
PHYSICAL REVIEW E 98, 022206 (2018)

Bifurcation delay in a network of locally coupled slow-fast systems
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We study the evolution of bifurcation delay in a network of locally coupled slow-fast systems. Our study reveals
that a tiny perturbation even in a single node causes asymmetry in bifurcation delay. We investigate the evolution
of bifurcation delay as a function of various parameters, such as feedback coupling strength, amplitude of external
force, frequency of external force, and delay coupling strength. We show that a traveling wave is generated as the
result of introducing local parameter mismatch, and the bifurcation delay shows a dip in the spatial profile. We
believe that these spatiotemporal patterns in bifurcation delay shed light on the dynamics of neuronal networks.
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I. INTRODUCTION

Many physical systems evolving with multiple time scales
can be modeled as fast and slow systems [1–4]. In such
systems, parameters may vary slowly with time or they can
be deliberately varied by the researcher. For instance, the
weight of a rocket in flight slowly decreases due to the
burning of fuel, which improves the speed of the rocket [5,6].
Catalytic activities in chemical reactors slowly decline due
to chemical erosion and decrease the reactor performance
[7,8]. The time dependence of a parameter may cause dra-
matic changes in the bifurcation diagram, which is obtained
under the assumption of a stationary control parameter. One
special feature of slow and fast systems is that bifurcation
does not happen immediately at the bifurcation point as a
result of the slow state variable regarded as the bifurcation
parameter. These dynamical phenomena are called delayed
bifurcations or the slow passage effect, which are of inter-
est for their importance in applications to various scientific
fields including experiments with lasers [9], fluid convection
[10], electronic circuits [11], and bistable chemical reaction
[12,13].

Delayed bifurcation was first reported in the study of
Hopf bifurcation of a slow-fast system by Shishkova [14].
Delay behaviors can also be observed in ordinary differential
equations with slowly varying parameters, such as the slow
passage problem through Hopf bifurcations [8], pitchfork
bifurcations [15], saddle-center bifurcations [16], transcritical
bifurcations [17], and through the resonances [18,19]. Such a
phenomenon is also observed in parametrically driven systems
in which the system is driven by a single or two periodic
forces while the control of bifurcation delay is also studied
for the influence of self-feedback delay [20–22]. In particular,
Baer et al. [8] have studied the bifurcation delays in the
FitzHugh-Nagumo model of nerve membrane excitability. It
was shown that bifurcation delays in the onset of oscillations
due to the slow passage effect decrease due to the influ-
ence of small-amplitude noise and periodic environmental

perturbations of near-resonant frequency. Whereas many of
the studies related to the bifurcation delay problem have
focused on a single system, in this work we address the
question of how the bifurcation delay evolves in a network
of slow-fast systems that are coupled through their nearest
neighbors.

Generally networks of coupled oscillators exhibit diverse
collective behaviors, such as synchronization, traveling waves,
clustering, and chimera states depending on the interplay of
coupling and local dynamics [23]. All of these phenomena are
manifested in phase, amplitude, or both [24–26]. However,
the manifestation of coupled behaviors in the context of
bifurcation delay has not been studied in the past. In the present
study, we investigate the evolution of bifurcation delay in
a network of locally coupled FitzHugh-Nagumo oscillators,
which are paradigmatic oscillators in the field of biology and
neuroscience that show slow-fast dynamics. Here we focus
on the dynamics under local coupling as it often arises in
neuronal systems [27], fluid dynamics [28], and chemical
oscillations [29].

In the present study, we show that even a tiny perturbation
in the parameters of a single node of a network of locally
coupled slow-fast systems leads to asymmetry in bifurcation
delay and also causes various spatiotemporal patterns, such
as traveling-wave and synchronized states. In the case of
a traveling wave, the bifurcation delay shows a dip in the
spatial profile. We analyze the behavior of the bifurcation delay
under various parametric conditions, such as the variation in
coupling strength, amplitude, and frequency of perturbation
and variation in delays.

The rest of the paper is organized as follows: In Sec. II we
introduce the model of a locally coupled network of FitzHugh-
Nagumo (FHN) systems. Then we demonstrate the bifurcation
delay in a network of identical FHN systems in Sec. III. The
effect of bifurcation delay under single-node perturbation is
discussed in Sec. IV. Finally, we summarize our results in
Sec. V.
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FIG. 1. (a) Time-varying current I (t ) given by Eq. (2). The shaded
region corresponds to the I (t ) value for which (b) is plotted. (b)
Time evolution of the activator variable v for a single FitzHugh-
Nagumo system. The solid black line represents (increasing) I (t ).
Here τb = tO − tH is the bifurcation delay time. The HB line is the
Hopf bifurcation line, which is the boundary between the oscillatory
region and the steady-state region.

