profile of a beam nearby the singularity.

III. SELF-FOCUSING AND WAVE COLLAPSE

However, for α = 1, the beam propagates in an unstable
fashion and particularly exhibits the wave collapse property.
Figure 2(c) shows that the beam self-focuses to a very small
size. Its on-axis intensity has no chance to oscillate and directly
grows exponentially to a very high value (about 104 times
initial intensity), as shown in Fig. 3(b). The inset of Fig. 3(b)
shows the final profile of the beam. We can see that within
the beam there are only three points, which are ineffective for
sampling the optical beam. If the simulation uses much denser
sampling points, the final on-axis intensity can grow to a higher
value. Therefore, we can expect that the on-axis intensity can
rise to an unlimited value (singularity). This phenomenon is
identical to the wave collapse occurring in the nonlinear system
which is governed by the (1+2)-D traditional NLSE [1–4].
Here we demonstrate that the wave collapse can take place in
the (1+1)-D FSE when α = 1. However, from a physical point
of view, such collapse cannot proceed indefinitely. Recall that
in the NLSE, extreme physical processes, which can suppress
or even completely eliminate collapse, must be taken into
account when close to the singularity [2,3]. The most important
one is the nonparaxiality, which should be also included in the
FSE as the envelope suddenly increases along the propagation
distance. Therefore, Eq. (1) is drastically simplified but still a
good approximate model before the singular dynamics appear.

Using the variational method with the trial solution given
by Eq. (6), we obtain the evolutions of the on-axis intensity
I (z) ≡ A2(z) and the chirp parameter C(z) for α = 1, which
are governed by

dy

dZ
= y2

y0

C√
1 + C2

, (17)

dC

dZ
= y − y

y0

√
1 + C2. (18)

Here Z = z/Zr , where Zr = √
πw0 is the effective diffraction

length and w0 = w(0); y = I (z)/Ic is the normalized on-axis
intensity and y0 = y(0) = P/Pc, where Ic = Pc/

√
πw0 is the

on-axis intensity for a soliton given by Eq. (11). Note that
here Pc = √

2 is not only the soliton power for α = 1 [see
Fig. 1(c)], but also the critical power for self-focusing as we
will see below. The critical power is independent of the beam
width, like its counterpart in the (1+2)-D NLSE. The solutions
of Eqs. (17) and (18) can be found as

C(Z) = C0 + (
y0 −

√
1 + C2

0

)
Z, (19)

y(Z) = y0
(
y0 −

√
1 + C2

0

)y0 + √
1 + C2

y2
0 − 1 − C2

, (20)

where C0 = C(0) is the initial spatial chirp. It is obvious that
when y0 > 1, (i.e., P > Pc), the on-axis intensity y increases
to infinity at the collapse distance

Zf =
√

y2
0 − 1 − C0

y0 −
√

1 + C2
0

. (21)

The collapse distance is only dependent on the incident power
y0 = P/Pc and the initial chirp C0. The wave collapse cannot
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FIG. 4. Normalized on-axis intensity, y/y0, as a function of nor-
malized distance, Z, with (a) C0 = 0 and (b) y0 = 1.06. Solid curves
denote the analytical results obtained by the variational method;
dashed curves, the numerical results.

occur if C0 < −
√

y2
0 − 1, which means that the incident beam

has a strong divergent wave front to conquer the self-focusing
effect.

We compare y/y0 obtained from the variational method
[Eq. (20)] with that of the numerical simulation in Fig. 4.
For the numerical results, the effective diffraction length Zr ≈
0.44

√
πw0 is evaluated by numerical fitting for the collapse

distance. This discrepancy is mainly caused by the difference
of profile between the Gaussian trial solution in the variational
method and the Lorentz-like numerical one. Except for the
value of Zr , it is evident that the evolutionary behaviors of
numerical and analytical results are the same. As shown in
Fig. 4, the collapse distance is shortened with increasing y0,
because the larger power induces a stronger self-focusing
effect. For a fixed y0, the collapse distance is shortened for
a convergent wave front (C0 > 0) while lengthened for a
divergent one (C0 < 0).

Similar to the case of a (1+2)-D beam in a NLSE, here
we can understand the dynamics of a (1+1)-D beam by con-
sidering the power conservation and the competition between
the linear diffractive action and the nonlinear self-focusing
action [35,36]. Let us first consider a (1+1)-D beam for the
classical case of α = 2. Using the power-conservation law,
the nonlinear self-focusing action is then proportional to 1/w,
for it is proportional to |A|2, while the diffraction action is
proportional to 1/w2. When the beam size decreases due to
the self-focusing, both the self-focusing action (∝1/w) and
the diffraction action (∝1/w2) become stronger. However, the
latter increases faster and then overcomes the former. Therefore
the beam will diffract. Conversely, as the beam diverges on

diffraction, the diffraction action becomes weak more rapidly
than the self-focusing action and the beam is focused again.
Consequently, the beam will diverge and converge periodically
around an equilibrium (soliton) state, i.e., the soliton is stable
when α = 2. In fact, all the cases 1 < α � 2 reach the same
conclusion as their diffraction actions are both proportional to
1/wα , which is also confirmed by the above stability analysis.

However, for the limit case of α = 1, the diffraction action
is proportional to 1/w and becomes the same as the nonlinear
self-focusing action. When small deviations initially cause the
beam to diverge, with both the diffractive action and the self-
focusing action weakening synchronously, the self-focusing
action cannot counterbalance the divergence and the beam
may diffract to infinity [see Fig. 2(d)]. But when the beam
converges at the beginning, the diffraction action cannot stop
the convergence and the beam may focus to a singularity. As
a result, the (1+1)-D soliton is unstable and tends to collapse
at α = 1.

IV. CONCLUSION

In conclusion, we investigate the nonlinear dynamics of
a (1+1)-D beam in the FSE with the Kerr nonlinearity. We
analytically and numerically obtain the relations between the
soliton power, the width, and the propagation constant, which
are dependent on the Lévy index α. All solitons are stable for
1 < α � 2. When α = 1, it is found that the beam undergoes a
catastrophic collapse, which can be understood by considering
the power conservation and the competition between the linear
effect and the nonlinear effect. Based on the variational method
with a Gaussian-form solution, the analytical expression of the
collapse distance is obtained. Numerical results confirm that it
characterizes the general tendency of beam behavior.

Our results about the optical soliton, self-focusing, and
wave collapse in the FSE can be experimentally verified based
on the methods discussed in Ref. [20]. We believe that our
study is helpful to understand the FSE, and may have potential
applications in nonlinear optical signal processing, and other
areas connected with the Kerr effect. In addition, our study
may open a way to investigate other fractional processes.
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