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Lévy flights on a comb and the plasma staircase
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We formulate the problem of confined Lévy flight on a comb. The comb represents a sawtoothlike potential
field V (x ), with the asymmetric teeth favoring net transport in a preferred direction. The shape effect is modeled
as a power-law dependence V (x ) ∝ |�x|n within the sawtooth period, followed by an abrupt drop-off to zero,
after which the initial power-law dependence is reset. It is found that the Lévy flights will be confined in the sense
of generalized central limit theorem if (i) the spacing between the teeth is sufficiently broad, and (ii) n > 4 − μ,
where μ is the fractal dimension of the flights. In particular, for the Cauchy flights (μ = 1), n > 3. The study
is motivated by recent observations of localization-delocalization of transport avalanches in banded flows in the
Tore Supra tokamak and is intended to devise a theory basis to explain the observed phenomenology.
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I. INTRODUCTION

In recent investigations of zonal flow phenomena in magne-
tized plasma by means of high-resolution ultrafast-sweeping
X-mode reflectometry in the Tore Supra tokamak, spontaneous
flow patterning into a quasiregular sequence of strong and
lasting jets interspersed with broader regions of turbulent
(typically, avalanching) transport has been observed [1–3]. The
phenomenon was dubbed “plasma staircase” by analogy with
its notorious planetary analog [4]. The plasma staircase has
been referred to as an important self-organization phenomenon
of the out-of-equilibrium plasma, which had pronounced effect
on radial transport and the quality of confinement. Detailed
analyses (both experimental and numerical based on gyroki-
netic calculations) have identified the plasma staircase as a
weakly collisional, mesoscale [5] dynamical structure near
the state of marginal stability of the low confinement mode
plasma [2,3].

The comprehension of the plasma staircase [1] has both fun-
damental and practical significance. From a scientific perspec-
tive, the plasma staircase represents a fascinating dynamical
system in which kinetic and fluid nonlinearities may operate
on an equal footing. In the practical perspective, the plasma
staircase raises the important problem of avalanche-zonal flow
interaction [2,3], which may be key to control the dynamic
confinement conditions in magnetic fusion devices, tokamaks
and stellarators. On top of this, the fact that a significant
portion, if not a vast majority, of avalanches have been confined
within the staircase steps [3] is by itself a challenge, since the
plasma avalanches being spatially extended transport phenom-
ena behave dynamically nonlocally, and their “localization”
within a transport barrier is not at all obvious. Mathematically,
this revives the long-standing problem of the confined Lévy
flight, which has attracted attention in the literature previously
(e.g., Refs. [6–11]).

In this paper, we adapt the general problem of confined Lévy
flight [7,9] for staircase physics and show that the transport

avalanches may be localized, if (i) the staircase jets are spatially
separated, as they prove to be [2,3], and (ii) at each step
of the staircase the gradients are sharp enough in that the
potential function grows faster with distance than a certain
critical dependence (cubic when modeled by a power-law).
If the growth is slower than this, then the avalanches are not
localized in that there is an important probability of finding
the Lévy flyer outside the transport barrier. More so, we find
that in the confinement domain there may occur at least three
different types of avalanches, which we call, respectively, white
swans, black swans [12], and dragon kings [13], and that the
white swans may “mutate” into the black swan species past
the intermediate gray-swan family found at the point of cubic
dependence. This gives rise to some features of bifurcation,
which might be identifiable in the experiment. This observation
opens a new perspective on “smart” plasma diagnostics in
tokamaks using plasma self-organization [1–3].

The paper is organized as follows. In Sec. II, we introduce
an idealized transport model, which we arguably name Lévy
flights on a comb, and which is motivated by the challenges
discussed above. The model, which is derived in Sec. II B using
the idea of transition probability in reciprocal space [14], is
intended to mirror the observed behaviors [1–3] and, most
importantly, provide a practical criterion for the phenomena
of localization-delocalization of avalanches in the presence
of zonal flows. We discuss the various aspects of this model
in Secs. III and IV, which focus on, respectively, space scale
separation issues and the size distribution of avalanches. The
latter is shown to be inverse power-law for both the white and
black swans, but with different drop-off exponents, making it
possible to differentiate between the species. We conclude the
paper in Sec. V with a few remarks.

II. THE MODEL

We represent the plasma staircase as a periodic lattice, a
comb, looking along the coordinate x; the latter represents
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FIG. 1. The comb model. The staircase jets go perpendicular to
the figure plane and are marked by fat dots at x = xj . The sawtooth
effect is modeled by the power-law dependence V (�x ) ∝ |�x|n at
each step of the staircase. We are interested in finding the conditions
permitting to localize the avalanches (U-turn arrows) in-between the
staircase steps.

the radial direction in a tokamak. The comb, with its sharp
teeth, mimics the very concentrated jets in the cross-section of
poloidal flows, which define both the periodic structure and the
spatial step of the staircase (see Fig. 1). j is a natural number
and counts the teeth of the comb along the x axis starting from
the inner ones, such that xj would be the location of the j th
tooth in radial direction. The spacing between the neighboring
teeth is � = |xj+1 − xj | and is assumed to not depend on
j . Also we assume that the number of teeth is statistically
large (i.e., jmax � 1), and that � is much smaller than the
tokamak minor radius. For each pair of neighboring teeth, with
the radial locations at xj and xj+1, we introduce a potential
function, V (�x), which grows with the departure �x from xj

as a power-law, i.e., V (�x) ∝ |�x|n. The exponent n is not
necessarily integer. We assume that n is larger than 2, so that
V (x) is concave, with the vanishing first and second derivatives
for x → +0. This condition is needed for “stability” of the
ensuing power-law-like probability distributions and will be
illustrated below. For xj < x < xj+1, V (x) is continuous, with
the boundary condition V (xj + 0) = 0. When x approaches
xj+1 from the left, the function V (x) reaches its maximal
allowed value Vmax = V (�) at x = xj+1 − 0. Crossing the
tooth at x = xj+1, its value is disconnected, and is turned
down to zero at x = xj+1 + 0. Then the power-law dependence
∝ |�x|n is reset for x > xj+1 until the next tooth is met,
etc. The abrupt drop-off to zero in the V (x) dependence at
x = xj+1 + 0 implies there is a strong repulsive force acting
on a passive particle at the right border of each tooth. This
favors transport toward the ever-increasing values of x (i.e.,
toward larger radial locations in the direction of the scrape-off
layer in a tokamak). In real magnetic confinement systems,
this behavior involves the shape of the background density
and temperature profiles, as well as the relevant toroidicity
effects [15]. The potential function V (x) represents the bar-
riers to radial transport. Such barriers occur spontaneously
via self-organization of the tokamak plasma under certain
conditions [16]. The form and characteristics of the V (x)
dependence are rooted in the basic physics of vortical flows
and the notion of potential vorticity [4,17]. Note that the

teeth of the V (x) function are, by their construction, strongly
shaped and not symmetric; when drawn to a graph, the periodic
dependence in V (x) looks like a saw. The “abrupt” drop-offs
to zero at x = xj+1 + 0 should be taken with a grain of salt,
and it is understood that there is a finite spatial spread there,
which is determined by finite plasma viscosity.

