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We investigate the influence of Casimir and electrostatic torques on double-beam torsional microelectrome-
chanical systems with materials covering a broad range of conductivities of more than three orders of magnitude.
For the frictionless autonomous systems, bifurcation and phase space analysis shows a significant difference
between stable and unstable operating regimes for equal and unequal applied voltages on both sides of the double
torsional system giving rise to heteroclinic and homoclinic orbits, respectively. For equal applied voltages, only
the position of a symmetric unstable saddle equilibrium point is dependent on the material optical properties and
electrostatic effects, while in any other case stable and unstable equilibrium points are dependent on both factors.
For the periodically driven system, a Melnikov function approach is used to show the presence of chaotic motion
rendering predictions of whether stiction or stable actuation will take place over long times impossible. Chaotic
behavior introduces significant risk for stiction, and it is more likely to occur for the more conductive systems
that experience stronger Casimir forces and torques. Indeed, when unequal voltages are applied, the sensitive
dependence of chaotic motion on electrostatics is more pronounced for the highest conductivity systems.
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I. INTRODUCTION

Current advancements in fabrication of microelectrome-
chanical systems (MEMSs) and subsequent dimension minia-
turization towards nanoelectromechanical systems (NEMSs)
warrant careful consideration of Casimir forces in the analysis
and design of these systems [1–3]. The Casimir force can have
a significant magnitude in these systems because of the rela-
tively large surface areas and small gaps between mechanical
elements, which under certain conditions can undergo jump-
to-contact and permanent adhesion, which is a phenomenon
known as stiction [4]. The Casimir forces between two objects
arise due to perturbation of quantum fluctuations of the elec-
tromagnetic (EM) field, as was predicted by Casimir in 1948
[5] assuming two perfectly reflecting parallel plates. Lifshitz
and coworkers in the 1950s [6] considered the general case of
real dielectric plates by exploiting the fluctuation-dissipation
theorem, which relates the dissipative properties of the plates
due to optical absorption by many microscopic dipoles and the
resulting EM fluctuations. This theory describes the attractive
interaction due to quantum fluctuations at all separations
covering both the Casimir (long-range) and van der Waals
(short-range) regimes [1–9].

The dependence of the Casimir force on material properties
is an important topic because, in principle, one can tailor
the force by engineering the boundary conditions of the
electromagnetic field with a suitable choice of materials. This
allows the exploration of new concepts in actuation dynamics
in devices via the control of the magnitude of the Casimir force
and torque using different materials with a variety of optical

properties [10–20]. Although the electrostatic force can, in
principle, be switched off, by letting the applied potential
tend to zero, the Casimir force will always be present even
at absolute zero temperature and can influence the actuation
dynamics of micro- and nanodevices [3,9–11]. So far, several
studies have been performed to investigate the Casimir torque
in torsional actuators, which arise due to broken rotational
symmetry [21–23] or misalignment between two optical axes
[24–27], in addition to mechanically driven torques due to the
normal Casimir force [11,28–32]. Indeed, torsional actuators
find applications to torsional radio frequency (RF) switches,
tunable torsional capacitors, and torsional micromirrors [1–
3,7,8]. They are composed of two electrodes, where one is
fixed and the other can rotate freely around an axis toward
the fixed one when a voltage is applied [9]. A very useful
configuration is the double-beam torsional actuator, which is
also used in high-precision Casimir force measurements for
table-top laboratory cosmology [7,28].

However, detailed exploration of the chaotic dynamics of
the double-beam system with respect to stiction phenomena,
and for different interacting materials, is still missing. By
shrinking the size of these devices an unavoidable problem
could be the occurrence of chaotic motion leading to device
malfunction. This phenomenon causes abrupt change in the
dynamical behavior and eventually leads to stiction hampering
long-term device predictability [11,33,34]. Therefore, in this
paper we will investigate the actuation dynamic of a torsional
double beam actuating under the influence of electrostatic and
Casimir torques, with electrodes made from materials with a
wide and diverse range of optical properties including gold
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(Au), phase change materials (PCMs), and conductive silicon
carbide (SiC). This is especially important for the double-beam
configuration since the phase space analysis shows increased
complexity due to switching between heteroclinic and ho-
moclinic orbits in the absence and presence of electrostatic
balancing forces, respectively.