II. NETWORK OF LOCALLY COUPLED
FITZHUGH-NAGUMO SYSTEMS

We consider a network of N locally coupled FitzHugh-
Nagumo (FHN) systems given by

v̇j = −h(vj (t )) − wj (t ) + I (t ) + ε[vj−1(t − τ ) − vj (t )]

+ εf vj (t − τf ),

ẇj = b[vj (t ) − f wj (t )]. (1)

Here h(vj (t )) = vj (t )[vj (t ) − a][vj (t ) − 1], and v and w are
the activator and inhibitor variables, respectively. a, b, f >

0 are system parameters. A node index represented by j

(j = 1, 2, . . . , N ) is taken as modulo N , i.e., we consider a
periodic boundary condition. Coupling delay is represented
by τ and self-feedback delay is given by τf . These two types
of delays have different origins in the context of a realistic
neuronal system: self-feedback delay (τf ) arises due to the
finite processing time with which the neural system responds
to a stimulus, whereas coupling delay (τ ) comes into play
due to the finite time of propagation of an information signal
between the spatially separated neurons [30,31]. Therefore, it
is important to study the simultaneous impact of both kinds of
delays. Here ε represents the strength of the delayed coupling,
and εf is the self-feedback coupling strength. The slowly
varying injection current I (t ) in Eq. (1) is represented by

I (t ) = −3α

π
[tan−1(cot(ωj t ))]. (2)

The rate of variation of I (t ) corresponding to the j th oscillator
is controlled by ωj , whereas α controls the amplitude. Note
that the particular form of I (t ) given by Eq. (2) represents a
sawtooth function [see Fig. 1(a)] that enables one to consider
a slow linearly increasing variation of I (t ) in a cycle. In the
absence of the time-varying current I (t ), the system (1) resides
in the excitable state [8]. A proper value of I (t ) drives the
system to the oscillatory mode through Hopf bifurcation.

To study the evolution of bifurcation delay, we consider
the following parameter values throughout the paper: a = 0.2,
b = 0.05, and f = 0.4. Parameters for injection current I (t )
are α = 0.8, ωj = 0.001; note that we choose a small value of
ωj to make the injection current a slowly varying function.
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FIG. 2. (a) Spatiotemporal plot taken by considering the identical
system that is ωj = 0.001, where j = 1, 2, 3, . . . , N , and (b) their
corresponding bifurcation delay in the system. Other parameter
values: a = 0.2, b = 0.05, α = 0.8, f = 0.4, τf = 11, τ = 9, ε =
0.2, and εf = 0.2.

Now let us consider a single FitzHugh-Nagumo oscillator
[i.e., Eq. (1) with j = 1, ε = 0, and εf = 0]. With the variation
of the external current I (t ), the appearance of bifurcation
delay is shown in Fig. 1(b) for illustrative purposes. The
HB line represents the Hopf bifurcation line, which is the
boundary between the steady-state and the oscillatory region.
The delay in transition from the excitable state to the oscillatory
state, denoted by τb, is observed by comparing the time tO at
which the system oscillates [tO is marked where the oscillation
reaches 1/10 of the maximum amplitude of vj (t )] and the time
tH when I (t ) crosses the Hopf bifurcation line. Hence the delay
τb is calculated as τb = tO − tH . The detailed quantitative
analysis of bifurcation delay for a single system was given by
Baer et al. [8]; they showed that the delay associated with the
bifurcation can be attributed to the fact that the destabilization
of the slowly varying solution does not occur immediately.
Also note that [see Fig. 1(a)] after the end of the increasing
cycle of I (t ), it suddenly jumps below the HB line, and the
oscillation in v(t ) will cease (not shown in the figure). Here
the system again enters into the excitable state, and the whole
cycle repeats itself.