The question we pose now is whether an avalanche, emit-
ted at the radial location x = xj + 0, can be confined by
a potential field V (x) ∝ (x − xj )n for x → +∞ (and what
would confined mean in that case). This setting assumes that
the spacing between consecutive teeth of the comb is very
broad, permitting to neglect possible interferences between the
various pieces of the sawlike V (x). With these implications in
mind, we just single out one piece by allowing � → +∞. This
idealization does not influence the final conclusions concern-
ing localization-delocalization of avalanches, but appreciably
simplifies the analysis. Without loss in generality, we also set
xj = 0, and we omit the index j hereafter to simplify notations.
To this end, V (x) ∝ xn for x > 0, with n > 2 (by far n remains
a free parameter of the model and will be conditioned later).
Dynamically, the assumption that the spacing � is large, i.e.,
� → +∞, is equivalent to requiring that the kinetic energy,
involved in an avalanche event, is much smaller than Vmax =
V (�). In a self-regulating nonlinear system, that would be
reasonably well satisfied, since the avalanches, absorbed by
the transport barriers, deliver momentum to the poloidal flows
(via the turbulent Reynolds stress), which in turn enhances
the strength of the barrier [18]. Further concerning the �

value, we estimate this as the Rhines length in the coupled
avalanche-zonal flow system. In fluid dynamics, the Rhines
length [19] determines the upper bound on the size of vortical
structures in the flow. In drift-wave turbulence, the analog
Rhines length is introduced [20], which is shown to scale with
the E × B velocity (as a square-root of this). In this regard,
� is the level of electrostatic drift-wave turbulence driving the
staircase, so that � → +∞ would imply that the turbulence
intensity is actually very high.

A. Basic equations, nonlocality, and the Cauchy limit

As a general approach, we consider a transport model of
the Fokker-Planck type, with due modifications accounting
for the presence of transport avalanches, on the one hand,
and the effect of external potential field, V (x), on the other
hand. The model, which has been devised for magnetically
confined plasma in Ref. [14], may be summarized in terms
of the following kinetic equation for the probability density
f = f (x, t ) to find a passive tracer at time t at point x:[

∂

∂t
− 1

η

∂

∂x
V ′(x)

]
f (x, t ) = T̂ f (x, t ) + Ŝ±[f (x, t )], (1)

where V ′(x) = dV (x)/dx is the gradient of the sawtooth field
along the x axis; −V ′(x) is the radial force felt by the particle
and is responsible for the convection term in Eq. (1); η is
viscosity (in the fluid sense) and determines the actual finite
spread in the V (x) jumps (neglected in the idealized model);
Ŝ±[f (x, t )] is the source/sink term, which is defined as a
functional on f (x, t ); and

T̂ f (x, t ) = D
∂2

∂x2
f (x, t ) + ∂2

∂x2
�μ(x, t ) (2)
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is a combination of Gaussian diffusion (the first term on the
right-hand-side, identified by the coefficient D) and nonlocal
diffusion accounting for the avalanche processes in the medium
(this term is marked by the index μ and is identified by
the nonlocal function �μ(x, t ) to be quantified below). The
combined avalanche-diffusion model in Eqs. (1) and (2) is
derived below based on a Markov evolution equation for the
probability density f (x, t ), using random walks and the notion
of transition probability in Fourier space (see Sec. II B). The
assumption of Markovianity says we shall neglect any possible
trapping phenomena at the staircase steps. The Gaussian
term in Eq. (2) stands for the familiar collisional diffusion
in a weakly collisional plasma. This term may naturally be
extended, so that it also includes the quasilinear (collisionless)
diffusion by wave-particle interactions [21]. The nonlocal term
in Eq. (2) accounts for the presence of the coherent structures
in the medium, that is, the avalanches. It is understood that
the avalanches propagate radially on a very fast time scale
(much faster than the corresponding diffusive times) and are
characterized by a velocity close to the ion acoustic speed [3].
An account on the observation and quantitative characteriza-
tion of avalanche events in a magnetically confined plasma
can be found in Ref. [22]. As the avalanches can trap and
convect particles, they may cause their sudden displacements
in radial direction occurring at about the sonic speeds. Such
processes would be virtually instantaneous when compared to
the microscopic diffusion processes (collisional or quasilin-
ear). We consider these sudden radial displacements caused
by the avalanches as the Cauchy flights along the x axis. The
Cauchy flights are partial case of more general Lévy flights and
correspond to the limit μ → 1 in the Lévy fractional diffusion
equation (e.g., Refs. [9,11,23])

∂

∂t
f (x, t ) = Kμ

∂2

∂x2

1

�μ

∫ +∞

−∞

f (x ′, t )

|x − x ′|μ−1
dx ′. (3)

The integrodifferential operator on the right-hand side of
Eq. (3) is known as the Riesz fractional derivative and
incorporates the nonlocal features of Lévy flights [11,23]
via a convolution with a power-law. Also in Eq. (3) one
encounters Kμ, the transport coefficient, which carries the
dimension cmμ × s−1; as well as the normalization parameter
�μ = −2 cos(πμ/2)�(2 − μ), which occurs by splitting the
improper integration in Eq. (3) into two Riemann-Liouville
integrals, i.e.,

∫ +∞
−∞ = ∫ x

−∞ + ∫ +∞
x

. Further, μ is the fractal
dimension of Lévy flights [23]. This is a numerical parameter
lying between the two integer limits, i.e., μ = 1 (posed by
topological connectedness of the Lévy flight trajectories) and
μ = 2, for which the nonlocal properties vanish. Note, in this
regard, that the normalization parameter �μ → +∞ for μ →
2 (due to the divergence of the gamma function), saying it is
solely the Gaussian diffusion term in Eq. (2) that survives in this
limit. For μ = 1, the integrodifferentiation on the right-hand
side of Eq. (3) reduces (via the degeneration of the normaliza-
tion parameter) to the Hilbert transform operator [24], leading
to the following simplified kinetic equation for Cauchy flights
in an infinite space,

∂

∂t
f (x, t ) = −K1

1

π

∂

∂x

∫ +∞

−∞

f (x ′, t )

x − x ′ dx ′, (4)

where K1 = limμ→1 Kμ. Dynamically, the limit μ → 1 serves
to emphasize that the Cauchy flights are kind of very fast,
ballistic displacements along the x axis, and as such they
mirror the observed avalanche phenomenology at the staircase
steps [2,3]. For 1 � μ < 2, the algebraic kernel in Eq. (3) char-
acterizes the nonlocal nature of transport avalanches. Note that
the Fickian transport paradigm that fluxes are decided by local
gradients [25] does not apply here. The fact that the nonlocal
properties are inherently present in the coupled avalanche-
zonal flow system has been demonstrated in Ref. [5] based on
flux-driven gyrokinetic [26] computations, using generalized
heat transfer integrals and the heuristic idea of “influence
length.” A clear evidence of nonlocal effects in tokamak
plasma was provided by perturbative experiments [27,28] with
plasma edge cooling and heating power modulation, indicating
anomalously fast transport of edge cold pulses to plasma core,
not compatible with major diffusive time scales [14,29,30].
Recent progresses on experimental analysis and theoretical
models for nonlocal transport (non-Fickian fluxes in real space)
are reviewed in Ref. [31].