II. MATERIALS AND DOUBLE-BEAM ACTUATION
SYSTEM

In order to cover a wide range of materials with dif-
ferent optical properties we have chosen Au as a good
metal conductor [7,8], the crystalline (C) state of the PCM
AIST (Ag5In5Sb60Te30) [15,16] as an intermediate conduc-
tivity system, and nitrogen-doped SiC as a poor conductor
though a suitable material for operation in harsh environments
[20,35]. Note that the PCMs are renowned for their use in
optical data storage (Blue-Rays, DVDs, etc.), where AIST
in particular during switching between the amorphous and
crystalline phases yields a ∼20%–25% Casimir force contrast
at separations ∼100 nm [15,16]. Indeed, for comparison the
static conductivity ratio ωp

2/ ωτ in terms of the Drude model,
with ωp the plasma frequency and ωτ the relaxation frequency,
gives for these materials ωp

2/ ωτ |SiC = 0.4 eV for SiC [20],
ωp

2/ ωτ |AIST(C) = 10.1 eV for AIST [16], and ωp
2/ωτ |Au ≈

1600 eV for Au [18]. These values indicate a conductivity
contrast with respect to Au, which is a very good conductor, of
more than three orders of magnitude. It should be noted that for
the less conductive systems, e.g., SiC, we assume sufficiently
thick coatings to ignore the contribution on the Casimir force
of the underlying basic material (e.g., Si) that is used for the
fabrication of the beams in MEMSs. In addition, the chosen
materials show significant optical contrast for the dielectric
function at imaginary frequencies ε(iξ ), which is a necessary
input for the Casimir force calculations via the Lifshitz theory,
for frequencies ξ<1 eV, and will manifest in Casimir force
variations for nanoscale separations c/2ξ>10 nm (see Fig. 1

FIG. 1. Dielectric functions at imaginary frequencies ε(iξ ) for
Au, SiC, and crystalline (C) AIST, which were used for the Casimir
torque calculations. The inset shows the double-beam torsional
system.

and the Appendix for the extrapolations of measured optical
data).

The equation of motion for the double-beam torsional
system (see inset in Fig. 1), where the fixed plate is considered
to be coated by Au and the rotating plate by another conducting
material of choice (e.g., Au, SiC, and AIST), is given by

I0
d2θ

dt2
+ I0

ω

Q

dθ

dt
= τres + τelec + τCas (1)

with I0 the moment of rotation inertia. The mechanical Casimir
torque τCas is given by [36]

τCas =
∫ Lx

0
r
(
F R

Cas(d
′
R) − F L

Cas(d
′
L)

)
Ly dr, (2)

where F
R, L
Cas (d′

R, L) is the Casimir force that is calculated using
Lifshitz theory (see the Appendix). L′

x(= 2Lx) and Ly are
the length and width, respectively, of each plate (where we
consider Lx = Ly = 10 μm). F R

Cas(d
′
R) and F L

Cas(d
′
L) refer to

the Casimir force on the right and left part of the rotating
plate, with d′

R = d − Lx sin(θ ) and d′
L = d + Lx sin(θ ), re-

spectively. The initial distance when the plates are parallel is
assumed to be d = 200 nm, and the system temperature is fixed
at T = 300 K.

The total effective electrostatic torque τelec acting on the
rotating plate is given by τelec = τR

elec − τL
elec, where τR

elec
and τL

elec are the electrostatic torques due to the applied
potentials VR

a and VL
a at the right and left end of the rotating

plate, respectively. Upon substitution of the torques τ
R, L
elec

[31,36,37] we obtain

τelec = 1

2
ε0Ly

(
VR

a − Vc
)2 1

sin2(θ )

[
ln

(
d′

R

d

)
+ Lx sin (θ )

d′
R

]

− 1

2
ε0Ly

(
VL

a − Vc
)2 1

sin2(θ )

[
ln

(
d′

L

d

)
− Lxsin(θ )

d′
L

]
.