III. BIFURCATION DELAY IN A NETWORK
OF IDENTICAL FHN SYSTEMS

Before we discuss the results of the network under local
parameter mismatch, to understand the scenario in a better way
we discuss the phenomenon of bifurcation delay in a network of
identical FitzHugh-Nagumo systems. For this we consider 100
FHN systems, and each oscillator is coupled through nearest-
neighbor coupling obeying Eq. (1). Numerical integration is
carried out using a fourth-order Runge-Kutta algorithm with
a step size 0.001. Coupling parameters are τ = 9, τf = 11,
ε = 0.2, and εf = 0.2. If all the oscillators are identical to
the above-mentioned parameters, they all experience the same
bifurcation delay. This can be seen from Fig. 2, where all
100 oscillators show a coherent spatiotemporal profile of vj

[Fig. 2(a)], and Fig. 2(b) shows the magnitude of the bifurcation
delay (τb), which is the same for all the oscillators.

IV. BIFURCATION DELAY UNDER SINGLE-NODE
PERTURBATION

In this section, we numerically explore the behavior of bifur-
cation delay τb when any one of the representative oscillators
(say the oscillator with index j = 10) is different from other
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FIG. 3. Spatiotemporal plots (left panels) and bifurcation delay
(right panel) under the perturbation in the 10th oscillator with ω10 =
0.001 01: (a) (i-ii) traveling-wave state having incoherent bifurcation
delay for εf = 0.1. (b) (i-ii) and (c) (i-ii): Spatiotemporal plots show
mixed states of synchronized and TW patterns having constant as
well as different bifurcation delay for εf = 0.2 and 0.3, respectively.
(d) (i-ii) Synchronized state for εf = 0.5; here bifurcation delay of all
the oscillators is equal except for the perturbed node. Other parameter
values: a = 0.2, b = 0.05, α = 0.8, f = 0.4, τf = 11, τ = 9, ε =
0.2, and ωj = 0.001 (except j = 10).

oscillators. We choose the value of frequency of the current
I (t ) of the 10th oscillator as ω10 = 0.001 01, which is different
from that of the rest of the oscillators, ωj = 0.001 (j �= 10).
We verify that because of the periodic boundary condition,
the choice of the perturbed node is arbitrary and does not
affect our results. Note that here the local parameter mismatch
in frequency is indeed tiny and constant. In the following
subsections, we will investigate the behavior of bifurcation
delay τb under various parametric conditions, namely the
variation in self-feedback coupling strength, the amplitude
of the external current, the frequency of the external current,
the variation in the delay coupling strength, and the effect of
coupling delay and self-feedback delay.

A. Variation of bifurcation delay with feedback
coupling strength ε f

To explore the effect of εf on the bifurcation delay, we
fix the delay-coupling strength at ε = 0.2. By varying the
feedback coupling strength εf , one can observe different
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FIG. 4. Bifurcation delay for the system of oscillators as a
function of εf for a fixed ε = 0.2. The line points show how the
index of the leftmost oscillator of the disparate region (or dipping
region) shifts spatially with the variation of εf . For other parameters,
see the text.

interesting scenarios. For a sufficiently small value of εf =
0.1, we observe that the system of oscillators exhibits traveling
waves [shown in Fig. 3(a)(i)]. The bifurcation delay associated
with Hopf bifurcation is illustrated in Fig. 3(a)(ii): It can be
seen from the figure that the bifurcation delay of each oscillator
is disparately distributed, and it shows a dip around j = 50.
Interestingly, we find that this dip in τb is related to the traveling
nature of vj . It can be revealed by increasing the value of εf to
εf = 0.2: now the system of oscillators splits into two groups:
one group has a synchronized vj profile, and in the other group
vj shows a traveling wave (TW) [Fig. 3(b)(i)]. The corre-
sponding bifurcation delay is demonstrated in Fig. 3(b)(ii):
it clearly shows that in the synchronized domains, oscillators
have almost the same bifurcation delay (except the perturbed
node), while in the TW domain a sudden dip in τb is observed.
A similar behavior can also be observed for εf = 0.3, which is
shown with Figs. 3(c)(i) and 3(c)(ii), however we note that an
increasing εf increases the traveling speed, and with increasing
traveling speed the depth of the dip decreases. By further
strengthening the feedback coupling strength, the magnitude
of bifurcation delay τb decreases and all the oscillators are now
synchronized and have the same bifurcation delay except for
the node j = 10, which is perturbed by introducing a frequency
mismatch with other nodes [see Figs. 3(d)(i) and 3(d)(ii)].