B. Derivation of the nonlocal term

Before we proceed with the main topics of this study, we
wish to illustrate the derivation of the transport model in
Eqs. (1) and (2) above, using the idea of transition probability
in reciprocal space (Ref. [14]; references therein). For this,
consider a Markov (memoryless) stochastic process defined
by the evolution equation,

f (x, t + �t ) =
∫ +∞

−∞
f (x − �x, t )ψ (x,�x,�t )d�x, (5)

where f (x, t ) is the probability density of finding a particle
(random walker) at time t at point x, and ψ (x,�x,�t ) is
the transition probability density of the process. Note that
the “density” ψ (x,�x,�t ) is defined with respect to the
increment space characterized by the variable �x. It may
include a parametric dependence on x, when nonhomogeneous
systems are considered. Here, for the sake of simplicity, we
restrict ourselves to the homogeneous case, and we omit the x

dependence in ψ (x,�x,�t ) to enjoy

f (x, t + �t ) =
∫ +∞

−∞
f (x − �x, t )ψ (�x,�t )d�x. (6)

Then ψ (�x,�t ) defines the probability density of changing
the spatial coordinate x by a value �x within a time interval
�t independently of the running x value. The integral on the
right of Eq. (6) is of the convolution type. In the Fourier space
this becomes

f̂ (k, t + �t ) = f̂ (k, t )ψ̂ (k,�t ), (7)

where the integral representation,

ψ̂ (k,�t ) = F̂{ψ (�x,�t )} ≡
∫ +∞

−∞
ψ (�x,�t )eik�xd�x,

(8)
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has been used for ψ̂ (k,�t ), and similarly for f̂ (k, t ). Letting
k → 0, it is found that

lim
k→0

ψ̂ (k,�t ) =
∫ +∞

−∞
ψ (�x,�t )d�x. (9)

The improper integral on the right-hand side is nothing else
than the probability for the space variable x to acquire any
increment �x during time �t . For memoryless stochastic
processes without trapping, this probability is immediately
seen to be equal to 1, that is, the diffusing particle takes
a displacement anyway in any direction along the x axis.
Therefore,

lim
k→0

ψ̂ (k,�t ) = 1. (10)

We consider ψ̂ (k,�t ) as the average timescale- and wave-
vector-dependent transition “probability” or the characteristic
function of the stochastic process in Eq. (6). In general,
ψ̂ (k,�t ) can be due to many coexisting, independent dynami-
cal processes, each characterized by its own “partial” transition
probability, ψ̂j (k,�t ), j = 1, . . . n, making it possible to
expand

ψ̂ (k,�t ) =
n∏

j=1

ψ̂j (k,�t ). (11)

We should stress that, by their definition as Fourier integrals,
ψ̂j (k,�t ) are given by complex functions of the wave vector k,
and their appreciation as “probabilities” has the only purpose of
factorizing in Eq. (11). This factorized form is justified via the
asymptotic matching procedure in the limit k → 0. Without
loosing in generality, it is sufficient to analyze a simplified
version of Eq. (11) with only two processes included − one
corresponding to a white noise-like process, which we shall
mark by the index L; and the other one, corresponding to a
regular convection process, such as a zonal flow or similar,
which we shall mark by the index R. We have, accordingly,

ψ̂ (k,�t ) = ψ̂L(k,�t )ψ̂R (k,�t ). (12)

These settings correspond to a set of Langevin equations,

dx/dt = v; dv/dt = −ηv + FR + FL(t ), (13)

where η is the fluid viscosity; FR is the regular force; and
FL(t ) is the fluctuating (noiselike) force. We take FL(t ) to be
a white Lévy noise with Lévy index μ (1 < μ � 2). By white
Lévy noise FL(t ) we mean a stationary random process, such
that the corresponding motion process, i.e., the time integral of
the noise, L(�t ) = ∫ t+�t

t
FL(t ′)dt ′, is a symmetric μ-stable

Lévy process with stationary independent increments and the
characteristic function,

ψ̂L(k,�t ) = exp(−Kμ|k|μ�t ) ∼ 1 − Kμ|k|μ�t. (14)

The last term gives an asymptotic inverse-power distribution
of jump lengths

χ (�x) ∼ |�x|−1−μ. (15)

In the above, the constant Kμ constitutes the intensity of the
noise. As is well-known, the characteristic function in Eq. (14)
generates Lévy flights [9,23].

Focusing on the regular component of the force field,
FR , it is convenient to represent the corresponding transition
probability in the form of a plane wave, i.e.,

ψ̂R (k,�t ) = exp(iuk�t ) ∼ 1 + iuk�t. (16)

Here, u is the speed of the “wave,” which is decided by
convection. One evaluates this speed by neglecting the term
dv/dt in Langevin Eqs. (13) to give u = FR/η. It is noted
that the general condition in Eq. (10) is well satisfied for both
the Lévy processes and stationary convection, emphasizing the
Markov property and the absence of trapping. Putting all the
various pieces together, one obtains

ψ̂ (k,�t ) = exp(−Kμ|k|μ�t + ikFR�t/η). (17)

The next step is to substitute this into Eq. (7), and to allow
�t → 0. Then, Taylor expanding on the left- and right-hand
sides in powers of �t , and keeping first nonvanishing orders,
in the long-wavelength limit k → 0 it is found that

∂

∂t
f̂ (k, t ) = [−Kμ|k|μ + ikFR/η]f̂ (k, t ). (18)

When inverted to configuration space, the latter equation
becomes

∂

∂t
f (x, t ) =

[
Kμ

∂μ

∂|x|μ − 1

η

∂

∂x
FR

]
f (x, t ), (19)

where the symbol ∂μ/∂|x|μ is defined by its Fourier transform
as

F̂
{ ∂μ

∂|x|μ f (x, t )
}

= −|k|μf̂ (k, t ). (20)

In the foundations of fractional calculus (e.g., Ref. [32]) it is
shown that, for 1 < μ < 2,

∂μ

∂|x|μ f (x, t ) = 1

�μ

∂2

∂x2

∫ +∞

−∞

f (x ′, t )

|x − x ′|μ−1
dx ′. (21)

Equation (21) reproduces the Riesz fractional derivative dis-
cussed above, with �μ = −2 cos(πμ/2)�(2 − μ).