(3)

In Eq. (3) ε0 is the permittivity of vacuum, and Vc is the contact
potential difference between the interacting materials of the
plates [15]. For simplicity, we will consider only the potential
difference VL,R = VL,R

a − Vc for the torque calculations.
Finally, in Eq. (1) both the Casimir and electrostatic torques

are counterbalanced by the restoring torque τres = − kθ with
k the torsional spring constant at the support point of the
rotating beam [38]. The term I0(ω/Q)(dθ/dt) in Eq. (1) is
the intrinsic energy dissipation of the moving beam with Q the
quality factor. Initially, we will consider high-quality factors
Q � 104 [39,40] and neglect the effect of dissipation. The
frequency ω is assumed to have a value that is typical for many
resonators like AFM cantilevers and MEMSs [7,28,39,40].
Notably the type of motion we consider here applies when
the beam does not elastically deform because we assume large
beam lengths (Lx) and small torsional angles at maximum
separation (θ0 = d/Lx = 0.02 � 1).

III. RESULTS AND DISCUSSION

In order to investigate the effect of optical properties on
the actuation of the torsional double beam, we introduce the
bifurcation parameter δCas = τM

Cas / kθ0, which represents the
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ratio of the maximal Casimir torque τM
Cas = τCas(θ = θ0)

(for the Au-Au system) to the maximum restoring torque kθ0.
δCas will help us to determine when there is a stable periodic
solution for the torsional system that corresponds to sufficient
restoring torque to prevent stiction of the plates [41,42]. Using
δCas, Eq. (1) assumes the more convenient form

d2ϕ

dT2
+ ε

1

Q

dϕ

dT
= − ϕ + δv

1

ϕ2

{
ln(1 − ϕ) + ϕ

1 − ϕ

− p2

[
ln(1 + ϕ) − ϕ

1 + ϕ

]}

+ δCas

[
τcas

τM
Cas

]
ε

τ0

τMax
res

cos

(
ω

ω0
T

)
(4)

with ϕ = θ/θ0, T = ω0t , I = I0/k, and voltage ratio p =
VL/VR. δv = (ε0V2

RLyL3
x )/(2kd3) is the corresponding elec-

trostatic bifurcation parameter [11,30]. The parameter ε was
introduced to distinguish between the conservative frictionless
and autonomous operation of the torsional system (ε = 0) and
the nonconservative operation with friction and an additional
external periodic driving term (ε = 1).

A. Conservative system (ε = 0)

The conservative system is the starting point of our stability
analysis of the torsional system. The equilibrium points for
conservative motion are obtained by the condition τtotal =
τres + τelec + τCas = 0. The latter yields from Eq. (4)

−ϕ + δv
1

ϕ2

{
ln(1 − ϕ)+ ϕ

1 − ϕ
− p2

[
ln(1 + ϕ) − ϕ

1 + ϕ

]}

+ δCas

[
τcas

τM
Cas

]
= 0. (5)

Figure 2 shows plots of δCas versus ϕ for all studied materials
with and without applied voltage. For double-beam torsional
MEMSs, there is a significant difference between the Casimir
bifurcation curves when there is electrostatic balance (no
applied voltage with δv = 0, or similarly VR = VL �= 0 with
p = 1), in comparison with the unbalanced case when a voltage
is applied to only one end of the beam (e.g., VR > 0 and
VL = 0 and equivalently p = 0) or both ends have a voltage
but with different magnitude (VR �= VL and p �= 1). In fact,
when the electrostatic torque has equal magnitude at both
ends of the beam, then the equilibirium points shown in the
bifurcation diagram (except for ϕ = 0) are always unstable.
Obviously, when the electrostatic potential is applied on one
end of the beam (p = 0 and VR > 0), then the system shows
the bifurcation diagrams of a single torsional beam [11].

Let us elaborate on the similarities and differences of the
Casimir bifurcation diagrams. In both the balanced and the
unbalanced cases the bifurcation diagrams differ, especially
near the maximum. The systems approach critical unstable
and stable behavior for the unbalanced and balanced cases,
respectively, in an order that is determined by the magnitude
of their conductivity [from Au, AIST(C), and SiC]. In Fig. 2(b),
which belongs to the unbalanced situation, the solid lines show
stable regions where the restoring torque is strong enough to
produce stable motion (since δCas ∼ 1/k). Notably, in Fig. 2
the dashed lines indicate unstable regions, where the torsional

FIG. 2. (a) Bifurcation diagrams δCas vs ϕ with (a) δv = 0; (b)
δv = 0.05 and p = 0 (the inset shows similar plots for δv = 0.4);
and (c) δv = 0.05 and p = 1 (the inset shows similar plots for δv =
0.4). The solid and dashed lines represent the stable and unstable

equilibrium points, respectively.