Further, the variation of bifurcation delay as a function of
εf is investigated in more detail for a fixed ε = 0.2; the results
are presented in Fig. 4. It shows the magnitude of bifurcation
delay as a function of εf in j -εf space. We observe that for
smaller values of εf the magnitude of bifurcation delay is
large, while increasing the value of the coupling strength causes
the magnitude of delay to decrease. When εf approaches the
value 0.4, we can observe that bifurcation delays associated
with all the oscillators become constant (except for j = 10,
i.e., the perturbed node). This may be due to the fact that for
stronger self-feedback, the synchronization effect dominates
over the delayed bifurcation effect scenario. Another notable
observation is that for lower coupling strength, the disparate
bifurcation delay occurs in the oscillators that are far away
from the perturbed node (i.e., j = 10). While εf is increased,
the number of oscillators in the disparate state increases at the
same time that the leftmost oscillator belonging to the disparate
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FIG. 5. (a) Bifurcation delay for two different amplitudes with
α = 0.7 (filled circular points with a solid line),α = 0.9 (open circular
points with a solid line). Other parameter values: τf = 11, τ = 9,
ε = 0.2, and εf = 0.2. (b) The shift in the index of the leftmost node
of the disparate domain with α.

state approaches the perturbed system, and when it reaches the
perturbed node the whole network becomes synchronized (the
traveling-wave state disappears), which is clearly illustrated in
Fig. 4. To show that increasing εf leads to a movement of the
disparate region toward the perturbed node, we have plotted the
index of the leftmost oscillator in the disparate state, which is
shown by line points (black filled circles) in Fig. 4. Here, we can
see that the spatial shift occurs along the array of the oscillators,
and the leftmost oscillator from the disparate state approaches
the perturbed system. Our observation of decreasing τb with
increasing εf is consistent with the observation of Ref. [21] by
the same authors for a single oscillator, where it was shown
that the bifurcation delay is controlled by the interplay of
self-feedback delay and propagation delay.

B. Variation of bifurcation delay as a function
of the amplitude of I (t )

To get an understanding about the impact of the amplitude
of the external force, α, on the bifurcation delay (τb ), we
choose two different values: α = 0.7 and 0.9. Other parameter
values are a = 0.2, b = 0.05, ωj = 0.001, f = 0.4, τf = 11,
τ = 9, ε = 0.2, and εf = 0.2. From Fig. 5(a), one can note
that an increase in amplitude of I (t ) does not lead to any
qualitative change in the bifurcation delay. Moreover, as in
the previous case, an increase in α also leads to a shifting
of the leftmost oscillator in the disparate (incoherent) domain
toward the perturbed oscillator. This is presented in Fig. 5(b) as
a function of α. The line connected by filled circles denotes the
index of the leftmost oscillator in the disparate domain, which
moves toward the perturbed node (i.e., the 10th oscillator) as
α increases.

C. Variation of bifurcation delay as a function
of frequency of I (t )

Next, we analyze the impact of the frequency of the
external force I (t ) on the behavior of τb. For this, we fix the
frequency of the oscillators in the system (except the perturbed
node) as ωj = 0.001. By varying the value of ω10 linearly
with integral multiples of 0.000 01, that is, �ω = k × 10−5,
k = 1, 2, 3, . . . , we investigate the deviation of τb among the
system of oscillators. Figure 6(a) illustrates the existence of τb

for amplitude α = 0.8 with fixed �ω(ω10 − ωj = 0.001 02 −
0.001) = 0.000 02. In the marked region, the bifurcation delay
increases linearly with a slope of 4.16. Here we calculated the
slope as

slope �ω = τb of oscillator i − τb of oscillator (i − 1)

i − (i − 1)

i ∈ 21 − 40.

The value of this slope increases if we increase �ω. For
various �ω, we have plotted their corresponding slope �ω in
Fig. 6(b). For example, if �ω = 0.000 03, the bifurcation delay
between the successive oscillator is 8.7. Figure 6(c) shows a
similar slope for two different amplitudes, e.g., for α = 0.8
(circular points with a solid line) and α = 0.9 (triangular points
with a dashed line).