Relating FR to external potential field with the aid of
FR = −V ′(x), and substituting in Eq. (19), one arrives at the
following fractional Fokker-Planck equation, or FFPE (e.g.,
Refs. [9,11,23,33]; references therein),

∂

∂t
f (x, t ) =

[
Kμ

∂μ

∂|x|μ + 1

η

∂

∂x
V ′(x)

]
f (x, t ). (22)

Note that FFPE involves space fractional differentiation only
in terms of the generalized Laplacian operator; whereas the
convection term is integer and introduces the potential well for
Lévy flights. This observation elucidates the fundamentally
different roles the stochastic and regular forces play as they
set up the analytical structure of FFPE. In this context, the
idea of “fractional” convection term and some alternative
generalizations of the Fokker-Planck equation (e.g., Ref. [34])
does not seem to find a solid dynamical background. FFPE in
Eq. (22) can alternatively be derived using as a starting point the
set of Langevin Eqs. (13) instead of the evolution Eq. (6). The
advantage of Langevin approach lies in the straightforward way
of including the driving force terms in the presence of several
competing dynamical processes in the medium. Previously, a
study of nonlocal transport in terms of Langevin equations
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with Lévy white noise and corresponding generalized Fokker-
Planck equation containing space-fractional derivatives have
been suggested by Fogedby [35] and Jespersen et al. [36].

C. The nonhomogeneity issue

We should stress that the introduction of the x-dependent
force FR (x) = −V ′(x) in place of the constant force in
Eq. (19) destroys the spatial homogeneity of the transfer
statistics implied by the transfer kernel in Eq. (6). Even so,
this extension to nonhomogeneous systems with the spatial
asymmetry owed to the force FR = FR (x) could be employed
under the condition that the terms determining the jump length
|x − x ′| separate from the coordinate dependence in FR (x),
implying that the force is calculated at the arrival site x and
not at the departure site x ′. Technically, the separation of
terms can be implemented based on the generic functional
form [37] of the memory kernel, using the Heaviside step
function to ascribe the dependence on the jump length. More
so, implementing a similar convention regarding the arrival
site, the assumption that the intensity of the Lévy noise
Kμ does not depend on x can be relaxed [14]. In a basic
physics perspective, the nonhomogeneity is key to explain
the occurrence of superdiffusive transport on combs and other
subdiffusive structures, as the analysis of Ref. [38] has shown.

D. Extension to Gaussian diffusion

Equation (22) can be extended, so that it includes local
transport due to e.g., Coulomb collisions (as well as collision-
less quasilinear transport), in addition to nonlocal transport
processes discussed above. The key step is to observe that
collisions—whatever nature they have—will generate a white
noise process of the Brownian type, whose characteristic
function is Gaussian and is obtained from the general Lévy
form Eq. (14) in the limit μ → 2. Note that the Gaussian law,
too, belongs to the class of stable distributions, but it will be
the only one to produce finite moments at all orders. When
the Lévy and Brownian noises are included as independent
elements to the dynamics, the transition probability in Eq. (11)
will again factorize, and will acquire, in addition, a Gaussian
factor ψ̂G(k,�t ) = exp(−Dk2�t ), where D has the sense of
the diffusion coefficient. Then Eq. (17) will generalize to

ψ̂ (k,�t ) = exp(−Kμ|k|μ�t − Dk2�t + ikFR�t/η),

(23)

from which a FFPE incorporating both the Riesz fractional
derivative and the usual Laplacian operator,

∂

∂t
f (x, t ) =

[
Kμ

∂μ

∂|x|μ + D
∂2

∂x2
+ 1

η

∂

∂x
V ′(x)

]
f (x, t ),

(24)

can be deduced for k → 0. Equation (24) reproduces the
transport model in Eqs. (1) and (2) up to the sink terms in
Ŝ±[f (x, t )].

E. The boundary value problem

The infinite limits of integration in the Riesz frac-
tional derivative Eq. (3) and other fractional operators alike

correspond to free Lévy flights in open space. When placed on
a comb, the Lévy flyer will be subject to further restrictions
owed to particularities of the potential force field, i.e., the shape
of the V (x) dependence. The focus here is on the jumps in V (x)
at each right border of the sawtooth (see Fig. 1). Those jumps
would introduce infinite repulsive forces at x = xj + 0 for all
j = 1, 2, . . . starting from xj = 0, making it impossible for
the flyer to get back once it has crossed a tooth at some radial
location x = xj . The net result is that the transport process
cannot propagate to the negative semi-axis because of the jump
in V (x) for x → +0. If the spacing between the consecutive
teeth of the comb is very broad, i.e., � → +∞, then we need
to ensure there is no return at x = 0. With this implication in
mind, we limit the range of the integration in Eq. (3) to only half
a space, i.e., 0 < x < +∞, advocating the following reduced
form of the nonlocal function in Eq. (2) (for μ 	= 1),

�μ(x, t ) = Kμ

�μ

∫ +∞

0

f (x ′, t )

|x − x ′|μ−1
dx ′. (25)

Mathematically, this reduction of the limits of integration is
important, as it provides consistency between the fractional
integrodifferentiation in FFPE and the sawtooth form of V (x).
Following Chechkin et al. [39], one finds in the presence of
the no-return condition at x = 0 that the transports model in
Eqs. (1) and (2) with the �μ(x, t ) function defined by Eq. (25)
correctly phrases the first passage time density problem [9,11]
for Lévy flights. Moreover, this model will naturally observe
the Sparre Andersen universality [40] that the first passage
time density decays as ∼t−3/2 after t time steps (t → +∞).
We consider this universality as a characteristic property of the
avalanche-diffusion transport system.

III. ANALYSIS

An important feature of Eq. (1) is that it brings together pro-
cesses occurring on kinetically disparate spatial scales ranging
from the micro-scales of Coulomb collisions and/or electro-
static microturbulence to the mesoscales on which the shear
flows organize themselves into a patterned staircase structure.
It is understood that for � → +∞ the transport problem in
Eq. (1) is characterized by space scale separation in that there is
a crossover scale, � 
 �, such that for x 
 � the Gaussian dif-
fusion (collisional and/or quasilinearlike) dominates; and for
x � � the nonlocal behavior dominates allowing for radially
propagating avalanches and the Cauchy flights. The crossover
scale � is obtained by requiring that the Gaussian and the
nonlocal terms in Eq. (2) have the same order of magnitude,
i.e., Df (�, t ) ∼ �μ(�, t ) for μ → 1. This yields, with the aid
of Eq. (4), � ∼ πD/K1. Naturally, we require � 
 � in the
limit of strong turbulence.