MEM loses its stability, and stiction occurs for motion close to
the fixed plate. Two coexisting equilibrium points occur in the
unbalanced situation for δCas < δMAX

Cas . The equilibrium point
closer to ϕ = 0 (solid line) is stable, and the other one close
to ϕ = 1 (dashed line) is unstable. In the unbalanced case,
however, when δCas < δMAX

Cas the bifurcation curves show only
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FIG. 3. Bifurcation diagrams δv vs ϕ for different value of δCas

for the Au-Au system for (a) p = 1 and (b) p = 0.

one unstable equilibrium for the system while there is always
a stable equilibrium point at ϕ = 0. The unstable equilibria
satisfy the additional condition dτtotal/dϕ = 0, which yields

− 1 + δv

{
2ϕ − 3

ϕ2(1 − ϕ)2 + 2 ln (1 − ϕ)

ϕ3

−P 2

[
2ϕ + 3

ϕ2(1 + ϕ)2 + 2 ln (1 − ϕ)

ϕ3

]}

+ δCas
1

τm
Cas

(
dτCas

dϕ

)
= 0. (6)

By increasing δCas or weakening the restoring torque since
δCas ∼ 1/k, the distance between the stable and unstable points
becomes smaller until one reaches the maximum point δMAX

Cas
(for both balanced and unbalanced cases) which satisfies both
Eqs. (5) and (6). According to Fig. 2 when δCas ≈ δMAX

Cas
for the Au-Au system, then for the other actuating systems,
which have a lower conductivity and experience a less strong
Casimir torque, it is still the condition δCas < δMAX

Cas indicating
an increased range for stable motion. In other words, with
decreasing restoring torque or equivalently decreasing spring

FIG. 4. Bifurcation diagrams δv vsϕ for δCas = 750 for all studied
materials (a) p = 1 and (b) p = 0.

constant k, the Au-Au torsional device will lose sooner its
stability region in comparison to the other interacting systems.

The insets in Figs. 2(b) and 2(c) depict the sensitivity of the
stable and unstable regions in torsional MEMSs for both optical
properties and electrostatics. Indeed, if the applied voltage
increases, then δMAX

Cas decreases for all systems. Due to the
attractive nature of the electrostatic force, the device would
require a higher restoring torque to preserve the stable opera-
tion of the system during motion. The range of the torsional
angles that covers the stable region also decreases by increas-
ing voltage. The dependence of the electrostatic bifurcation
parameter δv on optical properties and electrostatics is shown
in Figs. 3 and 4. Not only the maximum δMAX

v decreases similar
to δMAX

Cas , but also the range of the torsional angles (distance
between stable center and unstable saddle point) becomes
shorter by increasing material conductivity (increasing δCas)
and/or applied voltage. Therefore, the range of bifurcation
parameters to produce periodic motion (0 < δCas < δMAX

Cas and
δv > 0) is increased with decreasing material conductivity in
MEMSs. Note that for δCas > δMAX

Cas there is no stability in the
torsional device even in the absence of electrostatic torque
(δv = 0).

Besides the bifurcation diagrams, the phase space portraits
also show the sensitive dependence of the actuation dynamics
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FIG. 5. Phase portraits dϕ/dt vs ϕ for δCas = 250 of the Au-Au
torsional system and initial conditions inside and outside of (a) the
heteroclinic orbit with δv = 0 (balanced system), (b) the homoclinic
orbit with δv = 0.23 and p = 0 (unbalanced system), and (c) the
heteroclinic orbit with δv = 0.23 and p = 1 (balanced system).

on optical properties and electrostatics [11,33,43]. Figure 5
shows the phase portrait for the Au-Au system for both the
absence and presence of applied voltage. Clearly, for the
balanced case, there is a heteroclinic orbit that separates
unstable motion from the stable closed orbits around the stable
center point. Indeed, for the balanced situation (δv = 0 or
p = 1), the stable center of the symmetric torsional device
is at ϕ = 0, but there are two symmetric unstable equilib-
rium points of opposite sign. The stable central equilibrium
point is completely independent of optical properties and the
magnitude of the applied voltage for p = 1. By contrast, as
Fig. 5(b) shows, for the unbalanced situation, the inequality
of electrostatics yields a homoclinic orbit that separates stable
and unstable motion. Here the stable and unstable equilibrium
points do not show any symmetry in the phase portrait, and both