D. Bifurcation delay as a function of delay coupling strength ε

Here, we investigate the behavior of bifurcation delay for
fixed self-feedback coupling strength εf by varying the delay
coupling strength ε. In contrast to the feedback coupling
strength εf (as in Fig. 4), ε does not qualitatively change
the spatial profile of τb. Instead, increasing ε spatially shifts
the disparate τb profile along the array j ; this is shown
in Fig. 7(a). Another thing to notice here is that with an
increase in the coupling strength, shifting occurs away from
the perturbed node, while for increasing εf shifting occurs
toward the perturbed node (see Fig. 4). The line connected by
points in Fig. 7(a) clearly delineates the shifting of the index of
the leftmost oscillator in the disparate or incoherent domain,
which moves away from the perturbed node as ε increases.
For illustrative purposes, τb of the oscillator for fixed coupling
strength ε is plotted in Fig. 7(b). For ε = 0.08 [marked with a
horizontal dashed line in Fig. 7(a)], the onset of the disparate
or incoherent domain starts at the index jd = 15th oscillator,
as shown in Fig. 7(b). If we increase ε, the index jd spatially
moves in the right direction.
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FIG. 6. (a) Bifurcation delay for amplitude α = 0.8, εf = 0.2, and ε = 0.2 for �ω(ω10 − ωj ) = 0.000 02. (b) Slopes for different �ω(ω10 −
ωj ). (c) Slopes for different �ω(ω10 − ωj ) for α = 0.8 (circular points with a solid line) and α = 0.9 (triangular points with a dashed line).
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FIG. 7. (a) Bifurcation delay for the system of oscillators as a
function of ε for fixed εf = 0.2. (b) The bifurcation delay for ε = 0.08
[i.e., bifurcation delay corresponding to the ε value marked with a
horizontal dashed line in Fig. 7(a)].

E. Bifurcation delay as a function of coupling delay (τ )
and self-feedback delay (τ f )

Finally, we explore how bifurcation delay changes with the
two delay parameters, τ and τf . The results of the variation of
τb with respect to τ and τf are shown in Figs. 8(a) and 8(b),
respectively. With respect to τ , the coexistence of two domains
with different behavior in the region between (8.5 � τ � 10.5)
is shown in Fig. 8(a) (τf = 11): in one domain the system
has constant bifurcation delay, while the other has disparate
bifurcation delay. Analogously, from Fig. 8(b) one can note
that the system exhibits two domains with different bifurcation
delay in the region between (9 � τf � 13) as a function of
τf (τ = 9). In this paper, we investigate the behavior of
bifurcation delay by fixing τ = 9 and τf = 11, which are
within the regions shown in Figs. 8(a) and 8(b) [shown by
a horizontal dashed line in Figs. 8(a) and 8(b)]. However, it
would be interesting to explore the behavior of the system in
the complete τ − τf parameter space, which may show much
more complex phenomena and would be a potential problem to
study.

V. CONCLUSION

In summary, we have investigated the evolution of the
bifurcation delay in a network of slow-fast systems under
local coupling among the dynamical units. In the case of
identical systems, we have found that the profile of bifurcation
delay is uniformly distributed along the array of oscillators.
However, the introduction of even a very small perturbation
at a single node leads to a traveling-wave (TW) state. In the
spatial profile of the TW state, bifurcation delay shows a dip in
the disparate region. We also analyzed the effect of bifurcation
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FIG. 8. Bifurcation delay for the system of oscillators as a
function of (a) coupling delay (τ ) and (b) self-feedback delay (τf ).
The dashed horizontal lines denote selected values of τ and τf for the
analysis in this paper. Other parameters: ε = 0.2, εf = 0.2.

delay with respect to various parameters related to the coupling
and external perturbation (here the injection current).

Our numerical study raised the following important open
question, which has to be studied in the future: “How does
the inhomogeneity created in the system physically govern the
evolution of bifurcation delay?” The present study provides
an account of the interesting complex behaviors shown by the
bifurcation delay in a network of locally coupled slow-fast
systems. In this paper, we have chosen the injection current
as the source of asymmetry; however, it will be interesting
to study the effect of others perturbations, such as noise,
and inhomogeneous system and coupling parameters. Further,
this study can be extended toward several other coupling
topologies, e.g., global coupling and nonlocal coupling. In
particular, we believe that under nonlocal coupling, apart from
the traveling-wave solution, additional complex patterns such
as chimera patterns [24] may emerge, and in this state a
separate study is warranted to determine how bifurcation delay
evolves. We believe that the present study will shed light on the
dynamics of many physical and biological systems in which
slow-fast dynamics are present.
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