A. Small scales: Collisional transport

For x 
 �, we may neglect the second (nonlocal) term in
Eq. (2), keeping only the Gaussian term. Also for x 
 � we
may ignore the action of the potential field V (x) in Eq. (1), just
remembering that it goes to zero for x → +0 with its both first
and second derivatives (owing to the condition n > 2). Then
from Eq. (1) one sees that there is a steady-state (∂f (x, t )/∂t =
0; f (x, t ) = f (x)) solution, which is determined by a bargain

022208-5



ALEXANDER V. MILOVANOV AND JENS JUUL RASMUSSEN PHYSICAL REVIEW E 98, 022208 (2018)

between the diffusion term, on the one hand, and the eventual
sources and sinks, on the other hand, yielding

−D
∂2

∂x2
f (x) = Ŝ±[f (x)]. (26)

Next, we assume for simplicity, without loss of generality,
that the sources Ŝ+[f (x)] are delta-pulses centered at x = xj .
That means that Ŝ+[f (x)] ≡ 0 for 0 < x < �. Concerning the
sink terms, Ŝ−[f (x)], we associate them with the stabilizing
effect of the shear flows on radial transport [16] and the
fact that such flows effectively absorb the particles (hence
withdraw them from the radial diffusion processes) at a rate
that is decided by the radial gradient of the intensity of
the flow. In this regard, we may define Ŝ−[f (x)] = −qf (x)
for x 
 �, where q is a coefficient, which characterizes the
efficiency of the absorption. Then from Eq. (26) one finds
that the decay of the probability density is exponential, i.e.,
f (x) ∼ exp(−√

q/D x), with a characteristic decay length of
the order of

√
D/q. Consistently with the above reasoning, we

require
√

D/q � � 
 �.

B. Long scales: Nonlocal transport

The dynamical picture changes, if the spatial scale x

overshoots �, i.e., x � �. In this parameter range, the diffusion
term may be neglected, as it will be much smaller than the
competing Lévy term. Also, because the avalanches propagate
radially on a very fast time scale, if not at all “instantaneously,”
their continuum damping by the shear flows in-between the
staircase spikes will be rather unimportant (at contrast to local
diffusion), making it possible to omit the sink term in Eq. (1).
Then the auspicious steady-state solution is defined through
a negotiation between the nonlocality contained in the Lévy
term, on the one hand, and the fluid nonlinearities generating
the potential function V (x), on the other hand. With the aid of
Eqs. (3) and (25), one gets

−1

η

∂

∂x
(V ′(x)f (x)) = Kμ

�μ

∂2

∂x2

∫ +∞

0

f (x ′)
|x − x ′|μ−1

dx ′. (27)

Using here that the total probability is conserved across the
integration domain, i.e.,

∫ +∞
0 f (x ′)dx ′ = 1, one infers the

following asymptotic matching condition for the function f (x)
in the limit x → +∞, that is, V ′(x)f (x) ∝ x−μ. Recalling
further that the leading term in the expansion of V (x) goes as a
power-law, i.e., V (x) ∝ xn, with n > 2, one gets for x → +∞

f (x) ∼ (ηKμ/�μ) x−(n+μ−1). (28)

Note that there is no algebraic tail for μ → 2 because of
the divergence �μ → +∞. For μ < 2, we require that the
probability density f (x) decays faster than any Lévy stable
law, that is, faster than the inverse-cube dependence ∝ x−3 in
the limit x → +∞ [11,23]. That would mean that the second
moments become finite in the presence of the potential field
V (x), i.e.,

∫ +∞
0 x ′2f (x ′)dx ′ < +∞. Then the finiteness of

the second moments would imply in turn that the avalanches
are asymptotically localized in the sense of Lévy-Gnedenko
generalized central limit theorem [41]. So, the localization
condition is, essentially, a condition on the n value and reads

n + μ − 1 > 3, (29)

that is, n > 4 − μ. In the case of Cauchy flights, we have n > 3
(in view of μ → 1). The net result is that the Cauchy flights
are asymptotically localized by a potential field V (x), whose
leading power grows faster than ∝ x3 for x → +∞. If n is
integer, then the condition n > 3 implies it is the biquadratic
dependence ∝ x4 that localizes the Cauchy flights in the lowest
order.

IV. DISCUSSION

Our findings so far can be summarized as follows. The
avalanche-diffusion model in Eqs. (1) and (2) is characterized
by space scale separation, so that at the short scales (shorter
than the crossover distance � ∼ πD/K1) the transport is
dominated by ordinary (Brownian-like) diffusion processes,
and at the far longer spatial scales it is dominated by non-
local phenomena involving plasma avalanches. The latter are
coherent structures mediating the Cauchy flights of passive
particles in radial direction, with the fractal dimension μ → 1.
The decay of the probability density in a steady state of the
coupled avalanche-zonal flow system is exponential within
the diffusion domain and is inverse power-law in the nonlocal
domain. The exponent of the power-law is −(n + μ − 1) and
is defined by the leading term in the V (x) expansion for
x → +∞. In the above we have requested that n be larger than
2, which was motivated by the mathematical structure of the
convection term on the left of Eq. (1). For 2 < n � 3, the decay
of the probability density corresponds to a Lévy stable law, with
diverging second moments, and the avalanches appear to be not
localized. On the contrary, for n > 3, the probability density
vanishes faster than the steepest Lévy stable law would decay.
This reinstalls finiteness of the second moments implying
that the avalanches are asymptotically localized. Thus, there
is a critical dependence in the V (x) function, i.e., the cubic
dependence ∝ x3, such that for dependencies faster than this
the nonlocal features are confined at the staircase steps, and
will be unconfined otherwise.

A. Finite-size effects

In the above we have assumed that the � value is actually
very large, and we have neglected accordingly any finite size
effects—to be attributed to the fact that the probability density
f (x) might not have completely vanished yet before the next
tooth of the comb is faced. To this end, because of the sharp
drop-off in the V (x) dependence at x = � + 0, there may be an
important probability of barrier crossing, so that the avalanches
having finite inertia would just tunnel under the barrier. If the
barrier is successfully crossed, then in the idealized model the
dynamics is reset to the next step of the comb, with an updated
boundary condition, and the process repeats itself. One sees
that there will be net transport in radial direction propagating
to long distances, and this occurs in ordered steps along the x

axis, with the characteristic step �. The process can be thought
as a persistent random walk down to the scrape-off layer, with a
bias posed by the asymmetry of the comb’s teeth. Theoretically,
it corresponds to the transport case with finite moments and
superdiffusive scaling and has been considered for combs in
Ref. [38]. It is understood that in the presence of a charac-
teristic step-size there is no asymptotic nonlocal behavior in
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the Lévy-Gnedenko sense, even though the entire process is
not confined in the long run. These complex features have been
seen in simulations [2,3,42].