FIG. 6. Contour plot of the transient time to stiction for initial con-
ditions in the ϕ − dϕ/dt phase plane for the conservative system with
right column δCas = 750 and δv = 0 and left column δCas = 750,
δv = 0.07, and p = 1. For the calculations, we used 150 × 150 initial
conditions (ϕ, dϕ/dt). The red region contains initial conditions that
lead to stable oscillations. The heteroclinic orbits (right column) and
homoclinic orbit (left column) separates sharply stable and unstable
solutions reflecting the absence of chaotic behavior.

are strongly dependent on the optical properties and applied
voltages [11].

For later comparison with the driven case (ε = 1), we use
plots of the transient time to collapse of the moving beam on the
ground plate referred to as stiction. These are shown in Figs. 6
and 7. For both the balanced and the unbalanced case, the size
of the area enclosed by the heteroclinic and homoclinic orbits,
respectively, decreases when the conductivity of the interacting
materials increases. For any initial conditions in the region
outside the region enclosed by the heteroclinic and homoclinic
orbits, the moving beam will perform unstable motion and
quickly collapse on the ground plate (except for the small
set of points contained in the stable curves of the saddles).
The reduction in size of the enclosed area by decreasing
conductivity confirms again that torsional systems with higher
conductivity materials lose their stability sooner because of
the existence of stronger Casimir forces and torques between
the plates. Moreover, an increase of an applied unbalanced
voltage can have a stronger influence on the reduction of the
area enclosed by the homoclinic orbit as compared to the area
enclosed by the heteroclinic orbit in the balanced case.

B. Periodically driven system (ε = 1)

We furthermore performed calculations to investigate the
existence of chaotic behavior of the torsional system when
undergoing forced oscillation due to a time-periodic applied
external torque τo cos(ω t) [33]. Chaotic behavior occurs if
the separatrix resulting from the heteroclininc or homoclinic
orbits of the conservative system split and have transversal in-
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FIG. 7. Contour plot of the transient time to stiction for initial
conditions in the ϕ − dϕ/dt phase plane for the conservative system
with right column δCas = 750, δv = 0.02, and p = 0.5; and left
column δCas = 750, δv = 0.02, and p = 0. For the calculations we
used 150 × 150 initial conditions (ϕ, dϕ/dt). The red region contains
initial conditions for which the torsional device is performing stable
oscillations. The heteroclinic orbits (right column) and homoclinic
orbit (left column) separates sharply stable and unstable solutions
reflecting the absence of chaotic behavior.

tersections. The occurrence of transversal intersections can be
inferred from the presence of zeroes of the so-called Melnikov
[30,35]. If we ϕC

het (T) and ϕC
hom(T) denote the heteroclinic and

homoclinic solutions, respectively, of the conservative system
then the Melnikov functions for the torsional system are given
by [11,33,34,43]

Mhet (T0) = 1

Q

∫ +∞

−∞

[
dϕC

het (T)

dT

]2

dT

+ τ0

τMAX
res

∫ +∞

−∞

dϕC
het (T)

dT

× cos

[
ω

ω0
(T − T0)

]
dT (7)

and

Mhom(T0) = 1

Q

∫ +∞

−∞

[
dϕC

hom(T)

dT

]2

dT

+ τ0

τMAX
res

∫ +∞

−∞

dϕC
hom(T)

dT

× cos

[
ω

ω0
(T + T0)

]
dT. (8)

The separatrix splits, and as a consequence chaotic mo-
tion occurs if the Melnikov function has simple zeros, i.e.,
Mhet/hom(T0) = 0 and (Mhet/hom )

′
(T0) �= 0. Equality in the

latter condition corresponds to the limiting case of a double

FIG. 8. Threshold curve α(= γω0θ0/τ0 ) vs driving frequency
ω/ωo (with ωo the natural frequency of the system). The area below
the curve corresponds to parameters that can lead to chaotic motion
with δCas = 750: (a) δv = 0, (b) δv = 0.02 with p = 0, and (c)
δv = 0.07 with p = 1.

zero and gives the threshold condition for the occurrence of
chaotic motion [33,43]. If we define