Our next point here concerns the absence of power-law tails
in the Gaussian limit μ → 2, as Eq. (28) has shown. In this
case, the decay of the f (x) function is exponential through
the entire staircase period, i.e., f (x) ∼ exp(−√

q/D x) for all
0 < x � �. Since � � √

D/q, the exponential factor is quite
small at x → � − 0. Hence, the probability of barrier crossing
is negligible, implying that (i) the transport process is well
localized within the barrier, and (ii) there is no net transport
at the macroscopic scales (beyond the staircase period). This
conclusion substantiates the result of del-Castillo-Negrete
et al. [43], who associated the absence of transport at a
macroscopic level with a dynamical system reaching local
thermodynamic equilibrium for μ → 2.

Self-consistently, one would expect that the staircase pat-
terning and the generation of Lévy noises in the medium are
two faces of the same coin, that is, two coupled processes
operating in the same complex system far from thermodynamic
equilibrium. If this conjecture is correct, then (i) triggering
transport barriers in magnetically confined plasma unavoid-
ably generates transport avalanches contesting these barriers;
(ii) transport models not including nonlocal phenomena in
the medium are inadequate to describe the staircase self-
organization; (iii) μ may be taken as a measure of how far from
equilibrium the dynamical system is [44]; and (iv) transport
in preferred direction has parametric dependence on μ and is
intensified, if the μ value is lowered. This parametric behavior
has been confirmed numerically [43].

B. Size distribution of avalanches

In large systems, the avalanches being coherent structures
may have a nontrivial size distribution, and this may be
obtained as the probability for the random walker to not be
dispersed by the Fokker-Planck dynamics after �s space steps
in radial direction, enabling

w(�s) =
[∫ +∞

0
−

∫ �s

0

]
f (x ′)dx ′ =

∫ +∞

�s

f (x ′)dx ′. (30)

Note that the conservation law
∫ +∞

0 f (x ′)dx ′ = 1 implies
lim�s→0 w(�s) = 1. Utilizing the corresponding representa-
tions for the f (x) dependence in both core (small scales:
Sec. III A) and tail (long scales: Sec. III B) regions, and
integrating in Eq. (30) from �s to +∞, one finds that the
size distribution of avalanches w(�s) interpolates between
the initial exponential form w(�s) ∼ exp(−√

q/D �s) for
�s 
 � and the asymptotic inverse power-law behavior,

w(�s) ∼ (1/�μ) �s−(n+μ−2), (31)

for �s � �. In the above we have promoted the gamma
function to emphasize that there is no asymptotic power-
law behavior in the Gaussian limit, μ → 2. In case of the
biquadratic (n = 4) dependence in the leading order, one gets,
using Eq. (31), w(�s) ∼ (1/�μ) �s−(2+μ) for �s � �. In
particular, for the Cauchy flights, with μ = 1, w(�s) ∝ �s−3.

C. Connection to the Weibull distribution and other
distributions with long tails

On the experimental and modeling side, the size distribution
w(�s) has already been measured in computer simulations of
the Tore Supra plasma [3]. The results deriving from those
measurements have been plotted against the Fréchet distribu-
tion, which is a special case of the Weibull (or generalized
extreme value) distribution with lower bound. A summary
of this analysis is given by Eq. (3) of Ref. [3], yielding the
analog w(�s) function deduced phenomenologically from the
simulations. By examining the result of Ref. [3] one sees
that the Weibull distribution reproduces both the exponential
(small sizes) and the power-law (large sizes) counterparts of
the w(�s) dependence and in this sense offers qualitative
agreement with the limiting cases of the avalanche-diffusion
model discussed above.

Quantitative agreement is obtained by matching the expo-
nent of the algebraic tail of the Weibull distribution (in the
notation of Ref. [3], this exponent is written as −(1 + κ )/κ ,
where κ is numerical fitting parameter) to our −(n + μ − 2) in
Eq. (31). The result is the matching condition n = (3 − μ) +
1/κ . Using κ ≈ 0.6 as of Ref. [3], and setting the index μ to
unity, one obtains n ≈ 3.7. So, the effective value of n fitting
the data is clearly greater than 3, with a fair margin. This implies
localization, and this in fact has been observed [2,3].

The Weibull distribution discussed in Ref. [3] is analytically
very similar to the so-called kappa distribution, which has
come of age as a suitable phenomenological fitting tool when
describing dynamical phenomena in complex systems (e.g.,
Refs. [44–46]; references therein). The theoretical significance
of the kappa distributions lies in the fact [47] that these distri-
butions appear as canonical distributions in the nonextensive
thermodynamics due to Tsallis [48]. There have been some
discussion in the literature concerning the possible relationship
between the Tsallis entropy and Lèvy flights (e.g., Ref. [49]).
Here we might partially support that discussion, however, we
draw attention to the fact that the Lèvy flights alone are not
sufficient to generate the kappa distributions, and one needs,
in addition, a process producing the exponential decay part at
the microscopic scales. This is accounted for by the sink term
in Ŝ−[f (x)], which is motivated in our model by the stabilizing
effect of the shear flows on radial diffusion, and which has been
written as Ŝ−[f (x)] = −qf (x) for x 
 �.

D. Black swans

When a passive particle is caught on an avalanche, it gains
a kick of kinetic energy, and we have tacitly assumed that this
energy being possibly large in absolute terms is, however, small
compared to Vmax = V (�). This assumption was guaranteed
by � → +∞ permitting a steady state solution for the proba-
bility density f (x), with the Sparre Andersen universality [40]
dictating the reduced limits of integration in Eq. (27). Then
it was our conclusion that the avalanches could be effectively
confined within the staircase steps, provided just that the power
n in the shape function V (�x) ∝ |�x|n is greater than 3 (see
Fig. 1).

In a magnetically confined plasma, the coupled avalanche-
zonal flow interacting system may behave similarly to a
predator-prey system in that the transport barriers generated
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by the turbulence take energy from the turbulence, meaning
that their driving mechanism is diminished, and they may be
decaying due to classical or neoclassical collisional damping
(e.g., Refs. [16,50]). The process opens a possibility that some
avalanches escape the confinement domain during the barrier
depression periods, giving rise to sporadic bursts of large-scale
transport well above the staircase’s parapet. This type of
occasionally strong transport events being virtually insensitive
to the underlying flow and stress organization has been found
in the GYSELA simulations [2,3], and their statistical weight
has been assessed to be about a percentile of all avalanche
events observed across the staircase.

If one is a traditionalist, and wants to remain with the
Fokker-Planck model in Eqs. (1) and (2), then one might readily
assess the statistical case of unconfined avalanches as follows.
In the basic kinetic equations, one neglects both the Gaussian
and the potential force terms, as well as the sink term Ŝ−[f (x)],
and only keeps the nonstationary term against the Lévy term.
The net result is that (i) there is no steady state solution,
contrary to the confined transport case; and (ii) the probability
density, which is time dependent, behaves asymptotically as
a power-law f (x, t ) ∼ Kμt/x1+μ. Due to this property, the
mean squared displacement diverges, i.e., 〈x2(t )〉 → +∞,
which is typical for free Lévy flights. In view of this divergence,
the size distribution of unconfined avalanches is obtained as the
corresponding jump length distribution [23]. The latter is given
by Eq. (15), yielding, for �s � �, �s � √

D/q,

w(�s) ∝ �s−(1+μ). (32)

The scaling in Eq. (32) is confirmed by tuning n to its border-
line value n = 3 in w(�s) ∝ �s−(n+μ−2), as is intimated by
Eq. (29) above.

Let us christen our avalanches. Inspired by the mathematical
elegance of the confined Lévy flight, we baptize the avalanches
caught in-between the staircase steps white swans. The term
is intended to contrast the other population of bursty transport
events, the black swans, which are the avalanches escaping the
confinement system during the low barrier phase. The name
black swan is borrowed from the Taleb’s book [12]; where,
it has been introduced to describe an unexpected catastrophic
event catching us off-guard. Note that the size distributions of
the power-law type appear for both the white and black swans,
but with different drop-off exponents, so that for n > 3 the
black-swan distribution is always flatter (in its habitat) than
the corresponding white-swan distribution (see Fig. 2).

The occurrence of the black-swan family gives rise to a
characteristic “bump” in the w(�s) dependence, which is
located around �s ∼ �. Given the space scale separation
condition � � √

D/q, the position of this bump is well
beyond the exponential core region (see Fig. 2). One sees
that the resulting w(�s) dependence, which embraces both
the white- and black-swan populations, will be bimodal in that
it has a second maximum near �s ∼ �.

Note, also, that the white swans go extinct beyond the
staircase spacing distance ∼�, that is, the areas of the white-
and black-swan dominance are essentially different (except for
the narrow overlap region around ∼�). This finding is peculiar
and says the probabilities of the black-swan events cannot
be predicted by interpolating the white-swan counterpart (if
it exists) to longer sizes.

FIG. 2. The coexistence between the white- and black-swan
families of avalanches for n > 3. The occurrence of the black-swan
family gives rise to a characteristic “bump” in the w(�s ) dependence
around �s ∼ �, lying far off the exponential core region (i.e., the
property of bimodelity). The dragon-king avalanches being singular
transport events are shown as a fat dot at the upper-right corner
dominating the scene.

The respective drop-off exponents for the white and black
swans would only coincide for the borderline case n = 3,
for which all the swans stick together to form one single
family, with the unique size distribution w(�s) ∝ �s−(1+μ).
Arguably, one might refer to this borderline case as gray swans,
as they serve as the missing bond between the two main species,
the white and black swans. Because μ < 2, the gray swans
correspond to nonlocalized avalanches.

For n < 3 (but still larger than 2, see Sec. II), we expect
the white swans to completely change their color and
“mutate” (past the intermediate gray-swan phase) into one
single family of the black-swan type populating the entire
staircase (see Fig. 3), with the unique size distribution
w(�s) ∝ �s−(n+μ−2). The latter distribution turns out to
be flatter than the jump length distribution for free Lévy
flights as of Eq. (32) above (this is because the n value is
now smaller than 3), implying that the asymmetric-teeth
effect enhancing the transport in radial direction has become

FIG. 3. Same situation, but for 2 < n < 3. The regime with n = 3
is the borderline case, for which the white-swan family “mutates”
into one extended black-swan family past the gray-swan species. The
bimodality of the w(�s ) dependence (see Fig. 2 above) is naturally
lost in this case.
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stronger than the confining effect due to the shear flows
composing the staircase. As this “mutation” occurs, the bump
around �s ∼ � disappears. We associate this with the loss
of bimodality and related bifurcation phenomena studied by
Chechkin et al. [6]. This regime shift could be interpreted as a
localization-delocalization transition [51] on the comb
structure shown in Fig. 1.

If one starts from poor confinement, with the black swans
being the dominant species, and intervenes on the n value
trying to bring it above the n = 3 border, then one encounters
a bifurcation point, at which one witnesses the occurrence of
a new family of avalanches, the white swans, which is the
“mutation” of the black swans trapped in-between the staircase
steps. Past the bifurcation point at n = 3, the w(�s) function
becomes bimodal, with a distinct, steeply decaying branch in
the subrange �s � � (the white swans), and the asymptotic
black-swan behavior for �s � �, with a drop-off exponent
conforming with a Lévy stable law. If n is integer, then the
white swans would be identifiable starting from n � 4, i.e.,
when the growth of V (�x) is biquadratic (n = 4) in the leading
order. Tuning the fractal dimension μ to 1, we have for n = 4,
w(�s) ∝ �s−3 in the white-swan category, and w(�s) ∝
�s−2 in the black-swan category. The two populations are
quite separate in this case (see Fig. 2) and, moreover, fairly
divide their habitats in that the white swans reign in the domain√

D/q 
 �s � � and the black swans reign in the domain
�s � �. The fact that the black swans had adhered to an
∝ �s−2 drop-off might be substantiated by the analysis of
Ref. [52], in which the dynamics of coupled chaotic oscillators
with extreme events was investigated numerically.

We should stress that the black swans occupy the most
“dangerous” niche corresponding to large-amplitude events,
with sizes generally greater than ∼�. In a practical advisory,
that may mean the following. The statistics of large-amplitude
bursts of transport (the black swans) may be quite different
from the statistics of smaller events (as much as the difference
between black and white). So, if one wants to predict the
transport at the macroscopic (system-size) scales, then one
cannot really interpolate from mesoscales to the large scales
along the white-swan branch, as that would miss the important
population of the black swans coming up. Indeed, “More is
different” [53] for complex systems, and this is illustrated
even further in Sec. IV E.

E. Dragon kings

The swans whatever color they have will not be the unique
species of the avalanche events populating the staircase. In
strong drift-wave turbulence, there is an important probabil-
ity that the avalanches themselves are sources of secondary
instabilities, and these would merge with the mother insta-
bility via inverse cascade of spectral energy, giving rise to
ever amplifying unstable fronts propagating radially toward
the scrape-off layer [14,54]. The amplification occurs when
the Rhines time in the system is small compared with the
instability growth time. We note in passing that the Rhines
time [20] in drift-wave turbulence is the ratio between the
Rhines length (which is proportional to the square-root of the
E × B velocity) and the E × B velocity itself, i.e., the decay
of the Rhines time is given by the inverse square-root of the
E × B drift. Clearly, the smallness of the Rhines time implies
that the fluctuations are strong, and the turbulence level high.