μc
het/hom =

∫ +∞

−∞

[
dϕC

het/hom(T)

dT

]2

dT,

βhet/hom(ω) =
∣∣∣∣∣H

[
Re

(
F

{
dϕC

het/hom(T)

dT

})]∣∣∣∣∣ (9)
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FIG. 9. Contour plot of the transient times to stiction using
Poincaré phase maps dϕ/dt vs ϕ for the nonconservative system with
right column δCas = 750, δv = 0.07, p = 1 (balanced situation),
and α = 0.8; left column δCas = 750, δv = 0.07, p = 1 (balanced
situation), and α = 2. For the calculations we used 150 × 150 initial
conditions (ϕ, dϕ/dt). The red region shows that initial condition
for which the torsional device shows still stable motion after 100
oscillations. With decreasing α the chaotic behavior increases, and
the area of stable motion (red region) shrinks more for the systems
with higher conductivity.

and α = (1/Q)(τ0 /τMAX
res )−1 = γω0 θ0/τ0 where

γ = Iωo/Q, and H[. . .] denotes the Hilbert transform (see
[33,43]), then the threshold condition for chaotic motion
becomes

α = βhet/hom(ω)/μc
het/hom. (10)

Figure 8 shows the threshold curves α = γω0θ0/τ0 ver-
sus the driving frequency ratio ω/ωo. For large values of
α (above the curve), the dissipation dominates the driving
torque leading to regular oscillatory motion near the stable
equilibrium point of the conservative system. However, for
parameter values below the curve, the transversal intersections
of stable and unstable manifolds cause chaotic motion. Clearly
for systems with higher conductivity, which lead to stronger
Casimir torques, chaotic motion is more likely to occur as
is manifested by the larger area below the threshold curves.
Figures 8(b) and 8(c) show the strong dependence of the
region below the threshold curve on the applied voltage for
the unbalanced and balanced cases, respectively. The pres-
ence of an electrostatic torque clearly changes the threshold
curves in a more profound way for systems with higher
conductivity.

Figures 9 and 10 show plots of the transient times to stiction
for different values of the threshold parameter α from Fig. 8
for all materials studied here. When chaotic motion occurs for
small values of α, then there is a region of initial conditions

FIG. 10. Contour plot of the transient times to stiction in the ϕ −
dϕ/dt phase plane for the nonconservative system with right column
δCas = 750, δv = 0.02, p = 0 (unbalanced situation), and α =
0.5; and left column δCas = 750, δv = 0.02, p = 0 (unbalanced
situation), and α = 4. For the calculations, we used 150 × 150 initial
conditions (ϕ, dϕ/dt). The red region shows that initial condition
for which the torsional device shows still stable motion after 100
oscillations. With decreasing α the chaotic behavior increases, and
the area of stable motion (red region) shrinks more strongly for the
systems with a higher conductivity.

where the prediction of the behavior of the oscillating system
is a highly formidable task or even impossible. If we compare
with Figures 6 and 7 where chaotic motion does not occur, then
there is in the presence of chaos no simple smooth boundary
between the regions of stable and unstable solutions (the red
and the blue regions in the figures).

Therefore, chaotic behavior introduces significant risk for
stiction, and this is more prominent to occur for the more
conductive systems that experience an increasing Casimir
torque. And again, for parameters related to Fig. 8(b)
when unbalanced voltages are applied, Fig. 11 illustrates
the sensitive dependence of chaotic motion on the applied
electrostatic potential for the highest conductivity system
Au-Au.

IV. CONCLUSIONS

In conclusion, we have explored the influence of Casimir
and electrostatic torques on double-beam torsional microelec-
tromechanical systems with materials covering a broad range
of conductivities of more than three orders of magnitude. For
the conservative systems, bifurcation and phase space analysis
have shown that there is a significant difference between
stable and unstable operating regimes for equal and unequal
applied voltages on both sides of the double torsional system
displaying heteroclinic and homoclinic orbits, respectively.
For equal, applied voltages, only the position of the symmetric
unstable saddle equilibrium point is dependent on the material
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FIG. 11. Contour plot of the transient times to stiction in the
ϕ − dϕ/dt phase plane for the nonconservative system with left
column δCas = 750, δv = 0, and α = 0.5; and right column
δCas = 750, δv = 0.02, α = 0.5, and p = 0. The systems material
considered here are Au-Au and Au-SiC. For the calculations, we
used 150 × 150 initial conditions (ϕ, dϕ/dt). The red region shows
the initial conditions for which the torsional device shows stable
motion after 100 oscillations with oscillating frequency ω/ω0 = 0.2.
With increasing δv (or equivalently applied voltage) the chaotic
behavior increases, and the area of stable motion shrinks more
strongly for the systems with a higher conductivity and applied
potential.