One sees that the avalanche is amplified, because it induces
secondary turbulence on its front and simultaneously absorbs
this turbulence through the inverse cascade enhancing the
instability. The result of this amplification (and amplification
of the amplification, etc.) is an avalanche of extraordinarily
great size, washing out all the finer scale structures on its
way down to the scrape-off layer. These stark events would be
“true” extreme events in our system, and their energy content
is only limited to the system size. There have been a mythic
term to define such events for complex systems, dragon kings,
which have been introduced by Sornette [13] to emphasize their
superiority over any other transport event around. A defining
feature of the dragon kings (other than their “noble” rank)
is the fact that they do not belong to the typical power-law
branch representing the black swans, but would, rather, keep
away from the mainstream statistics, being a restricted family
of “odd” events of anomalously large magnitude (and the
associated rare appearance).

In a statistical perspective, the interest in dragon kings
lies in the fact that they represent extreme events beyond the
usual scale-free paradigm, and their occurrence frequencies are
much higher than what would be expected under a power-law
approximation to the correspondingly great sizes. When drawn
to the probability density-size diagram, the dragon kings would
appear as a peak at the right corner of the black-swan distribu-
tion (see the schematic illustrations in Figs. 2 and 3), such that
the probability mass under the peak corresponds approximately
to the integral of the probability density that would result if the
black-swan population extended to infinity [52]. A summary on
current scientific debate concerning the issue of dragon kings,
and the methods to detect them, can be found in a Topical
review in Ref. [55]. Direct experimental evidence of large
amplitude avalanche events at the edge of the JET plasma has
been reported by Xu et al. [18].

Given for granted that the dragon-king avalanches have
outstanding expect size, we disregard the idea these avalanches
may be described under the Fokker-Planck dynamics in
Eqs. (1) and (2). Theoretically, this makes the situation un-
avoidably more debatable and controversial. As a prospective
model approach, one might tackle a complex system with
mixed multiscale-coherent behavior [45,46]. In such systems,
one often finds that there is a subordination between the
different order parameters, that is, the multiscale ordering gen-
erating the power-law branch (black swans) may act as input
control parameter for the emerging coherent ordering [45].
This competition between the two orderings may result in
an explosive instability in the system (i.e., the “blow-up” of
phase space trajectories generating a dragon king-like event)
and mathematically corresponds to a description in terms of
fractional Ginzburg-Landau equation [44,56]. An alternative
approach discussed in Ref. [57] has used the idea of complex
nonlinear Schrödinger equation with integer derivatives, in
which the free energy source term was coupled to the nonlinear
term, giving rise to the phenomena of convective amplification
and ballistic radial propagation of unstable fronts (our dragon-
king avalanches).

The “blow-up” of phase-space trajectories in a system of
coupled chaotic oscillators with master-slave subordination
and transverse instability has been demonstrated numerically
in Ref. [52]. In these simulations, the blow-up occurred when
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the trajectories occasionally touched on “hot spots” of the
chaotic system with a highly inhomogeneous phase space. It
has been discussed that the blow-up—also termed attractor
bubbling—could be directly responsible for the occurrence of
dragon kings in this specific configuration, and that the dragon
kings, in general, are likely in networks of coupled nonlinear
oscillators with subordination [52,58].

A model of explosive instability considered by Eliazar in
Ref. [59] suggests the dragon kings and black swans may
appear universally and jointly through dynamics. He argued
the black-swan branch could be an indication that the dragon
kings are but exploded black swans and may materialize even
in deterministic systems under special initial conditions.

All in all, these observations may have important impli-
cations for the dynamics of coupled drift wave-zonal flow-
avalanche system, for which one might expect outstanding
bursts of transport beyond the black-swan metrics [60].

V. CONCLUDING REMARKS

In summary, we have shown that a potential function
that grows steeply enough with the spatial scale may con-
fine nonlocal transport with Lévy flights. This finding has
important implications for the understanding of localization-
delocalization phenomena in banded flows observed in plan-
etary atmospheres [4,61], terrestrial oceans [62], and, more
recently, in tokamak plasma [1–3,42]. Also it offers a simple
criterion to characterize internal transport barriers that may or
may not confine the nonlocal transport. We have discussed that
the nonlocal features could be introduced by so-called transport
avalanches, which may trap and convect particles in radial
direction at about a sonic speed. A mixed avalanche-diffusion
model for the probability density produces the size distribution
of avalanches in qualitative (and given the fitting parameter
kappa, also quantitative) agreement with observations.

Further focusing on the phenomena of localization-
delocalization (and the associated power-law reduced drop-off
of the probability density), we have discussed that there may
exist different families of avalanches populating the plasma
staircase, and we have theoretically predicted at least three such
families depending on the dynamical features they represent:
(i) the white swans, i.e., the avalanches confined in-between
the staircase steps; (ii) the black swans, i.e., the avalanches
that may occasionally escape the confinement domain as a
result of the predator-prey dynamics of the coupled avalanche-
zonal flow system (or other nonlinear phenomena alike); and
(iii) dragon kings, i.e., events of extraordinarily large magni-
tude, which represent the catastrophic events in the system,
with possible irreversible consequences. We expect the black
swans to be the dominant population particularly during the

phases of barrier lowing posed by the predator-prey oscillation
of the turbulence patterns in magnetic confinement geome-
try [16,50]. At contrast, dragon kings likely afford a different
evolution path related with the phenomena of induced vortex
formation [14,54] and amplification (and amplification of the
amplification, etc.) of secondary instabilities in the presence of
inverse spectral energy cascade. Concerning the white-swan
population, it only appears in the model, if the potential
function V (�x) grows faster than ∝ |�x|3 in the leading order,
and is totally absorbed by the expanding black-swan family
otherwise. This gives rise to a localization-delocalization
transition at the cubic dependence V (�x) ∝ |�x|3 and the
associated loss of bimodality consistently with the results of
Refs. [6,9]. If one is precise and happens at the transition point
exactly (n = 3), then one finds (iv) the elusive gray swans,
which represent the connecting bond between the white- and
black-swan species, and which are not localized, with the size
distribution ∝ �s−(1+μ) conforming to a Lévy stable law. We
have proposed that both the white and black swans could
be described in terms of the Fokker-Planck model with a
comblike potential force term and properly defined nonlocal
term; whereas the dragon kings being exceptionally strong
events of explosive type corresponded to a different description
advancing the notion of fractional Ginzburg-Landau equa-
tion [44,45,56]. The results, presented in this work, pave the
way for the construction of a self-consistent theory of nonlocal
transport, according to which the avalanches are localized
(or not localized) by the same comblike potential field that
generates these avalanches. This proposal might breath new
life into the work in Ref. [38], in which the occurrence of Lévy-
like processes on subdiffusive structures has been considered.
Further research in this direction might be strongly advocated.
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