optical properties and electrostatic effects, while in any other
case both stable and unstable points are dependent on both
factors. For the nonconservative system, Melnikov function
and Poincaré phase space analysis have shown the presence of
chaotic motion making impossible to predict whether stiction
or stable actuation will take place on a long-term basis.
Chaotic behavior introduces significant risk for stiction, and it
is more prominent to occur for the more conductive systems
that experience increasing Casimir forces and torques. Indeed,
when unequal voltages are applied, the sensitive dependence
of chaotic motion on electrostatics is more pronounced for the
highest conductivity systems. Finally, our analysis can provide
more insight for the design of double-beam torsional systems
using proper materials in order to ensure wider range of stable
operation for both fundamental force measurements and tech-
nology applications of double-beam type electromechanical
systems.
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APPENDIX: BRIEF LIFSHITZ THEORY AND
DIELECTRIC FUNCTION OF MATERIALS WITH

EXTRAPOLATIONS

The Casimir force FCas(d) in Eq. (2) is given by [6]

FCas(d) = kB T

π

′∑
l = 0

∑
ν = TE,TM

∫ ∞

0
dk⊥k⊥ k0

× r(1)
ν r(2)

ν exp (−2k0d)

1 − r(1)
ν r(2)

ν exp (−2k0d)
. (A1)

The prime in the first summation indicates that the
term corresponding to l = 0 should be multiplied
with a factor 1/2. The Fresnel reflection coefficients
are given by r(i)

TE = (k0 − ki)/(k0 + ki) and r(i)
TM =

(εi k0 − ε0 ki)/(εi k0 + ε0 ki) for the transverse electric
(TE) and magnetic (TM) field polarizations, respectively.
ki =

√
εi (iξl ) + k2

⊥ (i = 0, 1, 2) represents the out-off
plane wave vector in the gap between the interacting plates
(k0) and in each of the interacting plates (ki = (1,2)). k⊥ is the
in-plane wave vector.

Furthermore, ε(iξ ) is the dielectric function evaluated at
imaginary frequencies, which is the necessary input for calcu-
lating the Casimir force between real materials using Lifshitz
theory. The latter is given by [6]

ε(iξ ) = 1 + 2

π

∫ ∞

0

ω ε′′(ω)

ω2 + ξ 2
dω. (A2)

For the calculation of the integral in Eq. (A2) one needs the
measured data for the imaginary part ε′′(ω) of the frequency de-
pendent dielectric function ε(ω). The materials were optically
characterized by ellipsometry over a wide range of frequencies
at J. A.Woollam Co.: VUV-VASE (0.5–9.34 eV) and IR-VASE
(0.03–0.5 eV) [16]. The experimental data for the imaginary
part of the dielectric function cover only a limit range of
frequencies ω1 (= 0.03 eV) < ω < ω2 (= 8.9 eV). There-
fore, for the low optical frequencies (ω < ω1 ) we ex-
trapolated using the Drude model for the crystalline
phase [16]

ε′′
L(ω) = ω2

p ωτ

ω
(
ω2 + ω2

τ

) , (A3)

where ωp is the plasma frequency, and ωτ is the relaxation
frequency. Furthermore, for the high optical frequencies (ω >

ω2) we extrapolated using [16]

ε′′
H(ω) = A

ω3
. (A4)

Finally, using Eqs. (A2)–(A4), the function ε(iξ ) is given by

ε(iξ ) C = 1 + 2

π

∫ ω2

ω1

ω ε′′
exp(ω)

ω2 + ξ 2
dω + �Lε(iξ ) + �Hε(iξ )

(A5)with

�Lε(iξ ) = 2

π

∫ ω1

0

ω ε′′
L(ω)

ω2 + ξ 2
dω and

�Hε(iξ ) = 2

π

∫ ∞

ω2

ω ε′′
H(ω)

ω2 + ξ 2
dω. (A6)
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